返回首页
文学网 > 百科 > 读后感 > 正文

数学史读后感

2025/06/19读后感

文学网整理的数学史读后感(精选8篇),供大家参考,希望能给您提供帮助。

数学史读后感 篇1

最近,我读了《这才是好读的数学史》一书的上半部分。读完后我十分感慨,原来数学是一门如此有趣且有丰富内涵的学科。

这本书记载了数学从有记载的源头再向代数、几何(平面几何、立体几何、解析几何)、统计学、运筹学等领域不断深化发展的历史进程。全书按历史发展的顺序先后介绍了古希腊、古印度、古巴比伦、古代中国、中世纪欧洲在十五世纪至十六世纪数学在顺应社会实践需要的基础上出现的深化、突破。

在介绍数学发展的基础上,这本书还以历史的视角对三十种有关基础数学的普通概念进行了独立精彩的叙述,再现了毕达哥拉斯、欧几里得、欧拉等数学大师的风采,还特地的穿插了女性数学家在数学发展中做出的巨大贡献,从各方面为读者还原了真实、有趣的数学史。

数学与文学、物理学、艺术、经济学或音乐一样,是人类不断发展和努力的结果。它既有过去的'历史,又有未来的发展,更有今天的广泛应用。我们今天学习和使用的数学,在许多方面都与一千年前、五百年前甚至一百年前的数学有很大不同。在21世纪,数学无疑会进一步发展。学习数学就像认识一个人一样,你对他的过去了解的越多,你现在和将来就越能理解他并与其互动。

在任何起点上想学好数学,我们需要先理解相关问题,然后才能赋予题目有意义的答案。理解一个问题往往取决于了解这个概念的理解,所以想理解数学,就来读《这才是好读的数学史》。

数学史读后感 篇2

《数学史》把数学几千年的发展浓缩为这本编年史中。从希腊人到哥德尔,数学一直辉煌灿烂,名人辈出,观念的潮涨潮落到处清晰可见。而且,尽管追踪的是欧洲数学的发展,但并没有忽视中国文明、印度文明和阿拉伯文明的贡献,是一部经典的关于数学及创造这门学科的数学家们的单卷本历史著作。读了这本书,让我对数学学习有了新的认识和感悟,也让我更深层次的了解到数学的魅力和伟大,以及对前人的崇敬。

数学源于人类的生活与发展。书中说,“人类在蒙昧时代就已具有识别事物多寡的能力,从这种原始的‘数觉’到抽象的‘数’概念的形成,是一个缓慢的,渐进的过程。”人类为了便于生活生产的需要,开始以手指头计数,手指数不够了,开始用石头计数,结绳计数,刻痕计数。又经过几万年的发展,随着几种文明的诞生与发展,记数系统在各种文明中都有了表示方式。古埃及的象形数字,巴比伦楔形数字,中国甲骨文数字,中国筹算数码等等。

但是,为什么时至今日我们最习惯和擅长使用的是十进制计数的方式呢,难道就是因为老师们一代一代这样教出来的吗?很多人可能就是这样认为的,或者根本并未思考过。书里写到:“十进制在今天的普遍使用,只不过是解剖学上一次偶然事件的结果而已:我们中的大多数人,生来就有10个手指、10个脚趾。”经历过扳着手指头数数的过程,可能十进制早已在我们的心中留下了牢固的烙印。这就是一个知识的自然形成。

通过对书中一些知识的阅读与思考,可以感觉到许多知识并不是那些先驱者凭空乱想出来的,是根据某种需要而研究出来的规律,而且是一些自然存在的规律,我们今天所学的知识正是这些已经总结出来的规律。“坐标系”这个词,对很多人来说可能并不陌生,即使他的数学知识已经“还给老师”很多年了,他也许还知道什么是“经度纬度”。为什么会出现这样的现象呢,也许是因为后者在生活中出现的更多一些,但其实两者的实质都是一样的。一个小故事说:“笛卡尔小时候在一次晨思时看见天花板上有一只苍蝇在爬,他的头脑中闪现出智慧的火花,如果知道苍蝇和相临两个墙壁的距离之间的关系,就能描述它在天花板上的位置与运动路线。”这个故事可能是编造的,但最终形成了我们今天所知的“笛卡尔坐标系”。这样的思想广泛的应用在天文,地理,物理等许多的'学科中。

我们在学习知识的时候是否思考过这个知识是由何而来的呢?是否注意到了在知识体系这张大网中,每个知识在什么位置上呢?难道我们真的可以单纯的认为每个知识都是孤立的考试对象吗?

数学源于生活,高于生活,最终也将服务生活,运用于生活。在一般人看来,数学是一门枯燥无味的学科,因而很多人视其为畏途,从某种程度上说,这也许是由于我们的数学所教的往往是一些僵化的、一成不变的数学内容,如果在数学教学中渗透数学史内容而让数学活起来,这样也许可以激发学生的学习兴趣,也有助于学生对数学认识的深化,让更多的学生懂得数学。

数学史读后感 篇3

我阅读《数学史通论》,完全在一种休闲的、轻松的,也是舒坦的、愉快的状况之中。碰到繁复的数学公式、定理及其证明等,我一目十行、囫囵吞枣,一如我读大部头的小说,往往常规地跳过向来不太在意的大段心理描写一样。读《数学史通论》,我却十分留意它行云流水的叙述、缜密思维的演绎、多姿多彩的话语、宏大紧密的结构。有时,我按图索骥,对着目录,找准其中的某一篇章,仔细揣摩;有时,我随意打开其中的某页,顺势而读,总能做到乐在其中。我不求透彻的理解、不求系统的把握,《数学史通论》让我与牛顿、高斯这些巨人亲密接触,也让我循着代数、几何、算术、三角学发展的脉络,靠近(还不能说走进)数学。在我来说,只是追求阅读视野的扩大、知识背景的重构。

数学是人类创造活动的过程,而不单纯是一种形式化的结果;运用辨证唯物主义的观点看待数学科学及数学教育,在他们的形成和发展过程中,不但表现出矛盾运动的特点,而且它们与社会、政治、经济以及一般人类的文化有着密切的联系。

它的内容涉及到从上古时代到19世纪初的这段时期。为了跟踪过去2000年当中主要数学概念的发展,作者非常重视第一手资料的搜集与运用。在介绍重要数学家的工作时,大量从他们的原著中引用材料。在不列颠博物馆、英国皇家学会和剑桥三一学院的帮助下,引用了比较多的史料,使人们对原始的'情况获得了深刻的印象。同时,作者还注意到数学知识的继承性和积累性,并不把重大的发现和发明完全归功于某一个人。例如对欧几里得和牛顿这样一些主要的流派,作者到说明他们的成就的渊源,从而勾画出数学科学本身发展的规律。斯科特博士依靠他对数学史的驾驭自如的能力写出了这本富有激励性的好书。

数学的历史源远流长。我了解到,在早期的人类社会中,是数学与语言、艺术以及宗教一并构成了最早的人类文明。数学是最抽象的科学,而最抽象的数学却能催生出人类文明的绚烂的花朵。这使数学成为人类文化中最基础的学科。对此恩格斯指出:“数学在一门科学中的应用程度,标志着这门科学的成熟程度。”在现代社会中,数学正在对科学和社会的发展提供着不可或缺的理论和技术支持。

数学史不仅仅是单纯的数学成就的编年记录。数学的发展决不是一帆风顺的,在跟读的情况下是充满犹豫、徘徊,要经历艰难曲折,甚至会面临困难和战盛危机的斗争记录。无理量的发现、微积分和非欧几何的创立…这些例子可以帮助人们了解数学创造的真实过程,而这种真实的过程是在教科书里以定理到定理的形式被包装起来的。对这种创造过程的了解则可以使人们探索与奋斗中汲取教益,获得鼓舞和增强信心。

数学史读后感 篇4

在任何起点上要想学好数学,我们需要先理解相关问题,然后才能赋予答案的意义——引言

数学,似乎是一个枯燥的学科,但却是我们生活里最为有用的工具之一,它是物理化学生物的摇篮,是政治经济学的基础,是市场里的公平称,是我们量化自己的必要工具……是的,数学是一个“工具箱”!那么,前人是怎么样把这个工具弄得更为人性化,更能让我们好好地使用呢?看完《这才是好读的数学史》后,我知道了许多。

《这才是好读的数学史》介绍了数学从有记载的源头,到最初的算数,再到代数、几何等领域不断地深入化发展的历史过程。本书按照历史发展顺序,先后介绍了数学的开端,古希腊的数学,古印度的数学,古阿拉伯的数学,中世纪欧洲的数学,十五和十六世纪的代数学。

在人类对于数学漫漫求索之路上,诞生了许多古代文化,而这些古代文化发展了各种各样的数学。其中,古代伊拉克的历史跨越了数千年,它包括了许多文明,如苏美尔,巴比伦,亚述,波斯和希腊文明。所偶有这些文明都了解并使用数学,但有很多变化。在这儿不得不提到的是古希腊数学。在此之前,各个文明运用数学仅仅是用来协助、解决一些简单的生活问题,有时不就此满足的人们也会有简单的'探索,但希腊的数学家们是独一无二的,他们将逻辑推理和证明作为数学中心,也是正因如此,他们永远改变了运用数学的意义。

数学源于生活却高于生活。如今的数学在生活中被广泛的运用,一起热爱数学吧!向为数学做出巨大奉献的前人们致敬!

数学史读后感 篇5

今年的寒假出奇的漫长,在这漫长的寒假里,我读了一本我不怎么喜欢的书——《数学史》,为什么不喜欢呢?是因为我很多不懂,但是读着读着我就喜欢上了,《数学史》记录着人类数学历史发展的进程,读了它,我有一点肤浅的体会。

体会一:数学源自于与生活的需要与发展。

书中写到:人类在很久之前就已经具有识辨多寡的能力,从这种原始的数学到抽象的“数”概念的形成,是一个缓慢渐进的过程。人们为了方便于生活便有了算术,于是开始用手指头去“计算”,手指头计数不够就开始用石头,结绳,刻痕去计计数。例如:古埃及的象形数字;巴比伦的楔形数字;中国的甲骨文数字;希腊的阿提卡数字;中国筹算术码等等。虽然每种数字的诞生都有不同的背景与用途,以及运算法则,但都同样在人类历史发展和数学发展起着至关重要的作用,极大地推动了人类文明的前进。

体会二:河谷文明和早期数学在历史的长河一样璀璨夺目。

历史学家往往把兴起于埃及,美索不达米亚,中国和印度等地域的古文明称为“河谷文明”,早期的数学,就是在尼罗河,底格里斯河与幼发拉底河,黄河与长江,印度河与恒河等河谷地带首先发展起来的。埃及人留下来的两部草纸书——莱茵徳纸草书和莫斯科纸草书,还有经历几千年不倒的神秘金字塔,给后人诠释了古埃及人在代数几何的伟大成就,也给后人留下了辉煌的文化历史,而美索不达米亚在代数计算方面更是达到令人不可思议的程度。三次方程,毕达哥拉斯都是它创造的不朽的历史,在数学史上的地位是至关重要的。

古人云:读史使人明智。读了《数学史》让我明白:数学源于生活,高于生活,最终服务于生活,运用于生活。

数学史读后感 篇6

又这样过了一个月了,尽管也就那么的几节数学史的课,可是,依然让我听得津津入味。认识数学历史,重温数学的发展道路。

数学,似乎是一个枯燥的学科,但是,却是我们生活当中,最为有用的工具之一,它是物理化学生物的摇篮,是政治经济学的基础,是市场里的公平秤,是我们量化自己的必要工具。数学,就是这么的一个“工具箱”,前人用万分的努力汗水,把这个工具弄得更为人性化,更能让我们好好地使用。《数学史概论》这本书,真的让我对数学有了更深的认识。

下面,我说说从《数学史概论》这本书,我又学到了什么。

古希腊第一位伟大的数学家泰勒斯,曾利用太阳影子成功地计算出了金字塔的高度,实际上利用的就是相似三角形的性质。看吧,利用数学简单的思维,就能把本不可能完成的计算,就这样轻松解决了。在泰勒斯之后,以毕达哥拉斯为首的一批学者,对数学做出了极为重要的贡献。发现“勾股定理”,是他们最出色的成就之一,因此直到现在,西方人仍然把勾股定理称为“毕达哥拉斯定理”。正是这个定理,导致了无理数的发现。勾股定理,我相信很多人都很熟悉,可是又有多少人知道其中的具体的得来过程呢,从这条定理的证明,到后来导致了无理数的发现,我也相信未来,也一定有不少的理论在这个基础上,不断地被发现,被证明。在毕达哥拉斯之后,就是伟大的古希腊哲学家亚里士多德,他是人类科学发展史上最博学的人物之一,正是他所创立的逻辑学,对古希腊数学的发展产生了深远的影响。到了欧几里德时代,几何学已经成为一门相当完整的学科了。欧几里德的名著《几何原本》,是世界数学史上最伟大的著作之一。时至今日,我们在初中阶段学习的平面几何,大部分知识依然来源于古老的《几何原本》。在此之前,我只知道,亚里士多德在哲学方面为世界做出了很大的贡献,可是也不可否认,在几何方面他也对数学界做出的贡献不可磨灭。

研究数学发展历史的学科,是数学的一个分支,也是自然科学史研究下属的一个重要分支。数学史研究的任务在于,弄清数学发展过程中的基本史实,再现其本来面貌,同时通过这些历史现象对数学成就、理论体系与发展模式作出科学、合理的解释、说明与评价,进而探究数学科学发展的规律与文化本质。作为数学史研究的基该方法与手段,常有历史考证、数理分析、比较研究等方法。可以说,在数学的漫长进化过程中,几乎没有发生过彻底推翻前人建筑的情况。正是我们不断地为数学这座高楼添砖加瓦,它才能越立越高,越来越扎实,我也为可以这样学习和认识数学而感到满足!

数学史读后感 篇7

为了进一步提高数学教师专业素养,学校为老师们准备了《数学史选讲》这本书,读了以后有点感想。

数学是几千年来人类智慧的结晶,书中通过生动具体的事例,介绍了数学发展过程中的若干重要事件、重要人物与重要成果,读后让人初步了解了数学这门科学产生与发展的历史过程,体会了数学对人类文明发展的作用,感受到了数学家严谨的治学态度和锲而不舍的探索精神。 在数学那漫漫长河中,三次数学危机掀起的巨浪,真正体现了数学长河般雄壮的气势。 第一次数学危机,无理数成为数学大家庭中的一员,推理和证明战胜了直觉和经验,一片广阔的天地出现在眼前。但是最早发现根号2的希帕苏斯被抛进了大海。 第二次数学危机,数学分析被建立在实数理论的严格基础之上,数学分析才真正成为数学发展的主流。但牛顿曾在英国大主教贝克莱的攻击前,显得苍白无力。 第三次数学危机,“罗素悖论”使数学的确定性第一次受到了挑战,彻底动摇了整个数学的基础,也给了数学更为广阔的发展空间。但歌德尔的不完全性定理却使希尔伯特雄心建立完善数学形式化体系、解决数学基础的工作完全破灭。 如果说“危机”是数学长河的主流,那数学史上一道道悬而未解的难题、猜想,就是一朵朵美丽的浪花。费马猜想,历经三百年,终于变成了费马定理;四色猜想,也被计算机攻克。哥德巴-赫猜想,已历经两个半世纪之多,众多的数学家为之竞相奋斗,尽管陈景润跑在了最前面,但最终的证明还是遥遥无期。更有庞加莱猜想、黎曼猜想、孪生素数猜想等……,刺激着数学家的神经,等待着数学家的挑战。 天才的思想往往是超前的,在我们这些凡夫俗子眼中,的确很难理解他们。但就是在这样的环境下,他们依然默默的坚守着自己的信念,执著着自己的理想。数学家们那种锲而不舍的精神是我们应该努力学习的,正是有了那种精神,他们才能坚守在自己的阵地上直到自己生命的最后一刻,这也许就是他们所认为的幸福。回想我们自身,什么才是我们所追求的呢?什么才是幸福呢?教师职业本身的内涵和学生的健康成长是我们应该追求的目标,享受职业内在的幸福要从做好自己的.本职工作开始。 浪花是美丽的,数学更是美丽的,英国数学家罗素说过:“数学不仅拥有真理,而且拥有至高无上的美——一种冷峻严肃的美,即就像是一尊雕塑……这种美没有绘画或音乐那样华丽的装饰,他可以纯洁到崇高的程度,能够达到严格的只有最伟大的艺术才能显示的完美境界。”

这么美的东西除了我们自己感受,还要在学生中去流传,将数学史渗透到数学教学中,可以拓宽学生的视野,提高学生素质,激励学生奋发向上,也能够激发学生们学习数学的兴趣。

数学史读后感 篇8

什么是数学?在我的印象中数学无非就是符号数字不停的计算与难记的公式,但这本《这才是好读的数学史》让我有了一次全新的体验。

从小就听大人们讲数学源于生活在生活中无处不在,例如本子的形状为长方形,这就是生活中的数学。这看似非 常简单,可他为什么会被设计为长方形?平常装东西使用的篮子也是包含了数学元素,最早新人们为生生活的需求, 数学便诞生了。没有人知道数学究竟是多久开始的?在蒙昧的时代,人们便有了数觉,然后慢慢形成了数的概念。

早在早期人们便研究圆周率,但无法研究出圆周率真正准确的数字,从约公元前1650年至今,人们研究圆周率经 历了一个漫长的过程。可为什么人类会花这么多经历去研究圆周率,圆周率为无理数,数字也是随机性的,如同一个 虫洞,十分令人着迷。而圆在我们生活中也很重要,如同望远镜,碗,车轮,碗为圆形吃饭用时更加方便,并且不像 方形碗那样处理四角,圆形清理也更加方便。轮胎为圆形,因为滚动摩擦力比滑动摩擦力阻力更小。圆为我们生活提 供了许多方便。

数字计算机也是人类一大发明。第二次世界大战时,艾伦图灵设设计了几台电子机器来帮助进行密码分析,他带 领英国成功破解德国潜艇司令部的所谓谜码,数字也可为战争的.一部分(密码战)。数字计算机可以很快读取数字与 形成数字,2002年金田康正教授的团队也是通过使用数字计算机算出圆周率小数点后12位,比原始探究方法不知快 了多少倍,这不禁令人惊叹。

数学说如同一个工具箱,前人们不断把这个工具箱变得更人性化,好让我们使用。数学如同一个高塔,古往今来 人们一直在建造它,正是人们不断为这座高楼添砖加瓦,它才能越建越高,越来越扎实。

数学并非是僵硬的,而是生动形象的,只有了解好数学史,才能更好的学习数学。