返回首页
文学网 > 短文 > 教学教案 > 正文

分数除法教案

2025/08/20教学教案

文学网整理的分数除法教案(精选47篇),供大家参考,希望能给您提供帮助。

分数除法教案 篇1

教学内容:

教材第29-30页的内容。

教学目标:

1.能用方程解决简单的有关分数的实际问题,初步体会方程是解决实际问题。

2.探索并掌握分数除以整数的计算方法,并能正确计算。

3.能够运用分数除以整数解决简单的实际问题。

教学重点:

分析分数除法应用题中数量间的关系,用方程解答分数除法应用题。

教学难点:

运用分数除以整数解决简单的实际问题。

教具准备:

多媒体课件

预习提纲:

1.观察课本第29页的图,从中你能获得哪些数学信息呢?

2.根据这些数学信息你能提出哪些问题?

3.分析例题,写出等量关系,并试用方程解答。

4.想想还有别的算法吗?

教学过程:

一、创设情境,引发探究

1.同学们喜欢课外活动吗?你们喜欢参加哪些课外活动?

2.课件出示:从画面中你能获得哪些数学信息呢?这些数量之间有什么关系?

(1)打篮球的人数是踢足球的4/9.

(2)踢毽子的人数是踢足球的1/3.

(3)跳绳的人数是参加活动总人数的2/9.

……

二、提出问题,自主探究

1.根据这些数学信息你能提出哪些问题?

操场上一共有27人参加活动,跳绳的小朋友人数是操场上参加活动总人数的2/9.跳绳的有多少人?

列出这题的等量关系,并解答。全班交流。

2.还能提出哪些数学问题,引出例题

跳绳的小朋友有6人,是操场上参加活动总人数的2/9。操场上有多少人参加活动?

这道题与上题有哪些区别和联系呢?能找到这道题的数量关系吗?

你能用方程的知识,解决这样的问题吗?应该如何解设?小组讨论,再由教师指名在黑板上演示。

解:设操场上有x人参加活动。

χ×2/9=6

χ×2/9÷2/9=6÷2/9

χ×=27

3.想一想,还有别的算法吗?怎么算?为什么?

6÷2/9=27(人)

三、巩固练习,实践探究

刚才同学们根据图中的数学信息,提出了很多的数学问题,这些数学问题,你们能解答吗?

1.操场上打篮球的有4人。

(1)打篮球的人数是踢足球人数的4/9,踢足球的人数是多少?

(2)踢毽子的'人数是踢足球人数的1/3,踢毽子的人数是多少?

(3)操场上踢足球的有9人,是操场上参加活动总人数的1/3,操场上参加活动有多少人?

(4)操场上踢毽子的有3人,是操场上参加活动总人数的1/9,是操场上参加活动总人数的1/3。

2.某月双休日 9天,是这个月总天数的3/10,这个月有多少天?

(板演过程中,着重分析学生可能存在的误解之处。)

3.根据以下方程,编出相应的应用题。

χ×1/5=30 χ×2/3=40

四、回顾反思,总结全课。

通过这节课的学习你有哪些收获?

分数除法教案 篇2

一、复习

1、同学们,你能口算95930÷362等于多少吗?为什么?(学生回答数据太大,不好口算)

如果已知265×362=95930,你能说出答案吗?为什么?

(引导学生说出整数除法的意义:已知两个因数的积和其中一个因数,求另一个因数的运算)

二、教学分数除法的意义

1、2/7 ×( )=1,括号内填几分之几?为什么?

2、根据这道乘法算式,你能说两道除法算式吗?根据是什么?

(引导说出分数除法的意义)

3、完成p25做一做

三、分数除以整数的计算法则

1、这节课我们学习分数除法

2、同学们已经了解分数除法的意义,你还想学习关于分数除法的什么知识?

3、事实上,有一些分数除法同学们是会计算的。下面口算几题:

3/8÷3/8 0÷4/9 1÷2/5 3/4÷1

你是根据什么知识口算这几道题的?

4、上面这四道题是一些特殊的分数除法,我们继续学习其他的分数除法。

出示例题:一张纸的 平均分成3份,每份是这张纸的几分之几?(图略)

怎样列式? 你能根据图说出算式的结果吗?怎样证明这个结果是正确的呢?(引导学生从多个角度证明结果的正确性 )

根据学生的回答板书:

3/4÷3 = 3÷34 = 1/4

你能归纳这种分数除以整数的计算方法吗?

5、用这种方法口算:

3/4÷3 4/9÷4 10/9÷5 6/7÷2

6、质疑

你认为这种计算方法适用于所有的分数除以整数吗?能举例说明吗?

7、小组讨论,自主学习分数除以整数

用学生所举的`例子作为教学例题(例如 1/5÷3),在数学学习过程中,我们经常遇到新问题,这时需要考虑如何将新问题转化为已学过的旧知。现在看一看,我们已经掌握了哪些分数除法的知识:

(1)分数除以整数,用分子除以整数的商作分子,分母不变。

(2) 1除以一个分数,结果是该分数的倒数。

(3)一个分数除以1,结果是原分数。

你能将1/5 ÷3转化成已经掌握的分数除法吗?小组讨论并将讨论结果记录下来。

8、小组汇报

(1)1/5 ÷3=3/15 ÷3=1/15

(2)1/5 ÷3=(1/5 ×5)÷(3×5)=1÷15=

(3)1/5 ÷3=(1/5 ×1/3 )÷(3×1/3 )= 1/5×1/3 ÷1=1/15

(4) ……

你能归纳自己小组讨论的分数除以整数的计算方法吗?

(1)先将分子和分母同时扩大相同的倍数,使除数能整除分子,再用前面的方法计算。

(2)利用商不变性质,将分数除以整数转化成1除以一个数,再计算。

(3)利用商不变性质,将分数除以整数转化成一个分数除以1,再计算。

(4)……

9、观察第三种方法:

1/5 ÷3=(1/5 ×1/3 )÷(3×1/3 )= 1/5×1/3 ÷1=1/15

这个计算过程还可以更简洁些,你能看出来吗?

化简得: 1/5 ÷3=( 1/5×1/3 )÷(3×1/3 )= 1/5×1/3 =1/15

观察 1/5÷3== 1/5×1/3 ,你能说一说吗?

(引导学生说出分数除以整数,等于分数乘整数的倒数)

10、计算方法的优化

刚才小组讨论时,每组用一种方法计算了 1/5÷3,现在你能用其他的方法计算一下吗?

学生计算后提问:你喜欢那种方法?为什么?

总结分数除以整数的计算法则:

分数除以整数(零除外),等于分数乘整数的倒数。

11、对其他的方法,你又有什么要说的吗?

(引导说出当分子能被整数整除时,可以直接用分子除以整数的商作分子,分母不变的方法。培养学生从不同角度观察、分析问题)

四、课堂练习

1、计算下列各题

2/3÷3 2/11÷2 3/8÷6 5/4÷2

2、练习七第1题

3、讨论题

1/3÷a和 1/a÷3(a≠0),那道题的结果大?为什么?

分数除法教案 篇3

教学目标

1.使学生理解两个整数相除的商可以用分数来表示.

2.明确分数与除法的关系,加深学生对分数意义的理解.

教学重点

理解、归纳分数与除法的关系.

教学难

用除法的意义理解分数的意义.

教学步骤

一、铺垫孕伏.

1.读题说得数.

3.2+1.680.8×0.514-7.40.3÷1.54.8×0.02

7.8+0.91.53-0.70.35÷150.4×0.80.8-0.37

2.口述表示的意义.

3.列式计算.

(1)把40棵树苗平均分给5个小组栽,每组栽多少棵?

(2)把8米长的钢管平均分成2段,每段长多少米?

二、探究新知.

1.新课导入.

出示例2:把1米长的钢管平均截成3段,每段长多少米?

板书:1÷3

教师提问:1÷3的结果能用准确的数表示出来吗?怎么办?学习了分数与除法的关系就明白了.(板书、分数与除法)

2.教学例2.

(1)从分数的意义上理解1÷3,即把1米长的钢管着成单位“1”,把单位“1”平均分成3份,表示这样一份的数,可用分数来表示,1米的就是米.(板书米)

(2)学生完整叙述自己想的过程.

(3)反馈练习.

①把1米长的钢管,平均分成8段,每段长多少?

②把1块饼平均分给5个同学,每个同学得到多少块?

3.教学例3.

出示例3:把3块饼平均分给4个孩子,每个孩子分得多少块?

(1)读题列式:3÷4

(2)动手操作:怎样把3块饼平均分给4个同学呢?

(3)学生交流.

甲生:先把每个圆剪成4个块,然后把12个平均分成4份,再把3个拼在一起,每份是块.

乙生:把3个圆放在一起,平均分成4份后,剪下其中的一份,再把1份中的3个拼在一起,得到每个分块.(在3÷4后板书块)

(4)看图根据乙生分饼的过程说出表示的意义.

①乙生把3块饼平均分成了4份,这样的一份是3块饼的,即

②甲生把1块饼平均分成了4份,表示这样的3份的数是.

(5)都是,意义有何不同?(结合算式说出的两种意义)

明确:表示把3平均分成4份,取其中的1份;

还表示把单位“1”平均分成4份,取这样的3份.

(6)反馈练习:说说下面分数的.两种意义

4.归纳分数与除法的关系.

(1)教师提问:怎样用分数来表示整数除法的商呢?

学生归纳:可以用分数表示整数除法的商,用除数做分母,用被除数作分子.也就是说分数既表示分数的意义,又表示整数除法的商.

(板书:)

教师明确:分数是一种数,除法是一种运算,所以确切地说,分数的分子相当于除法的被除数,分数的分母相当于除法的除数.

(2)讨论:用字母表示分数与除法的关系有什么要求?

(3)反馈练习.

三、全课小结.

通过今天的学习,你明白了什么?

四、随堂练习.

1.填空.

分数可以用来表示除法算式的().其中分数的分子相当于(),分母相当于().

2.用分数表示下列各式的商.

4÷511÷1327÷35

9÷913÷1633÷29

3.列式计算.

(1)把5米长的绳子,平均分成12段,每段长多少米?

(2)把一个4平方米的圆形花坛分成大小相同的5块,每一块是多少平方米?

(用分数表示)

(3)小明用15分钟走了1千米路,平均每分走几分之几千米?

五、布置作业.

用分数表示下面各式的商.

3÷47÷1216÷4925÷249÷9

分数除法教案 篇4

教学目标:

1、通过教学, 使学生在理解分数除法意义及掌握分数乘法应用题解题思路的基础上,掌握已知一个数的几分之几是多少求这个数的稍复杂分数除法应用题的解题思路和方法,能比较熟练地解答一些简单的实际问题。

2、通过教学,培养并提高学生的分析、判断、探索能力及初步的逻辑思维能力。

教学重点:

弄清单位1的量,会分析题中的数量关系。

教学难点:分析题中的数量关系。

教学过程:

一、复习

小红家买来一袋大米,重40千克,吃了 ,还剩多少千克?

1、指定一学生口述题目的条件和问题,其他学生画出线段图。

2、学生独立解答。

3、集体订正。提问学生说一说两种方法解题的过程。

4、小结:解答分数应用题的关键是找准单位1,如果单位1的具体数量是已知的,要求单位1的'几分之几是多少,就可以根据分数乘法的意义,直接用乘法计算。

二、新授

1、教学补充例题:小红家买来一袋大米,吃了 ,还剩15千克。买来大米多少千克?

(1)吃了 是什么意思?应该把哪个数量看作单位1?

(2)引导学生理解题意,画出线段图。

(3)引导学生根据线段图,分析数量关系式:买来大米的重量-吃了的重量=剩下的重量

(4)指名列出方程。 解:设买来大米X千克。

x- x=15

2、教学例2

(1)出示例题,理解题意。

(2)比航模组多 是什么意思?引导学生说出:是把航模组的人数看作单位1,美术组少的人数占航模组的

(2)学生试画出线段图。

(3)根据线段图,结合题中的分率句,列出数量关系式:

航模小组人数+美术小组比航模小组多的人数=美术小组人数

(4)根据等量关系式解答问题。 解:设航模小组有人。

+ =25

(1+ )=25

=25

=20

三、小结

1、今天我们学习的这两道应用题,它们有什么共同点?(今天我们学习的这两道应用题,题里的单位1都是未知的数量,都可以列方程来解,这样顺着题意列出方程思考起来比较方便。)

2、用方程解答稍复杂的分数应用题的关键是什么?(关键是找准单位1,再按照题意找出数量间的相等关系列出方程)

四、练习

练习十第4、12、14题。

关于分数除法教案汇总八篇

作为一位杰出的老师,时常需要用到教案,编写教案有利于我们弄通教材内容,进而选择科学、恰当的教学方法。那要怎么写好教案呢?下面是小编为大家整理的分数除法教案8篇,仅供参考,希望能够帮助到大家。

分数除法教案 篇5

教学目标

1.使学生掌握列方程解答“已知一个数的几分之几是多少,求这个数”的应用题的解答方法

2.培养学生分析问题、解答问题能力,以及认真审题的良好习惯.

教学重点

找准单位“1”,找出等量关系.

教学难点

能正确的分析数量关系并列方程解答应用题.

教学过程

一、复习、引新

(一)确定单位“1”

1.铅笔的支数是钢笔的 倍. 2.杨树的棵数是柳树的 .

3.白兔只数的 是黑兔. 4.红花朵数的 相当于黄花.

(二)小营村全村有耕地75公顷,其中棉田占 .小营村的棉田有多少公顷?

1.找出题目中的已知条件和未知条件.

2.分析题意并列式解答.

二、讲授新课

(一)将复习题改成例1

例1.小营村有棉田45公顷,占全村耕地面积的 ,全村的耕地面积是多少公顷?

1.找出已知条件和问题

2.抓住哪句话来分析?

3.引导学生用线段图来表示题目中的数量关系.

4.比较复习题与例1的相同点与不同点.

5.教师提问:

(1)棉田面积占全村耕地面积的 ,谁是单位“1”?

(2)如果要求全村耕地面积的 是多少,应该怎样列式?(全村耕地面积× ).

(3)全村耕地面积的. 就是谁的面积?(就是棉田的面积)

解:设全村耕地面积是 公顷.

答:全村耕地面积是75公顷.

6.教师提问:应怎样进行检验?你还能用别的方法来解答吗?

(1)把 代入原方程,左边 ,右边是45,左边=右边,所以 是原方程的解.)

(公顷)

(根据棉田面积和 是已知的,全村耕地面积是未知的,根据分数除法意义,已知两个因数的积与其中一个因数,求另一个因数应该用除法计算.)

(二)练习

果园里有桃树560棵,占果树总数的 .果园里一共有果树多少棵?

1.找出已知条件和问题

2.画图并分析数量关系

3.列式解答

解1:设一共有果树 棵.

答:一共有果树640棵.

解1: (棵)

(三)教学例2

例2.一条裤子75元,是一件上衣价格的 .一件上衣多少钱?

1.教师提问

(1)题中的已知条件和问题有什么?

(2)有几个量相比较,应把哪个数量作为单位“1”?

2.引导学生说出线段图应怎样画?上衣价格的

3.分析:上衣价格的 就是谁的价钱?(是裤子的价钱)谁能找出数量间相等的关系?(上衣的单价× =裤子的单价)

4.让学生独立用列方程的方法解答,并加强个别辅导.

解:设一件上衣 元.

答:一件上衣 元.

5.怎样直接用算术方法求出上衣的单价?

6.比较一下算术解法和方程解法的相同之处与不同之处.

相同点:都要根据数量间相等的关系式来列式.

不同点:算术解法是按照分数除法的意义直接列出除法算式;而方程解法则要先设未知数,再按照等量关系式列出方程.

三、巩固练习

(一)一个修路队修一条路,第一天修了全长 ,正好是160米,这条路全长是多少米?

提问:谁是单位“1”?数量间相等的关系式是什么?怎样列式?

(二)幼儿园买来 千克水果糖,是买来的牛奶糖的 ,买来牛奶糖多少千克?

(三)新风小学去年植树320棵,相当于今年植树棵数的 .今年、去年共植树多少棵?

1.课件演示:分数除法应用题

2.列式解答

四、课堂小结

这节课我们学习了列方程解答分数除法应用题的方法.这类题有什么特点?解题时分几步?

五、课后作业

(一)一桶水,用去它的 ,正好是15千克.这桶水重多少千克?

(二)王新买了一本书和一枝钢笔.书的价格是4元,正好是钢笔价格的 .钢笔价格是多少元?

(三)一种小汽车的最快速度是每小时行140千米,相当于一种超音速飞机速度的 .这种超音速飞机每小时飞行多少千米?

分数除法教案 篇6

教学目标

使学生掌握分数除法和加减法混合运算的运算顺序,能正确地进行运算,并能具体情况采用合理的计算方法,提高学生四则计算的能力。

教学重难点

运算顺序,简便运算。

教学准备

教学过程设计

教学内容

师生活动

备注

一、复习引新

二、教学新课

三、

四、作业

1、说说下面各题的运算顺序。

8÷2+9÷318÷(12-3)

2、引入新课

1、教学例1

这道题要先算什么,再算什么?

上下练习。

引导观察计算过程,说明递等式书写的'规范过程,并说明理由。

2、组织练习。

练一练1

说顺序后练习。

3、例2

说运算顺序,这里除法的两步按照计算法则要怎样算?

观察转化成乘法后的算式,想一想,是不是可以简便运算?

上下用简便算法。

问:用了什么运算定律?

4、练习;

练一练2

这里除一个数要怎样算?

用简便算法。

说说各运用了什么运算定律,是怎样算的?

说说运算顺序,要注意什么?

练习111~3、4、5

课后感受

混合运算学生做起来很简单,只是在简便运算上还要注意灵活运用。

分数除法教案 篇7

教学目标

1、使学生结合具体情境,探索并理解分数与除法的关系,会用分数表示两个整数相除的商,会用分数表示有关单位换算的结果;能列式解决求一个数是另一个数的几分之几的简单实际问题。

2、使学生在探索分数与除法关系的过程中,进一步发展数感,培养观察、比较、分析、推理等思维能力。

3、构筑探索交流的平台,体验数学学习的乐趣,增强学生学习数学的信心。

教学重难点

理解分数与除法的关系

教学准备

每人准备4张同样大小的圆片

教学过程

一、引入情境,揭示例题

口答题

1、把8块饼干平均分给4个小朋友,每人分得几块?

2、把4块饼干平均分给4个小朋友,每人分得几块?

3、把3块饼干平均分给4个小朋友,每人分得几块?

怎样列式?板书3÷4

引导:把3块饼干平均分给4个小朋友,平均每人能分到1块吗?

不满1块那该怎么表示呢?

生:小数或分数

二、实践操作探索研究

师:那怎样用分数表示3÷4的商呢?请大家拿出3张同样的圆片,把它看作3块饼,按题目的要求把它分一分,看结果是多少?

学生动手操作

教师巡视,了解学生是怎样的想的,当学生表述比较好时,教师有选择的。把圆片贴在黑板上,等集体交流时让学生说说这样分的理由。

师:接下来我们请同学汇报一下他们研究所得结果。

(生讲述这样分的理由)

教师总结:

(1)把一块饼干平均分给4个小朋友,所以就平均分成4份,每人就可分得1/4块,现在一共有3块饼干,每人就可得到3个1/4块,就是3/4块。

(2)如果把三块饼干放在一起分,每人就可以分得3块的1/4,就是3/4块。

总结:把3块饼干平均分给4个小朋友,每人分得3/4块

板书:3÷4=3/4(块)

师:如果我想把3块饼干分给5个小朋友呢?,每人分得多少块?

学生口述理由。板书:3÷5

师:想想该怎么去分?把你的想法和同桌交流下。

指名让学生说说思考过程。

板书:3÷5=3/5(块)

师:如果分给7个小朋友呢?

学生口述3÷7=3/7(块)

三、归纳总结,围绕主题

师:请同学们仔细观察上面的两个等式,你发现分数和除法算式之间有和联系?这也正是本节课我们所要学习的内容。

板书课题:分数与除法的关系

生相互交流。教师板书:被除数÷除数=

师:除法算式又可以写成什么形式?

生补充:被除数÷除数=被除数/除数

师:如果用a表示被除数,b表示除数,那么a÷b又可怎么写?

生:a÷b=a/b

师:这里的a和b可以取任何数吗?为什么?

生:除数不能为0。

师:分数和除法之间的关系,你有什么好的方法记住它们吗?

生交流讨论并回答

师总结,被除数相当于分子,除数相当于分母,除号相当于分数线。

四、巩固练习,拓展延伸

师:请大家把书本打开到第45页,马上完成“练一练”的.第一小题。

集体校对。

师引导:比较上下两行有什么不同?

在学生回答的基础上,引导:用分数可以表示整数除法的商,反过来,一个分数也可以看成两个数相除。

师:接下来请大家独立完成“试一试”两小题。

然后小组交流你是怎么想的?

师:把7分米改写成用米作单位,可以列怎样的除法算式?

生:7÷10=7/10(米)

师:第二个呢?

生:23÷60=23/60(时)

师:独立完成“练一练”的第二题

集体讲评校对。

师:完成“练习八”的第一题口答

师:完成“练习八”的第三题

学生在书本上完成,教师追问:把1米长的彩带平均分成3份,求1份有多长,可以列怎样的除法算式?把2米长的彩带平均分成3份,求1份有多长,可以列怎样的除法算式?

五、课堂作业

完成“练习八”的第二题

分数除法教案 篇8

教学目标

1、能用方程解决有关的简单的分数实际问题,初步体会方程解决实际问题的重要模型

2、在解方程中,巩固分数除法的计算方法

教学重点

能用解方程解决简单的有关分数的实际问题

教学难点

巩固分数除法的计算方法

教具准备

挂图

教师指导与教学过程

学生学习活动过程

设计意图

一、创设情境,引入新知

1、出示主题图

让学生大胆地提出问题:操场上有多少人参加活动?

2、解决问题

鼓励学生用方程解决问题

3、选择用除法计算借助线段图的动能理清思路

板书:

二、尝试解决

1、试一试第1题

板书:

解:设踢足球的有x人。

4/9x=4x=9

或4÷4/9=9

2、试一试,第1题(2)板书:

学生仔细观察情境图后,提出问题

学生独立解决问题,可能会出现多种解决问题的策略让学生用方程和除法计算两种方法,板演在黑板上

全班进行交流

学生可以列方程解决,也可以用分数除法解决

集体纠正

学生独立解方程

捐名板演

然后进行全班交流

集体纠正

充分利用主题图,让学生大胆地提出问题

引领学生做好分析理清思路

鼓励学生独立完成,引导学生讲清解题的思路

巩固学生用方程计算的'方法

教师指导与教学过程

学生学习活动过程

设计意图

9×1/3=3(人)

三、练一练

1、解方程:

1/5x=73/4x=4

5/8x=1/123/8x=1

2、解决问题

让学生先弄清“八折8/10,可利用方程法解,术法作基本要求”

3、解决练一练,第3、题

板书:

解:设妈妈的身高是xcm15/16x=150

X=160或

150×15/16x=160

解:设鹅的孵化期是x天

14/15x=28或x=30

28÷14/15或x=30天

的意思,即现价是原价也可用算术法解,算术法作基本要求

学生独立解决

或用算术法解决问题

然后进行全班交流纠正

引导学会寻找有用的数字信息

结合鸡、鸭、鹅孵化期的长短为学生创设运用分数乘除法解决问题

板书设计: 分数除法(二)

解:设操场上有X人参加活动

x×2/9=6

x=6÷2/9

x=6×9/2

x=27

分数除法教案 篇9

设计说明

本节课通过设置疑问,运用自主探索、合作探究等学习方式理解分数与除法的关系,运用此关系探索假分数与带分数的互化方法,理解假分数与带分数的互化算理,培养学生观察、比较、推理、归纳及交流的能力。本节课在教学设计上主要有以下两大特点:

1.让学生在生活中感悟数学。

从生活实际出发,从“分蛋糕”的情境入手,把教材内容与“数学现实”有机地结合起来,符合小学生的认知特点,可以消除学生对数学知识的陌生感,同时增强学生的数学应用意识,唤起学生对数学学习的兴趣。

2.让学生体验成功的乐趣。

数学课堂教学要着眼于学生的潜能和可发展性,充分相信学生,给学生提供充分的自主探索的时间与空间,鼓励学生自主地进行观察、实验、猜测、推理、验证、交流等数学活动(探索除法与分数的关系,探索假分数与带分数互化的方法),使学生在自主探索的过程中真正理解和掌握数学基础知识与基本技能、数学思想和方法,从而获得广泛的数学活动经验。

课前准备

教师准备PPT课件

学生准备学具三种颜色的纸条

教学过程

第1课时分数与除法(一)

⊙设置疑问,导入课题

1.下面各题的商可以分为哪几类?

36÷6=64÷5=0.880÷5=165÷10=0.5

3÷7=0.428571428571…4÷9=0.4444…

引导学生归纳分类:

36÷6=6和80÷5=16的商为整数;

4÷5=0.8和5÷10=0.5的商为有限小数;

3÷7=0.428571428571…和4÷9=0.4444…的商为循环小数。

2.师总结:两个自然数相除,不能整除的时候,它们的商还可以用分数来表示。今天我们就来学习这部分内容。[板书:分数与除法(一)]

设计意图:复习旧知,回顾所学知识的内在联系,引出课题。

⊙层层深入,探索分数与除法的关系

1.出示问题,理解题意,列出算式。

课件出示:把1块蛋糕平均分给2个小朋友,每人可以分到几块蛋糕?如果把7块蛋糕平均分给3个小朋友呢?

师引导学生读题,提问(1):把1块蛋糕平均分给2个小朋友,可以写出怎样的算式?把7块蛋糕平均分给3个小朋友呢?

预设生:根据除法的意义,可以分别列式为1÷2和7÷3。

提问(2):把1块蛋糕平均分给2个小朋友,每人分到几块蛋糕?把7块蛋糕平均分给3个小朋友呢?

预设生:每人分别可以分到块和块。

提问(3):与1÷2之间是什么关系?与7÷3呢?

(学生观察、讨论后可以明确:1÷2=,7÷3=)

2.初步探索除法与分数的关系。

师:观察1÷2=,7÷3=,说一说整数除法中被除数和除数与得数中的分子和分母存在着什么样的关系。

(学生小组讨论交流,汇报)

师生共同总结:任何一个分数都可以表示为分子除以分母,其中,分子相当于被除数,分母相当于除数。即:被除数÷除数=(除数不为0)。

如果分别用字母a和b表示除法算式中的被除数和除数,分数与除法的这种关系怎样表示?

质疑:这里的a和b是否可以是任意自然数?为什么?

(不可以,这里的b≠0。在除法中,除数不能为0,所以在分数中,分母也不能为0。教师板书:b≠0)

有关分数除法教案范文合集7篇

作为一名无私奉献的老师,时常需要编写教案,编写教案有利于我们弄通教材内容,进而选择科学、恰当的教学方法。那么教案应该怎么写才合适呢?以下是小编整理的分数除法教案7篇,欢迎大家借鉴与参考,希望对大家有所帮助。

分数除法教案 篇10

【学习目标】

1、能利用计算法则,正确、迅速地进行分数除法的计算。

2、培养自己的语言表达能力和抽象概括能力。

3、养成良好的计算习惯。

【学习重难点】

1、重点是抽象概括出分数除法的计算法则。

2、难点是利用法则正确、迅速地进行计算,并能解决一些实际问题。

【学习过程】

一、复习

1、列式,说清数量关系。

小明2小时走了6 km,平均每小时走多少千米?____________________________

速度=路程÷时间

2、计算:151×4 ×3 ×2 ×6 971215

8352÷4 ÷3 ÷2 ÷6 9765

二、探索新知

1、阅读例题3主题图及题目,要“比较谁走的快”可以比较他们的什么?如何列式?

2、探究2÷

(1)“2的算法 32小时走了2 km,估一估1小时走多少千米? 3

(2) 动手画线段图表示已知条件与问题的关系。

1小时走的路程,再将线段平均分成3份,其中2份

表示的就是2小时走的路程。 3

(3) 结合线段图,思考:要求小明的速度,第一步可以先算什么?第二步再算什么?

2要怎样计算?它把除法转化成什么?怎样转化? 3

55553、计算例3第二个算式÷,想一想÷可以转化成什么? 612612(4) 结合解题思路,思考2÷

4、通过上面的2道计算题,你发现了什么?你会用自己的方式表示下你发现的规律吗?

______________________________________________________________

三、知识应用:独立完成P31“做一做”的第1、2题。(组长检查核对,提出质疑。)

四、层级训练:巩固训练:练习八第4、5、6题;拓展提高:练习八第7、8、9题。

五、总结梳理: 回顾本节课的学习,说一说你有哪些收获?

学习心得__________( a.我很棒,成功了; b.我的收获很大,但仍需努力。) 自我展示台:(写出你的发现或见解)

分数除法教案 篇11

教学目标

使学生进一步掌握分数除法的计算方法,提高分数四则计算的能力。

教学重难点

进一步掌握分数除法的计算方法。

教学准备

教学过程设计

教学内容

师生活动

教学过程

一、揭示课题

二、计算练习

三、综合练习

四、课堂。

五、作业

1、复习法则。

问:分数除法要怎样计算?

2、计算:

5/7÷1014÷4/512/13÷8/9

三人板演。

3、练习八17

上下练习,说说是怎样想的。

问:分数加减法要怎样算?分数乘法怎样算?分数除法呢?

4、练习八18

学生口答,选择说怎样算的?

1、练习八19第一行

四人板演;计算时说明要注意的约分等问题。

2、练习八20

说说已知什么数量,要求什么数量。

练习计算。

口答算式与结果,让学生说说各按怎样的数量关系列式。

3、练习八21

问:解答这道题的数量关系是什么?

学生解答。口答算式。

为什么3/4×2/5来计算?

3、口答。

根据下面的条件,先说出哪个是单位“1”的量,再说出数量关系式。

(1)桃树占果树总棵数的2/5。

(2)三好学生占全班人数的3/20。

(3)修好了一条路的3/7。

(4)一堆煤的1/4已经运走。

(5)这批布的2/3是花布。

单位“1”的量×几分之几=几分之几的对应数量

练习八19第二、三

课后感受

本节课上下来,分数计算学生们掌握得都不错。在分数乘法应用题如21题的第三小题还存在一些问题,在这些题型方面下功夫。

分数除法教案 篇12

教学内容:

教材第29~30页“分数除法(三)”。

教学目标:

1.能用方程解决简单的有关分数的实际问题,初步体会方程是解决实际问题的重要模型。

2.在解方程中,巩固分数除法的计算方法。

教学重难点:

1.能够体会方程是解决实际问题的重要模型。

2.能够用方程解决实际问题。

教学过程:

一、创设情景激趣揭题

1.出示课外活动情况图问:从图中,你们能获得哪些数学信息呢?

2.引入并板书课题。

二、扶放结合探究新知

1.根据这些数学信息,你能提出哪些数学问题?

2.引导学生逐一解答提出的.问题。

3.重点引导:跳绳的有6人,是操场上参加总人数的2/9,操场上有多少人?该怎样解答?

4.引导观察,找出有什么相同点和不同点?

三、反馈矫正落实双基

1.指导完成P29的试一试的1,2题。

2.你能根据方程

X×1/5=30

编一道应用题吗?

3.请你想一个问题情景,遍一道分数应用题。

四、小结评价布置预习

1.引导小结

通过本节课的学习你有哪些收获?

2.布置预习

整理前面所学知识。

板书设计:

分数除法(三)

跳绳的小朋友有6人,是操场上参加活动总人数的2/9,操场上有多少人参加活动?

参加活动总人数×2/9=跳绳的人数

解:设操场有X人参加活动。

分数除法教案 篇13

【学习目标】

1、能利用计算法则,正确、迅速地进行分数除法的计算。

2、培养自己的语言表达能力和抽象概括能力。

3、养成良好的计算习惯。

【学习重难点】

1、重点是抽象概括出分数除法的计算法则。

2、难点是利用法则正确、迅速地进行计算,并能解决一些实际问题。

【学习过程】

一、复习

1、列式,说清数量关系。

小明2小时走了6 km,平均每小时走多少千米?____________________________

速度=路程÷时间

2、计算:151×4 ×3 ×2 ×6 971215

8352÷4 ÷3 ÷2 ÷6 9765

二、探索新知

1、阅读例题3主题图及题目,要“比较谁走的快”可以比较他们的什么?如何列式?

2、探究2÷

(1)“2的算法 32小时走了2 km,估一估1小时走多少千米? 3

(2) 动手画线段图表示已知条件与问题的关系。

1小时走的路程,再将线段平均分成3份,其中2份

表示的就是2小时走的路程。 3

(3) 结合线段图,思考:要求小明的速度,第一步可以先算什么?第二步再算什么?

2要怎样计算?它把除法转化成什么?怎样转化? 3

55553、计算例3第二个算式÷,想一想÷可以转化成什么? 612612(4) 结合解题思路,思考2÷

4、通过上面的2道计算题,你发现了什么?你会用自己的方式表示下你发现的`规律吗?

______________________________________________________________

三、知识应用:独立完成P31“做一做”的第1、2题。(组长检查核对,提出质疑。)

四、层级训练:巩固训练:练习八第4、5、6题;拓展提高:练习八第7、8、9题。

五、总结梳理: 回顾本节课的学习,说一说你有哪些收获?

学习心得__________( a.我很棒,成功了; b.我的收获很大,但仍需努力。) 自我展示台:(写出你的发现或见解)

分数除法教案 篇14

学习目标:

1.借助实际操作和图形语言,理解一个数除以分数的意义和基本算理。

2 .掌握一个数除以分数的计算方法,并能正确进行计算。

学习重点:理解一个数除以分数的`意义和基本算理。

学习难点:运用分数除法的计算方法解决实际问题。

学习内容:

一、分一分

有4张同样的圆形纸片。

(1)每2张一份,可以分成多少份?

画一画:

列示:

(2)每1张一份,可以分成多少份?

画一画:

列示:

(3)每1/2张一份,可以分成多少份?

画一画:

列示:

(4)每1/3张一份,可以分成多少份?

画一画:

列示:

(5)每1/4张一份,可以分成多少份?

画一画:

列示:

二、画一画

1.有1根2米长的绳子。

(1)截成每段长1/3米,可以截成几段?

画一画:

列示:

(2)截成每段长2/3米,可以截成几段?

画一画:

列示:

2.3/4里面有几个1/8?

画一画:

列示:

三、填一填,想一想

在〇里填上“>”“<”或“=”。

4÷1/2〇4×2 4÷1/3〇4×3 4÷1/4〇4×4

2÷1/3〇2×3 2÷2/3〇2×3/2 3/4÷1/8〇 ×8

你发现了什么?( )

四、试一试

8÷6/7 5/12÷3

你能把“除以一个整数(零除外),等于乘这个整数的倒数。”和“除以一个分数,等于乘这个分数的倒数。”这两句画合并成一句话吗?

( )

分数除法教案 篇15

教学目标:

使学生掌握用方程解答已知一个数的几分之几是多少求这个数的题目。

教学重点:

分析题里所含的数量关系,把哪个数看作单位1。

教学难点:

怎样列出方程。

教学过程:

一、复习

列式计算,并口述把哪个数看作单位1。

(1)的是多少? ( )看作单位1。

(2)14的是多少? ( )看作单位1。

(3)1的是多少? ( )看作单位1。

二、新授

1、板书课题:列方程解文字题

2、出示例4:一个数的是,这个数是多少 ?

(1) 分析数量关系

提问

①这道文字题与刚才复习时的文字题有什么联系和区别?(使学生明白它们的数量关系一样,只是已知未知不同)

②硬该把哪个数看作单位1?为什么?

③单位1所表示的数知道吗?

④怎样求单位1所表示的“这个数”?(引导学生用设未知数X的方法来解决)。

使学生明确:根据一个数乘以分数的意义。

由已知:一个数的是,得:一个数×=?

(2) 列方程解文字题。

第一步,设未知数为X。教师板书

解:设这个数是X。

第二步,根据题意列出方程。教师板书

X×=

第三步,解这个方程。教师板书:(略)

第四步,检验:(略)

第五步:作答

3、小结

(1)怎样设求知数?

要求单位“1”的量,设单位“1”的量为X。

(2) 样根据题意列方程?

找出题中数量之间的'等量关系。

三、巩固练习

1、教科书第35页“做一做”。

2、一个数的1倍等于2,求这个数。

四、课堂练习

练习九第12、16—19题。

五、作业

练习九第13—15题。

六、课外思考

练习九思考题。让学生发现规律:第(1)题,后一个数是前一个分数的。第(2)题,把带分数化成假分数。后一个分数的分母是前一个分数分母的2倍;而分子是前一个分数分子的3倍。

分数除法教案 篇16

学习目标:

1.借助实际操作和图形语言,理解一个数除以分数的意义和基本算理。

2 .掌握一个数除以分数的计算方法,并能正确进行计算。

学习重点:理解一个数除以分数的意义和基本算理。

学习难点:运用分数除法的计算方法解决实际问题。

学习内容:

一、分一分

有4张同样的圆形纸片。

(1)每2张一份,可以分成多少份?

画一画:

列示:

(2)每1张一份,可以分成多少份?

画一画:

列示:

(3)每1/2张一份,可以分成多少份?

画一画:

列示:

(4)每1/3张一份,可以分成多少份?

画一画:

列示:

(5)每1/4张一份,可以分成多少份?

画一画:

列示:

二、画一画

1.有1根2米长的`绳子。

(1)截成每段长1/3米,可以截成几段?

画一画:

列示:

(2)截成每段长2/3米,可以截成几段?

画一画:

列示:

2.3/4里面有几个1/8?

画一画:

列示:

三、填一填,想一想

在〇里填上“>”“<”或“=”。

4÷1/2〇4×2 4÷1/3〇4×3 4÷1/4〇4×4

2÷1/3〇2×3 2÷2/3〇2×3/2 3/4÷1/8〇 ×8

你发现了什么?( )

四、试一试

8÷6/7 5/12÷3

你能把“除以一个整数(零除外),等于乘这个整数的倒数。”和“除以一个分数,等于乘这个分数的倒数。”这两句画合并成一句话吗?

( )

分数除法教案 篇17

教学目标:

1、知识目标:体验分数除以整数的计算方法,在讨论交流的基础上总结出计算法则,并能正确的计算。

2、能力目标:培养学生动手动脑能力,以及判断、推理能力。

3、情感目标:培养学生愿意交流合作,喜欢数学的情操,感受数学来源于生活,体验操作的欢乐。

教学重点:

能求一个数的倒数。

教学难点:

分数除以整数计算法则的推导过程。

教学准备:

长方形纸片。

教学过程:

一、创设情景,教学分数除法的意义

1、师:同学们我们学过整数除以整数以及小数除法,今天我们将来学习数除法。下面我们一起来研究一下几个小朋友有关分饼的问题,请你们列出算式并计算,看谁算的又快又好!

(1)每人吃1/2块饼,4个人共吃多少块饼?

(2)把2块饼平均分给4个人,每人吃了多少块饼?

(3)有2块饼,分给每人1/2块,可分给几个人?

2、师:我们一起来看一下这三个算式,观察一下这三个算式的已知数和得数,说一说它们都是已知什么,求什么的运算?这就是分数除法的意义。

师:讨论:分数除法的意义和整数除法的意义一样吗?

总结:分数除法的意义与整数除法的意义相同,都是已知两个因数的积与其中一个因数,求另一个因数的运算。

二、探究分数除法的计算方法

(1) 引导参与,探究新知

师:我们已经知道了分数除法的意义,那么如何来计算呢?请同学们看黑板。

出示问题1。

请大家拿出一张操作纸,涂色表示出这张纸的4/7。

师:把一张纸的4/7平均分成2份,每份是这张纸的几分之几?怎样列式?4/7÷2

请同学们通过涂一涂,算一算的方式来研究4/7÷2怎样计算。小组合作,汇报交流。

方法一:把4/7平均分成2份就是把4份平均分成2份,每份是2个1/7,也就是2/7。展示折纸和计算过程。4/7÷2=4÷2/7=2/7

方法二:把一张纸的4/7平均分成2份,求每份是多少就是求4/7的1/2是多少,可以用乘法来做。展示折纸和计算过程。4/7÷2=4/7×1/2=2/7

师:对这种做法大家有什么疑问吗?

生:这儿是除法怎么变成了乘法?

师:老师也有这个疑问,你能讲讲吗?

师:谁能结合图来讲一讲呢?

师:很好!把除法转化成乘法,问题迎刃而解,你真棒!……

(2)质疑问难,理解新知

①师小结:有的是用分子除以整数,分母不变的方法算出结果2/7,有的是转化成分数乘法来做……那么在这些方法中,你最喜欢哪种?

②接下来就请你用自己喜欢的方法来解决这个问题:把一张纸的4/7平均分成3份,每份是这张纸的几分之几?先列式再用自己喜欢的方法计算。

③通过计算你们有什么发现?

生1、用第一种方法就不能做了。因为: 上一题的时候,分子4是2的倍数,4÷2能得到整数商。而 4÷3时,分子4不是3的整倍数,得不到整数商。所以不能用分子除以整数这种方法了。

生2:把除法转化成乘法来做……4/7÷3=4/7×1/3=4/21

能再讲讲这样做的道理吗?

师:“4/7÷3”表示把4/7平均分成3份,取其中的'一份。

请同学们拿出第二张操作纸,你能把图中的4/7平均分成3份,并表示出其中的一份吗?

展示学生的分法

师(指着涂色部分):你所表示的这一部分是4/7的多少?

通过直观图理解4/7的1/3是4/21

(3)比较归纳,发现规律。

①师:在计算这两道题时同学们想到了不同的算法,计算左边这道题你比较喜欢那种方法?右边呢?

②在两道题的计算中同学们都想到了把除法转化成乘法来做,请观察一下,左边这道算式,在转化的前后什么变了,什么没变?怎么变的?

③师:同学们观察真仔细!那像这样的分数除以整数的题目一般可以怎么计算呢?请同学们在小组内互相说一说!

小组活动,说算法。

④师:通过研讨我们知道了分数除以整数,可以用分子除以整数,但有时不能得到整数商,所以通常转化为乘这个整数的倒数的方法来计算。

出示:分数除以整数,等于分数乘这个整数的倒数。

还有需要注意的地方吗?

生:有,除数不能为0。

师:谁能把分数除以整数的计算法则用自己的话来说一说?

完善算法:分数除以整数(0除外),等于分数乘这个整数的倒数。

⑥那象这样的分数除以整数的题目在计算时要注意些什么?

生:要约分!结果最简。除号要变成乘号!

三、巩固练习

学生独立完成

四、课堂小结

1、这节课我们学习了哪些知识?分数除法的意义是什么?分数除以整数的计算法则是什么?(学生总结)

板书设计:

分数除以整数

分数除法教案 篇18

教学目标

1.使学生在掌握稍复杂的求一个数的几分之几是多少的分数应用题的基础上,利用其数量关系列方程解答稍复杂的已知一个数的几分之几是多少,求这个数的应用题。

2.在分析解答的过程中拓宽学生的思维空间,培养学生分析问题的能力。

教学重点和难点

确定单位1,理清题中的数量关系。利用题中的等量关系用方程解答。

教学过程

(一)复习准备

1.找出单位1。

2.出示第88页的复习题。

(1)画图分析并列式解答。

(2)说说你是怎样思考和解答的?

(3)学生分析教师板演线段图。

3.导入:

今天我们继续学习分数应用题。

(二)学习新课

现在老师把这道题改动一下。

1.出示例6。

千克?

2.分析解答。

(1)读题,找出已知条件和问题。

(2)提问:这两道题有没有相同的条件?(有,都已知吃了这袋大米的

不同的地方在哪儿?(前者已知一袋大米的重量,求还剩的重量,后者已知还剩的重量,求这袋米的重量。)

(3)我们把这道题也用线段图表示出来,应从哪个条件入手找单位

(4)谁来分析这个条件?

成8份,吃了的占其中的5份。)

学生分析的同时教师板演线段图:

(5)上道题是已知单位1的重量,求还剩的重量,这道题呢?谁能把条件和问题标在图上?

生在黑板上画出:

(6)对比两道题的线段图说一说是怎样变化的。(条件和问题互相转化了。)

(7)无论谁为条件,谁为问题,题中所涉及的数量关系变了吗?(没变)

(8)说一说上题在解答的过程中涉及到哪些数量关系?(总重量-它

(9)现在买来大米的重量是未知的,根据这个等量关系可以用什么方法解答?(列方程)

(10)试着在练习本上列方程解答。

(11)谁能说说你是怎样解答的?

生口述:

解 设买来大米x千克。

答:买来大米40千克。

题中的等量关系式是什么?

(买来的重量还剩几分之几=还剩的重量。)

3.小结。

通过刚才的分析解答,你认为这两道题实际上什么相同。(数量关系相同。)

解答方法相同吗?为什么?

(解答方法不同。单位1已知,可根据数量关系用算术方法解答;单位1未知,可用x代替,运用数量关系式列方程解答。)

4.出示例7。

烧煤多少吨?

(1)读题,找出已知条件和所求问题。

(3)画图分析解答。

①从这个条件可以看出题中是几个数量相比?(两个数量相比。)

追问:哪两个?(四月份实际烧煤量和四月份计划烧煤量。)

我们应把哪个数量看作单位1?为什么?(把原计划烧煤量看作单位1。因为和它相比,以它为标准,所以把它看作单位1。)

②画图时我们要用两条线段表示两个数量,先画谁呢?(先画原计划烧煤吨数。)

下一步画什么?(实际烧煤吨数。)

指名回答:把计划烧煤量看作单位1,平均分成9份,实际比计划节约的`烧煤量相当于这样的1份,即节约的烧煤量占计划烧煤量的

这两条线段谁为已知?谁为未知?

在提问回答的过程中教师板演线段图:

③指图提问:计划烧煤量与实际烧煤量之间有什么样的等量关系?

(计划烧煤吨数-节约吨数=实际烧煤吨数。)

计划烧煤吨数未知怎么办?(设计划烧煤吨数为x,用方程解答。)

④试做在练习本上。

⑤反馈:说说你的解答方法及依据。

解 设四月份原计划烧煤x吨。

答:四月份原计划烧煤135吨。

(1)学生独立画图分析并列式解答。

(2)反馈提问:

②你用什么方法解答的?依据的等量关系式是什么?

(三)课堂总结

今天我们学习的例6、例7与前边学过的分数应用题相比有什么相同点?有什么不同点?

(数量间的等量关系相同,解答方法不同。)

(四)巩固反馈

(1)课本第91页的第2题。

(2)根据列式补充条件:

(五)布置作业

课本第91页第1,3题。

课堂教学设计说明

本节课的内容是在学习了已知一个数的几分之几是多少,求这个数的分数应用题的基础上,根据稍复杂的求一个数的几分之几是多少的分数应用题的数量关系,使学生掌握解题思路,学会用方程解答。

由于新旧知识联系很密,因此本节课在教案设计上抓住了数量关系相同,通过复习题的分析解答,让学生找出熟悉的数量关系,再把题进行改动变化。在画图分析的过程中抓住数量关系相同,只是已知和问题发生了转化,引导学生利用数量间的等量关系用方程解答。

在边画图、边分析的过程中,沟通了知识间的联系,便于学生理解和思维,促进了学生分析思维能力的发展和综合运用知识灵活解决实际问题的能力。

关于分数除法教案范文集锦7篇

作为一名教师,总不可避免地需要编写教案,教案是教材及大纲与课堂教学的纽带和桥梁。优秀的教案都具备一些什么特点呢?下面是小编收集整理的分数除法教案7篇,欢迎阅读与收藏。

分数除法教案 篇19

教学目标:

4、学习运用线段图帮助分析数量关系。

5、加强列方程的思维训练。

6、培养学生分析问题解决问题的能力。

教学过程:备注

活动一:复习与准备

1、根据题意列出方程。

(1)、六年一班有15人参加了合唱队,占全班人数的1/3,六年一班有多少人?

(2)、美术小组的人数比航模小组多1/4。美术小组的人数比航模小组多5人。航模小组有多少人?

活动二:出示例2

一、

1、审题。

2、看例题的插图,理解题目的意思,说说知道了什么,要求什么

3、分析题意,说说你对美术小组的人数比航模组多1/4这一条件的理解。

4、理解数量关系

二、

1、分析、解答

2、说说数量关系。

3、学生根据得到的数量关系列方程解答。

4、交流各自的解法。

小结:关键是搞清哪两个量比较,谁多谁少,多或少了谁的几分之几。

活动三:

巩固联系:

1、41页7、8题

2、41页10题

板书设计

分数除法教案 篇20

一、 说教材:

这部分内容是在学过的分数除法的意义和计算法则、分数乘法应用题、用方程解答已知一个数的几分之几是多少求这个数的文字题的基础上进行教学的,这类应用题是教学中的难点,在与求一个数的几分之几是多少的.应用题混合练习中,难以判断用乘法还是用除法解答。教学这类应用题,要紧密联系一个数乘分数的意义,先用列方程的方法来解答,在此基础上再教学用分数除法来解答,这样不但加强了与求一个数的几分之几是多少的乘法应用题的联系,同时也加强对应用题的数量关系的分析,特别是判断哪个数量是单位“1”的量,分析它是已知还是未知来确定怎样用方程解。另外,还加强了方程解法与用除法解法之间的联系,使学生在掌握方程解法的基础上,切实学会用除法来解,这样既培养了学生灵活解答分数应用题的能力,又有助于发展学生思维的灵活性。

教学目标:1、让学生经历解决生活中实际问题的过程,使学生掌握用方程解答“已知一个数的几分之几是多少,求这个数”的应用题;2、通过分析解决问题的学习活动,培养学生分析问题和解决问题的能力。

教学重点:找准单位“1”,找出数量关系。

教学难点:能正确地分析数量关系并列方程解答应用题。

二、 说教学法:

为实现教学目标,有效地突出重点、突破难点,依据现代认知科学理论,运用直观性原则,采用线段图展示条件和问题,帮助学生理解题意,分析数量关系,确定解题方法,在师生共同分析、教师主导基础上,紧扣学生已有经验,密切数学与生活联系,引导学生通过小组比较、互动、合作讨论等方式分析数量关系,再独立完成解答过程,做到扶放适度,促进学生在半独立、独立实践中掌握知识,提高解决问题的能力,培养学生自主学习意识和创新意识,学会探究问题的方法。

三、 说教学过程设计及意图:

教学过程主要分三个层次。

第一、通过形式多样的复习做铺垫,面向全体学生为学习新知做好充分准备。主要设计三道复习题:1、找单位“1”的量;2、根据分率句写数量关系式;3、分数乘法应用题。

第二、探究新知教学。首先例1的教学通过教师与学生逐步图示和引导,着重帮助学生分析题中的数量关系,使学生明确这种题型的分析思路与乘法应用题是一致的,再放手让学生通过独立练习,明确解题的基本方法,通过比较复习题与例1的异同,让学生感知乘、除法的内在联系,最后进行口述检验,旨在让学生养成良好的学习习惯;其次在教学例2时,与例1不同之处,只是涉及到两种量,教学画图时要画两条线段,再放手让他们小组合作完成作图,数量关系的分析,放手让他们自己解答,培养他们分析问题、解决问题的能力。

第三是巩固提高阶段。练习安排上做到循序渐进,第1题基本上同例题一样叙述数量间关系,第2题在叙述上稍做变化,第3道增加一步为两步计算的应用题,旨在培养学生思维灵活性,同时注重对学生语言表达能力的训练。练习中基本上采用全部放手的做法,让学生独立分析解答,教师在引导、鼓励学生完成学习任务,给学生营造自主的学习氛围。练习后,师生共同进行课的,老教师布置课后作业。

分数除法教案 篇21

【教学内容】

《义务教育课程标准实验教科书数学》(人教版)六年制六年级上册第三单元《分数除法》的整理与复习

【单元主题分析】

本单元的概念比较多,尤其是比的初步认识这节中相似的概念较多,并且容易混淆,因此复习时要着重使学生弄清各个概念之间的联系和区别。计算是数学的基础,做题时掌握计算方法,培养良好的计算习惯。在做分数四则混合运算时,注意运算顺序,选择适合自己的方法计算,并通过交流了解其他算法。值得强调的是:掌握分数除法的计算方法,能正确进行计算,是学生必须掌握的一项技能,也是本单元的教学重点。但是,在计算过程中把除法转化为乘法,对学生来说是数学认识上的一次飞跃。另外,分数除法应用题历来是学生学习中的难点,它经常需要学生灵活应用数量之间的关系。。分析数量关系是解决实际问题的一个重要步骤。让学生知道分数应用题应该怎样想,学会思考的方法。还可以将它与比的应用进行对比,发现这两种题型是可以互相转化的。

【复习目标】

1、学生自主复习本单元的概念,进一步掌握本章所学的基本概念和计算法则,提高学生的计算能力和解题能力。引导进一步理解分数除法和比的意义、计算及应用。

2、通过梳理与沟通,让学生感悟相关知识的联系和区别。如分数乘除法解决问题,求比值、化简比,比和除法、分数之间的关系等。

3、培养学生良好的复习习惯。

【复习重点】

能比较熟练地进行分数除法、求比值以及化简比的计算;会正确地用方程或算术方法解答文字题。

【复习难点】

使学生进一步掌握用方程或算术方法解答已知一个数的几分之几是多少求这个数的应用题和稍复杂的分数除法应用题,提高学生解答分数应用题的能力.

【教具准备】

课件、练习纸

【复习过程】

一、回顾整理、汇报交流

师:昨天,老师布置同学们复习并整理分数除法这一单元,完成了吗?把你整理的内容先在小组内交流一下吧!

(生小组交流)

师:我选了几份有代表性的,想看看吗?

(学生汇报)

①简单列出本单元提纲 ②总结出个别重要的知识 ③虽然知识点零碎,但很全面

师:能把这么多零碎的知识全面的总结出来,看来你们很用心地对本单元进行了复习!可是,你们知道吗?复习不仅仅是回顾所学的知识,更重要的是找到知识间的联系,总结出学习方法,真正达到温故而知新!

二、练中梳理、沟通联系

师:请看(出示线段图) 什么图?仔细看,你能看明白什么?

生:b是单位“1”,分成了5份,a占了3份;a是b的 —理解的真好!

师:它可以用一个怎样的数量关系式来表示呢?

生:b× =a

师:你能把它改写成两个除法算式吗?

生:a÷b=

a÷ =b

师:为什么这样改?(积÷因数=因数)

所以说,分数除法的意义与整数除法相同,都是已知两个因数的积与一个因数,求另一个因数的'运算。

师:想一想,两个数相除还可以用什么形式表示?

生:比。

师:什么是比?

师:那么a比b是 ?

生:a:b=

师: 是什么?(比值)

它还可以表示a与b的比是3:5

在a÷b= 这儿它是商

看来,比与分数以及除法之间,是有一定的联系的。有什么联系呢?

(生说,然后示课件)

有没有区别呢?(运算、数、关系)

师:既有密切的联系,又有本质的区别!

师:好了,下面看这儿 a÷ =b,如果a是2,你能算出b是多少吗?

(生计算)

师:说一说,怎么算的?

师:除以 ,算的时候变成了乘 ,依据什么?

分数除法的计算方法是什么?(生说)

乘除数的倒数,这样,就把分数除法的计算转化成了乘法。(示转化)

师:想一想,像这样,a是2,b是 , a与b的比还是( )吗?

(生有认为是,有的认为不是)

师:究竟是不是呢?(算算看)

生:(① 2÷ =2÷ =2× = )→这是求比值的方法,得到比值还是

师:②看看这种方法可以吗?2: =(2×3):( ×3)=6:10=3:5=

↓ ↓

为什么前项×3 后项也×3 ?

这是通过化简比,得出结果还是3:5

问:化简比依据是什么?

对比:谁能说一说:求比值与化简比有什么不同?

生:求比值可以用前项÷后项,是一个商,结果可以是小数,分数或整数。

而化简比是根据比的性质,化成最简整数比,结果必须写成比的形式。

师:其实,求比值的计算中,常常会用到分数除法的计算方法。

三、解决问题,提升方法

1、根据线段图提简单的分数除法问题

师:如果a是六年级女生有300人 ,你能提出什么问题呢?

生:六年级总数?

师:可以吗?还可以怎么提?(示题)会做吗?

生:300÷

师 为什么用除法?题目的关键是哪句话?

生:女生是男生的

师:根据条件,可以写出什么数量关系式?

生:(男生)× =300

师:现在知道为什么用除法了吗?

师:还可以用什么方法?

生: 〤=300

2、稍复杂的分数除法问题

师:如果把条件换一换:女生比男生少 怎么做呢?

(生做,然后汇报交流)

师:对比这两题,你有什么发现?

生:男生是单位“1”,未知 。

师:求单位“1”可以用什么方法?

生:可以用方程,也可以用除法。

师:用除法做是根据了除法的意义,而用方程相当于顺着题目的意思列式,把分数除法问题转化成分数乘法法问题 ,这样就简单了。

3、比的应用

师:我把题目全换一换(示投影),变成了什么问题?

生:比的问题

师:能直接列式吗?

生:列式解答

师:把比转化成分数

问:为什么不用方程?

生:单位“1”知道,是800人。

师:这种按比分配的问题,也转化成了求“一个数的几分之几是多少”的分数乘法问题。

小结:这样把知识联系起来,问题就简单多了,应用起来也更灵活了!

四、综合练习,自我检测

师:经过我们再次整理,就把本单元这些散落的知识点穿在了一起,形成一个知识网。找到了联系,明确了方法,老师这儿还有一份检测题,有信心完成吗?

(分发练习纸,根据完成情况反馈交流)

(分析错因,大多是计算出错)

小结:看来掌握方法固然重要,细心认真的学习习惯也很重要!

五、课堂小结

师:咱们六年级的同学,面临对小学六年所学知识的复习。希望今天这节课对你们以后的学习能有所帮助,有所启发!

附练习题

一、 填空

1、8:10= =40÷( )=( )(填小数)

2、20千克:0.2吨的比值是( ),最简整数比是( )。

二、计算

÷2 ÷

×8÷ ( ÷

三、应用

一本书的 是80页,已看的与未看的页数比是9:1。已经看了多少页?

分数除法教案 篇22

教学目的:使学生会计算带分数除法和已知一个数的几分之几倍是多少求这个数的文字题。

教学过程

一、复习

1.口算下列各题。

2.把下列假分数改写成带分数。

3.把下列带分数改写成假分数。

让学生独立完成。巡视时注意学生发生错误的情况,加强个别辅导。做完后集体订正。

二、新课

1.教学例5。

教师出示例5:

教师:我们学过的分数乘法中有带分数的应该怎么办?(先把带分数化成假分数,然后再乘。)

教师:那么在分数除法中有带分数的,应该怎样计算?(也要先把带分数化成假分数,再进行计算。)

教师让学生把例5中的带分数化成假分数,再独立计算,巡视时。注意学生将除法转化成乘法的同时是否将除数改写成它本身的倒数,约分是否有错等。做完后集体订正。

2.做教科书第39页中间做一做的题目。

让学生独立完成。做完后集体订正。

3.教学例6。

(1)准备题。

①的3倍是多少?②的是多少?③的是多少?

教师:这三道题按照题意应该用什么方法计算?(按照分数乘法的意义,用乘法计算。)

教师让学生计算后集体订正。

(2)教学6。

教师出示例6:

教师指名说题目的条件和问题。

教师:如果例6中的一个数已知的,那么求一个数的几倍应该怎样计算?(应该用乘法计算。)

教师:从上节课学习过的内容来看,例6怎样解答比较方便?(用方程解答比较方便。)

教师:应该设什么数为未知数x?(设这个数为未知数x。)

让学生列方程解答。巡视时,注意学生设未知数、书写是否规范,发现问题及时纠正,做完后集体订正。

4.做教科书39页下面做一做题目。

让学生独立完成。巡视时,注意学生设未知数和书写规范方面的问题。做完后集体订正。

三、巩固练习

1.做练习十第1题第1行的小题。

让学生装独立完成。做完后集体订正。

2.做练习十第2题的.前2个小题。

让学生装独立完成,做完后集体订正。

3.做练习十第3题的第(1)~(3)题。

第(1)题:教师先让学生读题,弄清题目的条件和问题以及它们之间的关系,然后再列方程解答。做完后集体订正。

第(2)、(3)题:让学生装独立完成。订正时,让学生装说一说是根据什么列方程式的?(根据乘法的意义。)

4.做练习十的第5题。

教师先让学生读题和分析数量关系,再列方程解答。做完后集体订正。

四、作业

练习十第1题第2行的小题,第2题的最后一个小题,第3题的第(4)题,第4题。

分数除法教案 篇23

教学目标:

1、知识目标:体验分数除以整数的计算方法,在讨论交流的基础上总结出计算法则,并能正确的计算。

2、能力目标:培养学生动手动脑能力,以及判断、推理能力。

3、情感目标:培养学生愿意交流合作,喜欢数学的情操,感受数学来源于生活,体验操作的欢乐。

教学重点:

能求一个数的倒数。

教学难点:

分数除以整数计算法则的推导过程。

教学准备:

长方形纸片。

教学过程:

一、创设情景,教学分数除法的意义

1、师:同学们我们学过整数除以整数以及小数除法,今天我们将来学习数除法。下面我们一起来研究一下几个小朋友有关分饼的问题,请你们列出算式并计算,看谁算的又快又好!

(1)每人吃1/2块饼,4个人共吃多少块饼?

(2)把2块饼平均分给4个人,每人吃了多少块饼?

(3)有2块饼,分给每人1/2块,可分给几个人?

2、师:我们一起来看一下这三个算式,观察一下这三个算式的已知数和得数,说一说它们都是已知什么,求什么的运算?这就是分数除法的意义。

师:讨论:分数除法的意义和整数除法的意义一样吗?

总结:分数除法的意义与整数除法的意义相同,都是已知两个因数的积与其中一个因数,求另一个因数的运算。

二、探究分数除法的计算方法

(1) 引导参与,探究新知

师:我们已经知道了分数除法的意义,那么如何来计算呢?请同学们看黑板。

出示问题1。

请大家拿出一张操作纸,涂色表示出这张纸的4/7。

师:把一张纸的4/7平均分成2份,每份是这张纸的几分之几?怎样列式?4/7÷2

请同学们通过涂一涂,算一算的方式来研究4/7÷2怎样计算。小组合作,汇报交流。

方法一:把4/7平均分成2份就是把4份平均分成2份,每份是2个1/7,也就是2/7。展示折纸和计算过程。4/7÷2=4÷2/7=2/7

方法二:把一张纸的4/7平均分成2份,求每份是多少就是求4/7的1/2是多少,可以用乘法来做。展示折纸和计算过程。4/7÷2=4/7×1/2=2/7

师:对这种做法大家有什么疑问吗?

生:这儿是除法怎么变成了乘法?

师:老师也有这个疑问,你能讲讲吗?

师:谁能结合图来讲一讲呢?

师:很好!把除法转化成乘法,问题迎刃而解,你真棒!……

(2)质疑问难,理解新知

①师小结:有的是用分子除以整数,分母不变的方法算出结果2/7,有的是转化成分数乘法来做……那么在这些方法中,你最喜欢哪种?

②接下来就请你用自己喜欢的方法来解决这个问题:把一张纸的4/7平均分成3份,每份是这张纸的几分之几?先列式再用自己喜欢的方法计算。

③通过计算你们有什么发现?

生1、用第一种方法就不能做了。因为: 上一题的时候,分子4是2的倍数,4÷2能得到整数商。而 4÷3时,分子4不是3的整倍数,得不到整数商。所以不能用分子除以整数这种方法了。

生2:把除法转化成乘法来做……4/7÷3=4/7×1/3=4/21

能再讲讲这样做的道理吗?

师:“4/7÷3”表示把4/7平均分成3份,取其中的一份。

请同学们拿出第二张操作纸,你能把图中的4/7平均分成3份,并表示出其中的一份吗?

展示学生的分法

师(指着涂色部分):你所表示的这一部分是4/7的多少?

通过直观图理解4/7的1/3是4/21

(3)比较归纳,发现规律。

①师:在计算这两道题时同学们想到了不同的算法,计算左边这道题你比较喜欢那种方法?右边呢?

②在两道题的计算中同学们都想到了把除法转化成乘法来做,请观察一下,左边这道算式,在转化的前后什么变了,什么没变?怎么变的?

③师:同学们观察真仔细!那像这样的分数除以整数的题目一般可以怎么计算呢?请同学们在小组内互相说一说!

小组活动,说算法。

④师:通过研讨我们知道了分数除以整数,可以用分子除以整数,但有时不能得到整数商,所以通常转化为乘这个整数的倒数的方法来计算。

出示:分数除以整数,等于分数乘这个整数的倒数。

还有需要注意的地方吗?

生:有,除数不能为0。

师:谁能把分数除以整数的计算法则用自己的话来说一说?

完善算法:分数除以整数(0除外),等于分数乘这个整数的倒数。

⑥那象这样的分数除以整数的题目在计算时要注意些什么?

生:要约分!结果最简。除号要变成乘号!

三、巩固练习

学生独立完成

四、课堂小结

1、这节课我们学习了哪些知识?分数除法的意义是什么?分数除以整数的计算法则是什么?(学生总结)

板书设计:

分数除以整数

分数除法教案 篇24

练习目标:

1在理解分数除法算理的基础上,正确熟练地进行分数除法的计算;

2运用所学的分数除法的知识,解决相应的实际问题.

练习过程:

一、基础知识练习:

1、计算:

⑴2/1328/943/1035/11522/232

⑵3/10223/242617/21518/9713/154

(学生独立计算,教师巡视指导,订正时让学生说一说是怎样计算的.)

2、通过计算下面的题,请你想一想,除数是整数和除数是分数的除法在计算上有什么相同的地方?

引导学生小结:除以一个不等于0的数,等于H这个数的`倒数.

二深入练习

1、计算下面各题,比较它们的计算方法.

5/6+2/35/6-2/35/62/35/62/3

2、

(让学生计算后分组讨论:你发现了什么规律?请你把你发现的规律完整地讲给大家听听。)

根据学生的回答,教师作如下板书:

一个数除以小于1的数,商大于被除数;

一个数除以1,商等于被除数;

一个数除以大于1的数,商小于被除数。

三、解决问题:

练习八第7至8题。

第7题学生独立解答。

第8题学生解答时提示学生需要先统一单位。

小结三道题的共同特点:都是求一个量里包含多少个另一个量,都用除法计算。

四、作业练习:

1、33页第5、9题。

2、一个商店用塑料袋包装120千克水果糖.如果每袋装1/4千克,这些水果糖可以装多少袋?

五、教学反思:

分数除法教案 篇25

教学内容:

教材第29-30页的内容。

教学目标:

1.能用方程解决简单的有关分数的实际问题,初步体会方程是解决实际问题。

2.探索并掌握分数除以整数的计算方法,并能正确计算。

3.能够运用分数除以整数解决简单的实际问题。

教学重点:

分析分数除法应用题中数量间的关系,用方程解答分数除法应用题。

教学难点:

运用分数除以整数解决简单的实际问题。

教具准备:

多媒体课件

预习提纲:

1.观察课本第29页的图,从中你能获得哪些数学信息呢?

2.根据这些数学信息你能提出哪些问题?

3.分析例题,写出等量关系,并试用方程解答。

4.想想还有别的算法吗?

教学过程:

一、创设情境,引发探究

1.同学们喜欢课外活动吗?你们喜欢参加哪些课外活动?

2.课件出示:从画面中你能获得哪些数学信息呢?这些数量之间有什么关系?

(1)打篮球的人数是踢足球的4/9.

(2)踢毽子的人数是踢足球的1/3.

(3)跳绳的人数是参加活动总人数的2/9.

……

二、提出问题,自主探究

1.根据这些数学信息你能提出哪些问题?

操场上一共有27人参加活动,跳绳的小朋友人数是操场上参加活动总人数的2/9.跳绳的有多少人?

列出这题的`等量关系,并解答。全班交流。

2.还能提出哪些数学问题,引出例题

跳绳的小朋友有6人,是操场上参加活动总人数的2/9。操场上有多少人参加活动?

这道题与上题有哪些区别和联系呢?能找到这道题的数量关系吗?

你能用方程的知识,解决这样的问题吗?应该如何解设?小组讨论,再由教师指名在黑板上演示。

解:设操场上有x人参加活动。

χx2/9=6

χx2/9÷2/9=6÷2/9

χx=27

3.想一想,还有别的算法吗?怎么算?为什么?

6÷2/9=27(人)

三、巩固练习,实践探究

刚才同学们根据图中的数学信息,提出了很多的数学问题,这些数学问题,你们能解答吗?

1.操场上打篮球的有4人。

(1)打篮球的人数是踢足球人数的4/9,踢足球的人数是多少?

(2)踢毽子的人数是踢足球人数的1/3,踢毽子的人数是多少?

(3)操场上踢足球的有9人,是操场上参加活动总人数的1/3,操场上参加活动有多少人?

(4)操场上踢毽子的有3人,是操场上参加活动总人数的1/9,是操场上参加活动总人数的1/3。

2.某月双休日9天,是这个月总天数的3/10,这个月有多少天?

(板演过程中,着重分析学生可能存在的误解之处。)

3.根据以下方程,编出相应的应用题。

χx1/5=30χx2/3=40

四、回顾反思,总结全课。

通过这节课的学习你有哪些收获?

分数除法教案 篇26

教学目的:使学生会计算带分数除法和已知一个数的几分之几倍是多少求这个数的文字题。

教学过程

一、复习

1.口算下列各题。

2.把下列假分数改写成带分数。

3.把下列带分数改写成假分数。

让学生独立完成。巡视时注意学生发生错误的情况,加强个别辅导。做完后集体订正。

二、新课

1.教学例5。

教师出示例5:

教师:我们学过的分数乘法中有带分数的应该怎么办?(先把带分数化成假分数,然后再乘。)

教师:那么在分数除法中有带分数的,应该怎样计算?(也要先把带分数化成假分数,再进行计算。)

教师让学生把例5中的带分数化成假分数,再独立计算,巡视时。注意学生将除法转化成乘法的同时是否将除数改写成它本身的倒数,约分是否有错等。做完后集体订正。

2.做教科书第39页中间做一做的题目。

让学生独立完成。做完后集体订正。

3.教学例6。

(1)准备题。

①的3倍是多少?②的是多少?③的是多少?

教师:这三道题按照题意应该用什么方法计算?(按照分数乘法的意义,用乘法计算。)

教师让学生计算后集体订正。

(2)教学6。

教师出示例6:

教师指名说题目的条件和问题。

教师:如果例6中的一个数已知的,那么求一个数的几倍应该怎样计算?(应该用乘法计算。)

教师:从上节课学习过的内容来看,例6怎样解答比较方便?(用方程解答比较方便。)

教师:应该设什么数为未知数x?(设这个数为未知数x。)

让学生列方程解答。巡视时,注意学生设未知数、书写是否规范,发现问题及时纠正,做完后集体订正。

4.做教科书39页下面做一做题目。

让学生独立完成。巡视时,注意学生设未知数和书写规范方面的问题。做完后集体订正。

三、巩固练习

1.做练习十第1题第1行的小题。

让学生装独立完成。做完后集体订正。

2.做练习十第2题的前2个小题。

让学生装独立完成,做完后集体订正。

3.做练习十第3题的第(1)~(3)题。

第(1)题:教师先让学生读题,弄清题目的条件和问题以及它们之间的关系,然后再列方程解答。做完后集体订正。

第(2)、(3)题:让学生装独立完成。订正时,让学生装说一说是根据什么列方程式的?(根据乘法的意义。)

4.做练习十的第5题。

教师先让学生读题和分析数量关系,再列方程解答。做完后集体订正。

四、作业

练习十第1题第2行的小题,第2题的最后一个小题,第3题的第(4)题,第4题。

分数除法教案 篇27

一、复习引新

1.说出下面各数的倒数。

0.36

2.已知12645=5670,直接说出567045和5670126的得数,再说说你是怎样想的,根据是什么。(学生回答后教师总结:根据整数除法的意义,不用计算就能知道这两题的结果,谁还记得整数除法的意义是什么?已知两个因数的积与其中一个因数,求另一个因数的运算。)

3.引新:同学们想不想知道分数除法的意义吗?分数除法如何计算呢?这节课我们就一起来学习分数除法。(出示课题)

二、新授教学

(一).教学分数除法的意义(课件一下载)

①每人吃半块月饼,4个人一共吃多少块月饼?

半块月饼用分数怎么表示?求4个人一共吃多少块月饼就是求几个?求4个是多少怎样列算式?()

②两块月饼,平均分给4人,每人分得多少块?怎样列式?

列式:24

③两块月饼,分给每人半块,可以分给几个人?

列式后,说一说结果是多少?你是如何得出结果的?

④组织学生讨论:分数除法的意义。

总结:分数除法的意义与整数除法的意义相同,都是已知两个因数的积与其中一个因数,求另一个因数的运算。

⑤练习反馈。

根据:,写出,(二).教学分数除以整数

1.出示例1、把米铁丝平均分成2段,每段长多少米(课件二下载)

①求每段长多少米怎样列算式?②以小组为单位讨论一下得多少呢?

米平均分成2段就是要把6个米平均分成2份,每份是3个米是米。

③、教师板书整理。

(米)

2.教师质疑:如果把米铁丝平均分成3段、6段怎样计算?

也可以这样想:把米铁丝平均分成3段,就是求米的是多少,列式是:把米铁丝平均分成6段,就是求米的'是多少,列式是:3.教师继续质疑:如果把米铁丝平均分成4段每段长多少米?怎样计算?(米)

为什么采用转化成分数乘法这种方法比较好呢?

组织学生观察在转变中,什么变了,什么没变?讨论分数除以整数的计算法则。

4.学生边概括教师边板书:分数除以整数(0除外)等于分数乘以这个整数的倒数。

三、巩固练习

1.计算下面各题:

学生独立完成,教师巡视,进行个别辅导。

2.请同学求未知数①②3.判断。

①分数除法的意义与整数除法的意义相同。()

②已知两个分数的积与其中一个分数,求另一个分数,用除法解答。()

③()

④()

⑤()

4.解答下面各题。

①把平均分成4份,每份是多少?

②什么数乘以6等于?

③一个正方形的周长是米,它的边长是多少米?

四、课堂总结

这节课我们学习了哪些知识?分数除法的意义是什么?分数除以整数的计算法则是什么?还有什么问题?

五、课后作业

练习七1、2、3、4

六、板书设计

分数除法教案 篇28

教学目标:

1、知识目标:体验分数除以整数的计算方法,在讨论交流的基础上总结出计算法则,并能正确的计算。

2、能力目标:培养学生动手动脑能力,以及判断、推理能力。

3、情感目标:培养学生愿意交流合作,喜欢数学的情操,感受数学来源于生活,体验操作的欢乐。

教学重点:

能求一个数的倒数。

教学难点:

分数除以整数计算法则的推导过程。

教学准备:

长方形纸片。

教学过程:

一、创设情景,教学分数除法的意义

1、师:同学们我们学过整数除以整数以及小数除法,今天我们将来学习数除法。下面我们一起来研究一下几个小朋友有关分饼的问题,请你们列出算式并计算,看谁算的又快又好!

(1)每人吃1/2块饼,4个人共吃多少块饼?

(2)把2块饼平均分给4个人,每人吃了多少块饼?

(3)有2块饼,分给每人1/2块,可分给几个人?

2、师:我们一起来看一下这三个算式,观察一下这三个算式的已知数和得数,说一说它们都是已知什么,求什么的运算?这就是分数除法的意义。

师:讨论:分数除法的意义和整数除法的意义一样吗?

总结:分数除法的意义与整数除法的意义相同,都是已知两个因数的积与其中一个因数,求另一个因数的运算。

二、探究分数除法的计算方法

(1) 引导参与,探究新知

师:我们已经知道了分数除法的意义,那么如何来计算呢?请同学们看黑板。

出示问题1。

请大家拿出一张操作纸,涂色表示出这张纸的4/7。

师:把一张纸的4/7平均分成2份,每份是这张纸的几分之几?怎样列式?4/7÷2

请同学们通过涂一涂,算一算的方式来研究4/7÷2怎样计算。小组合作,汇报交流。

方法一:把4/7平均分成2份就是把4份平均分成2份,每份是2个1/7,也就是2/7。展示折纸和计算过程。4/7÷2=4÷2/7=2/7

方法二:把一张纸的4/7平均分成2份,求每份是多少就是求4/7的1/2是多少,可以用乘法来做。展示折纸和计算过程。4/7÷2=4/7×1/2=2/7

师:对这种做法大家有什么疑问吗?

生:这儿是除法怎么变成了乘法?

师:老师也有这个疑问,你能讲讲吗?

师:谁能结合图来讲一讲呢?

师:很好!把除法转化成乘法,问题迎刃而解,你真棒!……

(2)质疑问难,理解新知

①师小结:有的是用分子除以整数,分母不变的方法算出结果2/7,有的是转化成分数乘法来做……那么在这些方法中,你最喜欢哪种?

②接下来就请你用自己喜欢的方法来解决这个问题:把一张纸的4/7平均分成3份,每份是这张纸的几分之几?先列式再用自己喜欢的方法计算。

③通过计算你们有什么发现?

生1、用第一种方法就不能做了。因为: 上一题的时候,分子4是2的倍数,4÷2能得到整数商。而 4÷3时,分子4不是3的整倍数,得不到整数商。所以不能用分子除以整数这种方法了。

生2:把除法转化成乘法来做……4/7÷3=4/7×1/3=4/21

能再讲讲这样做的道理吗?

师:“4/7÷3”表示把4/7平均分成3份,取其中的一份。

请同学们拿出第二张操作纸,你能把图中的4/7平均分成3份,并表示出其中的.一份吗?

展示学生的分法

师(指着涂色部分):你所表示的这一部分是4/7的多少?

通过直观图理解4/7的1/3是4/21

(3)比较归纳,发现规律。

①师:在计算这两道题时同学们想到了不同的算法,计算左边这道题你比较喜欢那种方法?右边呢?

②在两道题的计算中同学们都想到了把除法转化成乘法来做,请观察一下,左边这道算式,在转化的前后什么变了,什么没变?怎么变的?

③师:同学们观察真仔细!那像这样的分数除以整数的题目一般可以怎么计算呢?请同学们在小组内互相说一说!

小组活动,说算法。

④师:通过研讨我们知道了分数除以整数,可以用分子除以整数,但有时不能得到整数商,所以通常转化为乘这个整数的倒数的方法来计算。

出示:分数除以整数,等于分数乘这个整数的倒数。

还有需要注意的地方吗?

生:有,除数不能为0。

师:谁能把分数除以整数的计算法则用自己的话来说一说?

完善算法:分数除以整数(0除外),等于分数乘这个整数的倒数。

⑥那象这样的分数除以整数的题目在计算时要注意些什么?

生:要约分!结果最简。除号要变成乘号!

三、巩固练习

学生独立完成

四、课堂小结

1、这节课我们学习了哪些知识?分数除法的意义是什么?分数除以整数的计算法则是什么?(学生总结)

板书设计:

分数除以整数

分数除法教案 篇29

【教学内容】

【教学目标】

知识目标:

体验整数除以分数的计算方法,在讨论交流的基础上总结出计算法则,并能正确的计算。

能力目标:

培养学生动手动脑能力,以及判断、推理能力。通过分析的出结论。

情感目标:

培养学生愿意交流合作,喜欢数学的情操,感受数学来源于生活,体验操作的欢乐。

【教学重点】整数除以分数的计算法则推导过程。

【教学难点】理解一个数除以分数的计算法则的推导过程,

【教学过程】

一、创设情境导入新课

唐僧师徒西天取经路上,有一天,孙悟空化了4张饼回来八戒急着要吃,孙悟空为难八戒说:“想吃饼也容易,先回答几个问题,答上来就吃!”这下可馋坏了八戒,聪明的小朋友,你有什么好办法来帮帮八戒吗?

二、自主探究合作交流

1、小组活动

(1)出示教材27页“分一分”的第(1)、(2)题

学生拿出准备好的圆片代表饼,动手分一分。

每2张一份,可以分成多少份?4÷2=2(份)

每1张一份,可以分成多少份?4÷1=4(份)

师:每1/2张一份,可以分成多少份?

学生动手操作,组内交流,把每个圆都平均分成2份,一共可以分成8份。4÷1/2=8(份)

师:每1/4张一份,可以分成多少份?

学生对那个手操作,把每个圆片都平均分成4份,一共可以分成16份。

4÷1/4=16(份)

(1)出示教材27页“画一画”学生在练习本上画。在组内交流计算方法。

(2)学生独立完成教材28页“填一填”“想一想”

师:通过刚才的“分一分”、“画一画”、“填一填”、“想一想”等活动,你发现了什么?

生:一个数除以分数等于乘这个分数的倒数。

1、学生独立完成28页的“试一试”。

集体反馈,同桌之间订正。

师:通过刚才的计算你发现了什么?

生:一个数除以一个数(零除外)等于乘这个数的倒数。

三、课堂练习,巩固运用

书本练一练

四、课堂小结畅谈收获

聪明的小朋友们,八戒在你们的帮助下吃到了饼,也有了新的收获,你们知道它的收获是什么吗?

(学生谈收获)

【板书设计】

整数除以分数

a÷=a×(b、c≠0)

【教学反思】

本节课是北师大版数学第十册第三单元《分数除法》中的第三节课。本节课旨在借助图形语言,在操作活动中理解一个数除以分数的意义和计算方法。为此,根据本节课教材的特点,结合学生已有的个体经验,本节课做了如下三个层次的设计:

第一层次:“分一分”的活动。通过学生动手分饼活动,让学生经过观察、比较与思考,发现整数除以整数与整数除以分数知识间的内在联系,借助图形语言,初步感知体会“除以一个数”与“乘这个数的倒数”之间的关系。这样做不仅为学生创设了一个更好理解分数除法意义的机会,更主要的是教会学生一种学习的方法,即分数除法的意义可联系整数除法的意义进行学习。最后,通过启发性的问话:“观察这一组算式,你有什么发现?”激发学生思考、求知、解答的愿望,为下一步的探究做了很好的铺垫。

第二层次:“画一画”的'活动。在第一层次分饼的基础上分线段,虽然线段图比圆形图更抽象,但学生已有分饼的经验,所以学生根据问题不难列出算式,怎样求出结果就成为这一操作活动要解决的问题。其中(1)(2)小题比较容易,学生从图上可以看出结果,关键是第三小题不容易突破,是本节课教学的难点。主要是让学生弄清第(2)小题的算理,再将此方法迁移到地(3)小题。

第三层次:“想一想、填一填”的活动。由于学生有了前面操作的基础,这部分比较大小的题目,他们不难填出答案。但关键是让学生观察、比较、分析,从而发现题目中蕴含的规律。这一活动是学生对前面问题思考过程的整理,对分数除法意义进一步的理解。

第四层次:实践应用活动。是学生应用所学知识解决实际问题,巩固、内化知识的过程。

分数除法教案 篇30

教学内容:

苏教版义务教育教科书《数学》六年级上册第49~50页例5、试一试和练一练,第51页练习七第1~4题。

教学目标:

使学生联系对“求一个数的几分之几是多少”的已有认识,学会列方程解答“已知一个数的几分之几是多少求这个

数”的简单实际问题,进一步体会分数乘、除法的内在联系,加深对分数表示的数量关系的理解。

教学重点:

列方程解答“已知一个数的几分之几是多少,求这个数”的简单实际问题。

教学难点:

理解列方程解决简单分数实际问题的思路。

教学过程:

一、导入

1、出示例5中两瓶果汁图,估计一下,大、小两瓶果汁之间有什么关系?

出示:小瓶的'果汁是大瓶的。

这句话表示什么?你能说出等量关系式吗?

如果大瓶里的果汁是900毫升,怎么求小瓶果汁里的果汁?自己算算看。

如果知道小瓶里的果汁,怎么求大瓶中的果汁呢?

2、揭示课题:简单的分数除法应用题

二、教学例5

1、出示例5,学生读题。

提问:你想怎么解决这个问题?

2、讨论交流:你是怎么想、怎么算的?

(1)用除法计算。

引导讨论:为什么可以用除法计算?依据是什么?

(2)用方程解答。

讨论:用方程解答是怎么想的,依据是什么?

让学生在教材中完成解方程的过程,并指名板演。

3、引导检验:900是不是原方程的解呢,怎么检验?

交流检验的方法。

4、教学“试一试”

(1)出示题目,让学生读题理解题目意思。

(2)讨论:这里中的两个分数分别表示什么意思?

这题中的数量关系式是什么?

(3)这题可以怎么解答,自己独立完成,并指名板演。

(4)交流:你是怎么解决这个问题的?

4、小结。

三、练习

1、做“练一练”。

各自独立解答后,进行交流汇报。提倡学生用两种方法进行解答。

2、做练习十二第1题。

(1)读题,画出题目中的关键句。

(2)学生说题意

(3)引导学生说出并在书上写出数量关系式。

(4)独立解答,并指名板演。

(5)集体评议并校正。

3、做练一练第2题。

启发:你是怎样分析数量关系的?为什么要列方程解答?

3、小结解题策略。

四、作业:练习十二第1、3、4题。

板书设计:(略)

有关分数除法教案(通用15篇)

作为一名老师,通常会被要求编写教案,编写教案有利于我们科学、合理地支配课堂时间。教案应该怎么写才好呢?下面是小编整理的分数除法教案,欢迎大家借鉴与参考,希望对大家有所帮助。

分数除法教案 篇31

【教学目标】

知识目标:

体验整数除以分数的计算方法,在讨论交流的基础上总结出计算法则,并能正确的计算。

能力目标:

培养学生动手动脑能力,以及判断、推理能力。通过分析的出结论。

情感目标:

培养学生愿意交流合作,喜欢数学的情操,感受数学来源于生活,体验操作的欢乐。

【教学重点】

整数除以分数的计算法则推导过程。

【教学难点】

理解一个数除以分数的计算法则的推导过程,

【教学过程】

一、创设情境导入新课

唐僧师徒西天取经路上,有一天,孙悟空化了4张饼回来八戒急着要吃,孙悟空为难八戒说:“想吃饼也容易,先回答几个问题,答上来就吃!”这下可馋坏了八戒,聪明的小朋友,你有什么好办法来帮帮八戒吗?

二、自主探究合作交流

1、小组活动

(1)出示教材27页“分一分”的第(1)、(2)题

学生拿出准备好的圆片代表饼,动手分一分。

每2张一份,可以分成多少份?4÷2=2(份)

每1张一份,可以分成多少份?4÷1=4(份)

师:每1/2张一份,可以分成多少份?

学生动手操作,组内交流,把每个圆都平均分成2份,一共可以分成8份。4÷1/2=8(份)

师:每1/4张一份,可以分成多少份?

学生对那个手操作,把每个圆片都平均分成4份,一共可以分成16份。

4÷1/4=16(份)

(1)出示教材27页“画一画”学生在练习本上画。在组内交流计算方法。

(2)学生独立完成教材28页“填一填”“想一想”

师:通过刚才的“分一分”、“画一画”、“填一填”、“想一想”等活动,你发现了什么?

生:一个数除以分数等于乘这个分数的倒数。

1、学生独立完成28页的“试一试”。

集体反馈,同桌之间订正。

师:通过刚才的计算你发现了什么?

生:一个数除以一个数(零除外)等于乘这个数的倒数。

三、课堂练习,巩固运用

书本练一练

四、课堂小结畅谈收获

聪明的小朋友们,八戒在你们的帮助下吃到了饼,也有了新的收获,你们知道它的收获是什么吗?

(学生谈收获)

【板书设计】

整数除以分数

a÷=a×(b、c≠0)

【教学反思】

本节课是北师大版数学第十册第三单元《分数除法》中的第三节课。本节课旨在借助图形语言,在操作活动中理解一个数除以分数的意义和计算方法。为此,根据本节课教材的特点,结合学生已有的个体经验,本节课做了如下三个层次的设计:

第一层次:“分一分”的活动。通过学生动手分饼活动,让学生经过观察、比较与思考,发现整数除以整数与整数除以分数知识间的内在联系,借助图形语言,初步感知体会“除以一个数”与“乘这个数的倒数”之间的关系。这样做不仅为学生创设了一个更好理解分数除法意义的机会,更主要的是教会学生一种学习的方法,即分数除法的意义可联系整数除法的意义进行学习。最后,通过启发性的问话:“观察这一组算式,你有什么发现?”激发学生思考、求知、解答的愿望,为下一步的探究做了很好的铺垫。

第二层次:“画一画”的活动。在第一层次分饼的基础上分线段,虽然线段图比圆形图更抽象,但学生已有分饼的经验,所以学生根据问题不难列出算式,怎样求出结果就成为这一操作活动要解决的问题。其中(1)(2)小题比较容易,学生从图上可以看出结果,关键是第三小题不容易突破,是本节课教学的难点。主要是让学生弄清第(2)小题的算理,再将此方法迁移到地(3)小题。

第三层次:“想一想、填一填”的活动。由于学生有了前面操作的基础,这部分比较大小的题目,他们不难填出答案。但关键是让学生观察、比较、分析,从而发现题目中蕴含的规律。这一活动是学生对前面问题思考过程的整理,对分数除法意义进一步的理解。

第四层次:实践应用活动。是学生应用所学知识解决实际问题,巩固、内化知识的过程。

分数除法教案 篇32

一、教学内容

苏教版小学数学第十一册第33—38页“分数除法”例1—例4。

二、简要分析

本节课是学生刚刚学过“分数乘法”和“倒数”这一概念的基础上进行教学。学生已有的知识还有“商不变的规律”。本课例就是教者引导学生运用已有的知识或经验,去探索获取新知识,形成和发展新知识结构,同时发展学生的智力和能力。大胆的改革教材,进行知识的组块教学,勇于实践,缩短“分数除法计算法则”教时的一个例子。

三、教学过程

(一)复习旧知,作好铺垫,导入新课。

1、说出下列各数的倒数(出示卡片)

2、6、—、—、0.5、 1—、 0.7

2、用投影打出:下面两题简便计算的根据是什么?

12÷25=(12×4)÷(25×4)=48÷100=0.48

11÷125=(11×8)÷(125×8)=88÷1000=0.088

[简析:商不变规律的应用,为后面学习新知作出充分准备。]

3、用投影分A、B组分别出示:下列算式中,哪些算式你一眼就能看了它的商?

A组:78÷10.35÷1136÷721.8÷9

B组:—÷1—÷1—÷218÷——÷1

—÷——÷—4—÷2——÷0.7

[简析:这两组有趣习题的练习,有利于调动学生的学习激情,学生很快说出除数是1的算式,一眼就看出商是几。当学生看出除数为1时,计算就最为简便。(这里为学习新知作了重要的铺垫)一看就知道商是几(即被除数)]

师:接着问B组题中是些什么算式,生答师板书“分数除法”算,今天就来研究“分数除法”的计算法则。

(二)指导探索,在新旧知识的衔接上教师加以点拔导学。

(1)请大家列出B组算式中除数不是1的算式。

—÷218÷——÷——÷—

4—÷2— —÷0.7

(2)先来研究前四道算式,这四道算式中除数都不是1,你能想办法将这除数变为1,而商不变吗?

[评析:此时学生的学习情绪积极性高,纷纷欲试,是学习新知识的最佳时机。]

师:下面分学习小组进行讨论。

(3)交流。

学生甲:以—÷2为例,除数是2,将2×—除数变为1,要使商不变,被除数—也要乘以—。

学生乙:以18÷—为例,除数是—,将—×—除数变为1,要使商不变,被除数18也要乘以—。

[评析:此题是倒数的概念和商不变规律同时应用,运用旧知,用得巧。]

(教师根据学生的回答,作好下列板书)

—÷2=(—×—)÷(2×—)18÷—=(18×—)÷(—×—)

=—×—÷1=18×—÷1

=—×— =18×—

(三)引导学生观察、比较、类推,得出结论。

师问:这里我们是应用的什么进行变化的?(商不变的规律)

(教者把上面板书用虚线框起)让学生观察比较。

—÷2=—×—18÷—=18×—

问:这两个等式的前后发生了什么变化?他们变化有什么共同点?(分学习小组讨论)

生汇报:除号变成了乘号,除数变成了它的倒数。

分数除法算式变成了分数乘法算式。

师小结:你们观察得真仔细,将分数除法转化为分数乘法来做,今后到中学里学习还可用到“转化”这一重要思想把未知的.转化成已知,去探索知识,为人类服务。

练习:用复合投影片打出:

将下列除法算式转化为乘法算式(学生边回答边出示下排转化的式子)

—÷— —÷— —÷612÷—

=—×—=—×4 =—×—=12×—

[评析:抓住时机,练重点难点,强化新知。]

6、讨论、比较、类推,概括方法。

问:在刚才的练习中,你认为有什么规律?

(生答:被除数不变,除号变成了乘号,同时除数变成了它的倒数。)

师问:如果这些被除数作为甲数,除数作为乙数,你能用一句话概括一下它的规律吗?

生答师板书:甲数除以乙数,等于甲数乘以乙数的倒数。这就是分数除法的计算法则。(看书第38页)

引导学生讨论:为什么乙数要加上零除外?

(四)利用法则,练习重点,巩固新知。

1、—÷3=—×———=12÷—=12×———=

—÷—=—×———=—÷—=———()———

2、计算。(并指名板书,注意书写格式)

—÷3—÷——÷36÷—

3÷——÷——÷— —÷—

3、改错。

(1)9÷—=9÷—=—=10—(2)—÷5=—×—=—

(3)—÷—=—×—=—

4、判断。

(1)1÷—=—÷1(2)a÷b=a×—

[评析:改错题、判断题的设计,进一步强化了计算法则。]

(五)作业练习,熟记法则。

1、练习八第3题的前4题

第6题的前4题

2、校对答案。(说出过程,强化法则的应用)

思考题:计算(1)4—÷2—(2)—÷0.7

[评析:这里是知识结构的完整,知识点的引伸。]

(六)总结。

1、今天我们一起研究了什么内容?

2、你有哪些收获?

3、计算过程中应注意什么问题?

四、教后评析

本节课教者利用旧知识的学习作铺垫,运用知识的迁移规律,对分数除法法则进行整体教学,利用观察、比较、类推等方法缩短了教学课时数,打破了原教材的束缚,学生的学习积极性高,发展了学生的智力,受到良好的教学效果。

1、恰当地调整了教材,进行知识的组块教学,挖掘了教材(知识)本身的潜在因素,利用旧知,通过师生的对话、教师的点拔,为学生主动探索、自己发现方法概括法则创造条件,有利于学生掌握、研究教学问题的思维方法,打破了一例一题传统的教学模式,体现了现代小学数学教育的特点。

2、抓住知识间的内在联系,在知识连接点衔接处精心设计习题、提问,让学生主动探索问题。

3、重视学生素质的培养,注重面向全体学生、全员参与,注重发展学生的思维,培养能力和方法指导,从铺垫(全员练习)→新课(转化除数、变除为乘、试做、比较、类推、概括法则)→巩固新知(填空、计算、改错、判断)→作业练习→思考题引伸拓展→总结整个过程,充分体现了“以教师为主导、学生为主体、训练为主线”的教学原则。

分数除法教案 篇33

教学要求:

1、使学生认识分数除法应用题的特点,能根据应用题的特点理解解题思路和解题方法,学会解答已知一个数的几分之几是多少求这个数的应用题。

2、进一步培养学生自主探索问题解决的能力和分析、推理和判断等思维能力,提高解答应用题的能力。

教学重难点:

分数除法应用题的特点及解题思路和解题方法。

教学过程:

一:复习

1、根据条件说出把哪个数量看作单位1。

(1)棉田的面积占全村耕地面积的2/5。

(2)小军的体重是爸爸体重的3/8。

(3)故事书的本数占图书总数的1/3。

(4)汽车速度相当于飞机速度的1/5。

2、找单位1,并说出数量关系式。

(1)白兔的只数占总只数的2/5。

(2)甲数正好是乙数的3/8。

(3)男生人数的1/3恰好和女生同样多。

3、一个儿童体重35千克,他体内所含水分占体重的4/5,他体内的水分有多少千克?

集体订正时,让学生分析数量关系,说出把哪个数量看作单位1,并说出解答这个问题的数量关系式,即:体重4/5=体内水分的重量。同学们都能正确分析和解答分数乘法应用题,分数除法应用题又如何解答呢?今天这节课我们就一起来研究。(板书课题:分数除法应用题)

二、新授

1、教学例1。一个儿童体内所含的水分有28千克,占体重的4/5。这个儿童体重有多少千克?

(1)指名读题,说出已知条件和问题。

(2)共同画图表示题中的条件和问题。

(3)分析数量关系式

提问:根据水份占体重的4/5,可以得到什么数量关系式?

学生回答后,教师说明:例1和复习题的第二个已知条件相同,因此单位1相同,数量关系式也相同,都是把体重看作单位1,数量关系式是:体重4/5=体内水分的重量。

根据学生的.回答,把线段图进一步完善。

提问:根据题目的条件,我们已经找到了这一题的数量关系式:体重4/5=体内水分的重量。现在已知体内水分的重量,要求儿童体重有多少千克,可以用什么方法解答?(引导学生说出用方程解答。)

让学生试列方程,并说出方程表示的意义。

让学生把方程解完,并写上答案。

出示教材的检验,提问:要检验儿童的体重是不是正确,应该怎样做?(用求出的体重乘4/5,看看是不是等于水分的千克数。)

2、比较。

提问:我们再把例1与复习题比较,看看这两题有什么相同的地方,有什么不同的地方?

根据学生的回答,帮助学生整理出:

(1)看作单位1的数量相同,数量关系式相同。

(2)复习题单位1的量已知,用乘法计算;

例1单位1的量未知,可以用方程解答。

(3)因为它们的数量关系式相同,所以这两种题目的解题思路是一致的,都是先找出把哪个数量看作单位1,根据单位1是已知还是未知,再确定是用乘法解还是方程解。

三、巩固练习

1、做书P34做一做

要求学生先按照题目中的想说出想的过程,说出数量关系式,再列方程解答。订正时要说一说是按照什么来列方程的。

2、做练习九第1题。

先让学生找出把哪个数量看作单位1,说出数量关系式,再列方程解答。

四、小测:(略)

五、小结:这节课我们研究了什么问题?解答分数应用题的关键是什么?单位1已知用什么方法解答?未知呢?

六、布置作业

练习九第2题

教后反思:学生在已学过的分数乘法应用题的基础上,能找出关键句,并根据关键句说出相对的数量关系式。为孩子创造做数学的机会,通过让学生积极参与知识的形成过程,让学生运用已有的知识经验,从不同的角度,用不同方法获取新知识,在不同程度上都得到发展。使学生不但知其然,还知其所以然。同时又使学生的观察力、想象力、思维能力和创新能力得到培养和发展,在学会的过程中达到会学的目的。

再根据题目的条件判断单位1的量,是已知的就乘法计算;单位1的量是未知的就用方程来解答;并学会了怎样验算。教学中不仅要重视知识的最终获得,更要重视学生获取知识的探究过程。结论仅是一个终结点,而探究结论、揭示结论的过程则是由无数个点组成的线、面、体,在探究的过程中,只有让学生动手做数学,学生很可能获得超出结论自身的价值的若干倍的数学知识。

小测:列出数量关系式,并列式解答。

1、六年一班有三好学生9人,正好占全班人数的1/5,全班有多少人?(用方程解)

2、一瓶油吃了3/5,正好是300克,这瓶油重多少克?(用方程)

小测:列出数量关系式,并列式解答。

1、六年一班有三好学生9人,正好占全班人数的1/5,全班有多少人?(用方程解)

2、一瓶油吃了3/5,正好是300克,这瓶油重多少克?(用方程)

有关分数除法教案范文集合八篇

作为一名优秀的教育工作者,常常要根据教学需要编写教案,编写教案助于积累教学经验,不断提高教学质量。那么什么样的教案才是好的呢?下面是小编收集整理的分数除法教案8篇,欢迎阅读,希望大家能够喜欢。

分数除法教案 篇34

教学目标:

1、运用所学知识解决一些生活中的实际问题。

2、加强列方程的思维训练。

3、培养学生分析问题解决问题的能力。

教学过程:备注

活动一:复习与准备

1、爸爸的.体重75千克,小明的体重是爸爸的7/15。

(1)、小明的体重是多少千克?

(2)、小明体内水份的质量占小明体重的4/5,小明体内有多少千克水份?

(3)让学生说出数量关系并列式计算

活动二:出示例1

1、与复习题比较有什么不同?

2、要求小明的体重应该知道什么条件?为什么?

3、以知小明体内有水份28千克,要求小明的体重,需用到哪个数量关系?

4、学生自己列式计算

5、与复习题比较有什么相同点和不同点?你发现了什么?

小结:(略)

1、要求学生自己做第二问

(1)、要求画图分析

(2)、与第一问比有什么不同?

(3)、根据什么等量关系列方程?

小结:

活动三:巩固练习

1、38页做一做

2、40页1、2

板书设计

分数除法教案 篇35

一、教学内容

分数与除法

教材第66页的例3及做一做。

二、教学目标

1.使学生掌握分数与除法的关系。

2.培养学生的应用意识。

三、重点难点

1.理解、归纳分数与除法的关系。

2.用除法的意义理解分数的意义。

四、教具准备

圆片。

五、教学过程

(一)引入。

老师:5除以9,商是多少?(板书:5÷9=)如果商不用小数表示,还有其他方法吗?学习了分数与除法的关系后,就能解决这个问题了。

板书课题:分数与除法的关系

(二)教学实施

1.学习例3。

(1)板书例题。

小新家养鹅7只,养鸭10只。养鹅的只数是鸭的几分之几?

(2)指名读题,理解题意并列出算式。板书:7÷10

(3)利用除法和分数的关系得出结果。

7÷10=

所以养鹅的只数是鸭的。

(三)思维训练

1.把8米长的'绳子平均分成13段,每段长多少米?

2.把一个5平方米的圆形花坛分成大小相同的6块,每一块是多少平方米?(用分数表示)

(四)课堂小结

通过今天这节课的观察、操作,同学们发现了分数与除法之间的关系。分数的分子相当于除法的被除数,分数的分母相当于除法的除数,除号相当于分数的分数线。

分数除法教案范文集锦5篇

作为一位兢兢业业的人民教师,时常要开展教案准备工作,借助教案可以更好地组织教学活动。那么问题来了,教案应该怎么写?以下是小编精心整理的分数除法教案5篇,仅供参考,欢迎大家阅读。

分数除法教案 篇36

一、教学内容

苏教版小学数学第十一册第33—38页“分数除法”例1—例4。

二、简要分析

本节课是学生刚刚学过“分数乘法”和“倒数”这一概念的基础上进行教学。学生已有的知识还有“商不变的规律”。本课例就是教者引导学生运用已有的知识或经验,去探索获取新知识,形成和发展新知识结构,同时发展学生的智力和能力。大胆的改革教材,进行知识的组块教学,勇于实践,缩短“分数除法计算法则”教时的一个例子。

三、教学过程

(一)复习旧知,作好铺垫,导入新课。

1、说出下列各数的倒数(出示卡片)

2、6、—、—、0.5、 1—、 0.7

2、用投影打出:下面两题简便计算的根据是什么?

12÷25=(12×4)÷(25×4)=48÷100=0.48

11÷125=(11×8)÷(125×8)=88÷1000=0.088

[简析:商不变规律的应用,为后面学习新知作出充分准备。]

3、用投影分A、B组分别出示:下列算式中,哪些算式你一眼就能看了它的商?

A组:78÷10.35÷1136÷721.8÷9

B组:—÷1—÷1—÷218÷——÷1

—÷——÷—4—÷2——÷0.7

[简析:这两组有趣习题的'练习,有利于调动学生的学习激情,学生很快说出除数是1的算式,一眼就看出商是几。当学生看出除数为1时,计算就最为简便。(这里为学习新知作了重要的铺垫)一看就知道商是几(即被除数)]

师:接着问B组题中是些什么算式,生答师板书“分数除法”算,今天就来研究“分数除法”的计算法则。

(二)指导探索,在新旧知识的衔接上教师加以点拔导学。

(1)请大家列出B组算式中除数不是1的算式。

—÷218÷——÷——÷—

4—÷2— —÷0.7

(2)先来研究前四道算式,这四道算式中除数都不是1,你能想办法将这除数变为1,而商不变吗?

[评析:此时学生的学习情绪积极性高,纷纷欲试,是学习新知识的最佳时机。]

师:下面分学习小组进行讨论。

(3)交流。

学生甲:以—÷2为例,除数是2,将2×—除数变为1,要使商不变,被除数—也要乘以—。

学生乙:以18÷—为例,除数是—,将—×—除数变为1,要使商不变,被除数18也要乘以—。

[评析:此题是倒数的概念和商不变规律同时应用,运用旧知,用得巧。]

(教师根据学生的回答,作好下列板书)

—÷2=(—×—)÷(2×—)18÷—=(18×—)÷(—×—)

=—×—÷1=18×—÷1

=—×— =18×—

(三)引导学生观察、比较、类推,得出结论。

师问:这里我们是应用的什么进行变化的?(商不变的规律)

(教者把上面板书用虚线框起)让学生观察比较。

—÷2=—×—18÷—=18×—

问:这两个等式的前后发生了什么变化?他们变化有什么共同点?(分学习小组讨论)

生汇报:除号变成了乘号,除数变成了它的倒数。

分数除法算式变成了分数乘法算式。

师小结:你们观察得真仔细,将分数除法转化为分数乘法来做,今后到中学里学习还可用到“转化”这一重要思想把未知的转化成已知,去探索知识,为人类服务。

练习:用复合投影片打出:

将下列除法算式转化为乘法算式(学生边回答边出示下排转化的式子)

—÷— —÷— —÷612÷—

=—×—=—×4 =—×—=12×—

[评析:抓住时机,练重点难点,强化新知。]

6、讨论、比较、类推,概括方法。

问:在刚才的练习中,你认为有什么规律?

(生答:被除数不变,除号变成了乘号,同时除数变成了它的倒数。)

师问:如果这些被除数作为甲数,除数作为乙数,你能用一句话概括一下它的规律吗?

生答师板书:甲数除以乙数,等于甲数乘以乙数的倒数。这就是分数除法的计算法则。(看书第38页)

引导学生讨论:为什么乙数要加上零除外?

(四)利用法则,练习重点,巩固新知。

1、—÷3=—×———=12÷—=12×———=

—÷—=—×———=—÷—=———()———

2、计算。(并指名板书,注意书写格式)

—÷3—÷——÷36÷—

3÷——÷——÷— —÷—

3、改错。

(1)9÷—=9÷—=—=10—(2)—÷5=—×—=—

(3)—÷—=—×—=—

4、判断。

(1)1÷—=—÷1(2)a÷b=a×—

[评析:改错题、判断题的设计,进一步强化了计算法则。]

(五)作业练习,熟记法则。

1、练习八第3题的前4题

第6题的前4题

2、校对答案。(说出过程,强化法则的应用)

思考题:计算(1)4—÷2—(2)—÷0.7

[评析:这里是知识结构的完整,知识点的引伸。]

(六)总结。

1、今天我们一起研究了什么内容?

2、你有哪些收获?

3、计算过程中应注意什么问题?

四、教后评析

本节课教者利用旧知识的学习作铺垫,运用知识的迁移规律,对分数除法法则进行整体教学,利用观察、比较、类推等方法缩短了教学课时数,打破了原教材的束缚,学生的学习积极性高,发展了学生的智力,受到良好的教学效果。

1、恰当地调整了教材,进行知识的组块教学,挖掘了教材(知识)本身的潜在因素,利用旧知,通过师生的对话、教师的点拔,为学生主动探索、自己发现方法概括法则创造条件,有利于学生掌握、研究教学问题的思维方法,打破了一例一题传统的教学模式,体现了现代小学数学教育的特点。

2、抓住知识间的内在联系,在知识连接点衔接处精心设计习题、提问,让学生主动探索问题。

3、重视学生素质的培养,注重面向全体学生、全员参与,注重发展学生的思维,培养能力和方法指导,从铺垫(全员练习)→新课(转化除数、变除为乘、试做、比较、类推、概括法则)→巩固新知(填空、计算、改错、判断)→作业练习→思考题引伸拓展→总结整个过程,充分体现了“以教师为主导、学生为主体、训练为主线”的教学原则。

分数除法教案 篇37

教学目标

1.使学生在掌握稍复杂的求一个数的几分之几是多少的分数应用题的基础上,利用其数量关系列方程解答稍复杂的已知一个数的几分之几是多少,求这个数的应用题。

2.在分析解答的过程中拓宽学生的思维空间,培养学生分析问题的能力。

教学重点和难点

确定单位1,理清题中的数量关系。利用题中的等量关系用方程解答。

教学过程

(一)复习准备

1.找出单位1。

2.出示第88页的复习题。

(1)画图分析并列式解答。

(2)说说你是怎样思考和解答的?

(3)学生分析教师板演线段图。

3.导入:

今天我们继续学习分数应用题。

(二)学习新课

现在老师把这道题改动一下。

1.出示例6。

千克?

2.分析解答。

(1)读题,找出已知条件和问题。

(2)提问:这两道题有没有相同的条件?(有,都已知吃了这袋大米的

不同的地方在哪儿?(前者已知一袋大米的重量,求还剩的重量,后者已知还剩的重量,求这袋米的重量。)

(3)我们把这道题也用线段图表示出来,应从哪个条件入手找单位

(4)谁来分析这个条件?

成8份,吃了的占其中的5份。)

学生分析的.同时教师板演线段图:

(5)上道题是已知单位1的重量,求还剩的重量,这道题呢?谁能把条件和问题标在图上?

生在黑板上画出:

(6)对比两道题的线段图说一说是怎样变化的。(条件和问题互相转化了。)

(7)无论谁为条件,谁为问题,题中所涉及的数量关系变了吗?(没变)

(8)说一说上题在解答的过程中涉及到哪些数量关系?(总重量-它

(9)现在买来大米的重量是未知的,根据这个等量关系可以用什么方法解答?(列方程)

(10)试着在练习本上列方程解答。

(11)谁能说说你是怎样解答的?

生口述:

解 设买来大米x千克。

答:买来大米40千克。

题中的等量关系式是什么?

(买来的重量还剩几分之几=还剩的重量。)

3.小结。

通过刚才的分析解答,你认为这两道题实际上什么相同。(数量关系相同。)

解答方法相同吗?为什么?

(解答方法不同。单位1已知,可根据数量关系用算术方法解答;单位1未知,可用x代替,运用数量关系式列方程解答。)

4.出示例7。

烧煤多少吨?

(1)读题,找出已知条件和所求问题。

(3)画图分析解答。

①从这个条件可以看出题中是几个数量相比?(两个数量相比。)

追问:哪两个?(四月份实际烧煤量和四月份计划烧煤量。)

我们应把哪个数量看作单位1?为什么?(把原计划烧煤量看作单位1。因为和它相比,以它为标准,所以把它看作单位1。)

②画图时我们要用两条线段表示两个数量,先画谁呢?(先画原计划烧煤吨数。)

下一步画什么?(实际烧煤吨数。)

指名回答:把计划烧煤量看作单位1,平均分成9份,实际比计划节约的烧煤量相当于这样的1份,即节约的烧煤量占计划烧煤量的

这两条线段谁为已知?谁为未知?

在提问回答的过程中教师板演线段图:

③指图提问:计划烧煤量与实际烧煤量之间有什么样的等量关系?

(计划烧煤吨数-节约吨数=实际烧煤吨数。)

计划烧煤吨数未知怎么办?(设计划烧煤吨数为x,用方程解答。)

④试做在练习本上。

⑤反馈:说说你的解答方法及依据。

解 设四月份原计划烧煤x吨。

答:四月份原计划烧煤135吨。

(1)学生独立画图分析并列式解答。

(2)反馈提问:

②你用什么方法解答的?依据的等量关系式是什么?

(三)课堂总结

今天我们学习的例6、例7与前边学过的分数应用题相比有什么相同点?有什么不同点?

(数量间的等量关系相同,解答方法不同。)

(四)巩固反馈

(1)课本第91页的第2题。

(2)根据列式补充条件:

(五)布置作业

课本第91页第1,3题。

课堂教学设计说明

本节课的内容是在学习了已知一个数的几分之几是多少,求这个数的分数应用题的基础上,根据稍复杂的求一个数的几分之几是多少的分数应用题的数量关系,使学生掌握解题思路,学会用方程解答。

由于新旧知识联系很密,因此本节课在教案设计上抓住了数量关系相同,通过复习题的分析解答,让学生找出熟悉的数量关系,再把题进行改动变化。在画图分析的过程中抓住数量关系相同,只是已知和问题发生了转化,引导学生利用数量间的等量关系用方程解答。

在边画图、边分析的过程中,沟通了知识间的联系,便于学生理解和思维,促进了学生分析思维能力的发展和综合运用知识灵活解决实际问题的能力。

分数除法教案 篇38

教学目的:使学生会计算带分数除法和已知一个数的几分之几倍是多少求这个数的文字题。

教学过程

一、复习

1.口算下列各题。

2.把下列假分数改写成带分数。

3.把下列带分数改写成假分数。

让学生独立完成。巡视时注意学生发生错误的情况,加强个别辅导。做完后集体订正。

二、新课

1.教学例5。

教师出示例5:

教师:我们学过的分数乘法中有带分数的应该怎么办?(先把带分数化成假分数,然后再乘。)

教师:那么在分数除法中有带分数的,应该怎样计算?(也要先把带分数化成假分数,再进行计算。)

教师让学生把例5中的带分数化成假分数,再独立计算,巡视时。注意学生将除法转化成乘法的同时是否将除数改写成它本身的倒数,约分是否有错等。做完后集体订正。

2.做教科书第39页中间做一做的题目。

让学生独立完成。做完后集体订正。

3.教学例6。

(1)准备题。

①的3倍是多少?②的是多少?③的是多少?

教师:这三道题按照题意应该用什么方法计算?(按照分数乘法的意义,用乘法计算。)

教师让学生计算后集体订正。

(2)教学6。

教师出示例6:

教师指名说题目的条件和问题。

教师:如果例6中的一个数已知的,那么求一个数的几倍应该怎样计算?(应该用乘法计算。)

教师:从上节课学习过的内容来看,例6怎样解答比较方便?(用方程解答比较方便。)

教师:应该设什么数为未知数x?(设这个数为未知数x。)

让学生列方程解答。巡视时,注意学生设未知数、书写是否规范,发现问题及时纠正,做完后集体订正。

4.做教科书39页下面做一做题目。

让学生独立完成。巡视时,注意学生设未知数和书写规范方面的问题。做完后集体订正。

三、巩固练习

1.做练习十第1题第1行的小题。

让学生装独立完成。做完后集体订正。

2.做练习十第2题的前2个小题。

让学生装独立完成,做完后集体订正。

3.做练习十第3题的第(1)~(3)题。

第(1)题:教师先让学生读题,弄清题目的条件和问题以及它们之间的关系,然后再列方程解答。做完后集体订正。

第(2)、(3)题:让学生装独立完成。订正时,让学生装说一说是根据什么列方程式的?(根据乘法的意义。)

4.做练习十的第5题。

教师先让学生读题和分析数量关系,再列方程解答。做完后集体订正。

四、作业

练习十第1题第2行的小题,第2题的最后一个小题,第3题的第(4)题,第4题。

分数除法教案 篇39

教学内容:人教版小学数学第十一册p37。“已知一个数的几分之几是多少,求这个数”类型的应用题。

教学目标:

1、使学生理解“已知一个数的几分之几是多少,求这个数”类型的应用题的数量关系,能用方程解答。

2、培养学生的分析、比较、迁移等能力。

3、建构知识间的联系,渗透“事物间是相互联系的”这一辩证思想。

教学重难点:

1、理解数量关系,掌握分析方法。

2、正确分析数量关系并解答。

教学过程:

一、复习准备。

1、下面这些句子中,哪两个量进行比较,谁为单位“1”?

⑴一桶水用去3/4。 ⑵书的价钱是钢笔价钱的1/3。

师:第一题是部分与总数的比,总数为单位“1”。第二题是一个量同另一个量比。和谁比?谁为单位“1”。

[点评: 通过对比练习, 帮助学生理解“两个数量的比较”有两种情况: 一是部分与整体之间的关系; 二是两个相对独立的数量之间的关系。 ]

2、出示准备题。说出关系式,再列式计算。

爸爸体重75kg,小明的体重是爸爸的7/15。

⑴小明的体重是多少千克?

爸爸的体重×7/15=小明的体重 75×7/15=35(kg)

⑵小明体内水分的质量占小明体重的4/5,小明体内有多少千克水分?

小明的体重×4/5=小明体内水分的质量 35×4/5=28(kg)

二、探究新知。

1、激趣引入。

师:我们对自己的身体应该是再熟悉不过了, 我们的身体内有很多科学知识藏在里面呢,你们知道自己体内水分的含量吗?

[点评: 通过创设情境, 调动学生积极参与的'情感, 让学生在轻松愉快的数学活动中提高分析能力。 ]

2、出示:

根据测定,成人体内的水分约占体重的2/3,儿童体内的水分约占体重的4/5,照这样计算,小明体内有28kg的水分,和爸爸体内的水分差不多重了。可是小明的体重才是爸爸的7/15。

[点评: 设计有多余条件的问题, 让学生有目的地筛选, 使学生进一步理解应用题的结构和解题方法, 训练了学生整理信息、解决问题的能力。 ]

问题一:小明的体重是多少千克?

出示思考问题,学生先分小组进行讨论。

①小明的体重与什么数量有关系?有什么关系?

②应该把哪个量看做单位“1”, 为什么?

③单位“1”所表示的数已知吗?

④怎样求单位“1”所表示的这个数?你能列出关系式吗?讨论后汇报。

方法一:

分数除法教案 篇40

一、复习

1、同学们,你能口算95930÷362等于多少吗?为什么?(学生回答数据太大,不好口算)

如果已知265×362=95930,你能说出答案吗?为什么?

(引导学生说出整数除法的意义:已知两个因数的积和其中一个因数,求另一个因数的运算)

二、教学分数除法的意义

1、2/7 ×( )=1,括号内填几分之几?为什么?

2、根据这道乘法算式,你能说两道除法算式吗?根据是什么?

(引导说出分数除法的意义)

3、完成p25做一做

三、分数除以整数的计算法则

1、这节课我们学习分数除法

2、同学们已经了解分数除法的意义,你还想学习关于分数除法的什么知识?

3、事实上,有一些分数除法同学们是会计算的。下面口算几题:

3/8÷3/8 0÷4/9 1÷2/5 3/4÷1

你是根据什么知识口算这几道题的?

4、上面这四道题是一些特殊的分数除法,我们继续学习其他的分数除法。

出示例题:一张纸的 平均分成3份,每份是这张纸的几分之几?(图略)

怎样列式? 你能根据图说出算式的结果吗?怎样证明这个结果是正确的呢?(引导学生从多个角度证明结果的正确性 )

根据学生的回答板书:

3/4÷3 = 3÷34 = 1/4

你能归纳这种分数除以整数的计算方法吗?

5、用这种方法口算:

3/4÷3 4/9÷4 10/9÷5 6/7÷2

6、质疑

你认为这种计算方法适用于所有的分数除以整数吗?能举例说明吗?

7、小组讨论,自主学习分数除以整数

用学生所举的例子作为教学例题(例如 1/5÷3),在数学学习过程中,我们经常遇到新问题,这时需要考虑如何将新问题转化为已学过的旧知。现在看一看,我们已经掌握了哪些分数除法的知识:

(1)分数除以整数,用分子除以整数的`商作分子,分母不变。

(2) 1除以一个分数,结果是该分数的倒数。

(3)一个分数除以1,结果是原分数。

你能将1/5 ÷3转化成已经掌握的分数除法吗?小组讨论并将讨论结果记录下来。

8、小组汇报

(1)1/5 ÷3=3/15 ÷3=1/15

(2)1/5 ÷3=(1/5 ×5)÷(3×5)=1÷15=

(3)1/5 ÷3=(1/5 ×1/3 )÷(3×1/3 )= 1/5×1/3 ÷1=1/15

(4) ……

你能归纳自己小组讨论的分数除以整数的计算方法吗?

(1)先将分子和分母同时扩大相同的倍数,使除数能整除分子,再用前面的方法计算。

(2)利用商不变性质,将分数除以整数转化成1除以一个数,再计算。

(3)利用商不变性质,将分数除以整数转化成一个分数除以1,再计算。

(4)……

9、观察第三种方法:

1/5 ÷3=(1/5 ×1/3 )÷(3×1/3 )= 1/5×1/3 ÷1=1/15

这个计算过程还可以更简洁些,你能看出来吗?

化简得: 1/5 ÷3=( 1/5×1/3 )÷(3×1/3 )= 1/5×1/3 =1/15

观察 1/5÷3== 1/5×1/3 ,你能说一说吗?

(引导学生说出分数除以整数,等于分数乘整数的倒数)

10、计算方法的优化

刚才小组讨论时,每组用一种方法计算了 1/5÷3,现在你能用其他的方法计算一下吗?

学生计算后提问:你喜欢那种方法?为什么?

总结分数除以整数的计算法则:

分数除以整数(零除外),等于分数乘整数的倒数。

11、对其他的方法,你又有什么要说的吗?

(引导说出当分子能被整数整除时,可以直接用分子除以整数的商作分子,分母不变的方法。培养学生从不同角度观察、分析问题)

四、课堂练习

1、计算下列各题

2/3÷3 2/11÷2 3/8÷6 5/4÷2

2、练习七第1题

3、讨论题

1/3÷a和 1/a÷3(a≠0),那道题的结果大?为什么?

分数除法教案 篇41

一、复习

1、口算分数乘法

前一段时间,我们已经学习了分数乘法,那么,谁能告诉老师分数乘法怎样计算的?说得真好。下面,我们就一起来口算几道题:

(出示)4/71/3 203/4 3/816 2/33/2

2、(复习倒数)其中当计算完2/33/2时提问:

看到这个答案,你想说什么?(乘积是1的两个数互为什么数(互为倒数))

说得不错,下面就请同学们说说下面各数的倒数分别是什么?

(出示) 3/8 4 1 2/9

3、把100千克的一桶油平均分成2分,每份是100千克的'( )/( ),求100千克的1/2,列式为___。

把24千克的一袋面粉平均分成3份,每份是24千克的 ( )/( ),求24千克的1/3,列式为:_____。

同学们学得真不错,今天,潘老师就要带着大家用这些我们已经掌握的知识去学习新知识,解决新问题。

二、新授

(一)教学例1

1、教学第一种算法

例1:量杯里有4/5升果汁,平均分给2个小朋友喝,每人可以喝多少升?

读题

提问:怎样列式?(4/52)

怎样计算呢?

(1)4/5表示什么意思?(是把1升平均分成5份,取其中的4份),(边说边出示图)

从图中你能看出每份是多少米?(板书:2/5升)

那么2/5升是怎样算出的呢?

4个1/5平均分成2份,可以用4/5的分子除以2,而分母不变,就得到结果是2/5。(板书算式)

(2)补充例证

如果现在把4/5升果汁,平均分给4个小朋友喝,每人可以喝多少升?

怎样列式?(板书)。现在是把几个1/5平均分4份,每份是多少?这里的1是怎样得来的?分母怎样?

(3)观察比较

提问:(1)这两道除法算式都是什么数除以什么数?(分数除以整数 板书课题)

(4)通过刚才这两道题的计算,你们有没有发现,分数除以整数可以怎样计算?(边说边指示)。

2、教学第二种算法

(1)还有别的计算方法吗?(把4/5平均分成2份,求每份是多少?也就是求4/5的1/2是多少?可以用乘法来计算。)(板书)

(2)问:从这个算式可以看出,一个分数除以整数还可以怎样计算

通过这两种交流,使学生知道分数除以整数的方法是多样的,又能初步理解分数除以整数可以转化为分数乘以这个整数的倒数的思路。

(3)让学生做试一试的题(自主选择计算方法)

计算好了以后,再请学生说说你的思路是怎么样的

使学生进一步明确,分数除以整数,可以转化为分数乘这个数的倒数。

(4)你能用简炼的语言概括一下这种方法吗?

教师板书:分数除以整数,等于分数除以整数的倒数

(5)你认为这个计算方法有什么重要的地方需要提醒大家。

教师用红笔标注。

三、巩固练习

老师也为同学们准备了一套星级赛题,你们有信心挑战吗?

一星题:

1、课本56页的练一练第1题

做此题的目的使学生明确当遇到分子能整除时比较简便。

可以选用这样的方法。

二星题:

2、这里还有6道题,哪些同学愿意到前面来解答的?

练一练第2、3题

让学生能根据题目灵活选择计算方法

做好以后进行集体讲解和订正

三星题:

3、老师这里还有一组辨析题,请你们看看这几道题正确吗?错在哪里?你能帮助改正过来吗?

8/94=8/91/4=2/9 2/73=2/73=6/7

8/94=8/91/4=2/9 3/73=3/71/3=1/7

师:因此,我们同学在计算时,首先要看清题目,选择正确的计算方法,计算要细心。

四星题:

4、练习十一第2题

本题的题目关键要让学生进行比较,分数乘法和除法的区别。

五星题:

1、如果a是一个不等于0的自然数,13 a等于多少

问:你能用具体的数来检验这个结果吗?

2、( )/( )3=5/18 7/( )=( )/24

四、小结

本课我们学习了什么内容?

分数除法教案 篇42

教学目标

1.使学生理解两个整数相除的商可以用分数来表示.

2.明确分数与除法的关系,加深学生对分数意义的理解.

教学重点

理解、归纳分数与除法的关系.

教学难点

用除法的意义理解分数的意义.

教学步骤

一、铺垫孕伏.

1.读题说得数.

3。2+1。68 0。8×0。5 14-7。4 0。3÷1。5 4。8×0。02

7。8+0。9 1。53-0。7 0。35÷15 0。4×0。8 0。8-0。37

2.口述 表示的意义.

3.列式计算.

(1)把40棵树苗平均分给5个小组栽,每组栽多少棵?

(2)把8米长的钢管平均分成2段,每段长多少米?

二、探究新知.

1.新课导入.

出示例2:把1米长的钢管平均截成3段,每段长多少米?

板书: 1÷3

教师提问:1÷3的结果能用准确的数表示出来吗?怎么办?学习了分数与除法的关系就明白了.(板书、分数与除法)

2.教学例2.

(1)从分数的意义上理解1÷3,即把1米长的钢管着成单位“1”,把单位“1”平均分成3份,表示这样一份的数,可用分数 来表示,1米的 就是 米.(板书 米)

(2)学生完整叙述自己想的过程.

(3)反馈练习.

①把1米长的钢管,平均分成8段,每段长多少?

②把1块饼平均分给5个同学,每个同学得到多少块?

3.教学例3.

出示例3:把3块饼平均分给4个孩子,每个孩子分得多少块?

(1)读题列式: 3÷4

(2)动手操作:怎样把3块饼平均分给4个同学呢?

(3)学生交流.

甲生:先把每个圆剪成4个 块,然后把12个 平均分成4份,再把3个 拼在一起,每份是 块.

乙生:把3个圆放在一起,平均分成4份后,剪下其中的一份,再把1份中的3个 拼在一起,得到每个分 块.(在3÷4后板书 块)

(4)看图根据乙生分饼的过程说出 表示的意义.

①乙生把3块饼平均分成了4份,这样的一份是3块饼的 ,即

②甲生把1块饼平均分成了4份,表示这样的3份的数是 .

(5)都是 ,意义有何不同?(结合算式说出 的两种意义)

明确: 表示把3平均分成4份,取其中的1份;

还表示把单位“1”平均分成4份,取这样的3份.

(6)反馈练习:说说下面分数的两种意义

4.归纳分数与除法的关系.

(1)教师提问:怎样用分数来表示整数除法的商呢?

学生归纳:可以用分数表示整数除法的商,用除数做分母,用被除数作分子.也就是说分数既表示分数的意义,又表示整数除法的商.

(板书: )

教师明确:分数是一种数,除法是一种运算,所以确切地说,分数的分子相当于除法的.被除数,分数的分母相当于除法的除数.

(2)讨论:用字母表示分数与除法的关系有什么要求?

(3)反馈练习.

三、全课小结.

通过今天的学习,你明白了什么?

四、随堂练习.

1.填空.

分数可以用来表示除法算式的( ).其中分数的分子相当于( ),分母相当于( ).

2.用分数表示下列各式的商.

4÷5 11÷13 27÷35

9÷9 13÷16 33÷29

3.列式计算.

(1)把5米长的绳子,平均分成12段,每段长多少米?

(2)把一个4平方米的圆形花坛分成大小相同的5块,每一块是多少平方米?

(用分数表示)

(3)小明用15分钟走了1千米路,平均每分走几分之几千米?

五、布置作业.

用分数表示下面各式的商.

3÷4 7÷12 16÷49 25÷24 9÷9

分数除法教案 篇43

教学目标

1.使学生掌握列方程解答“已知一个数的几分之几是多少,求这个数”的应用题的解答方法

2.培养学生分析问题、解答问题能力,以及认真审题的良好习惯.

教学重点

找准单位“1”,找出等量关系.

教学难点

能正确的分析数量关系并列方程解答应用题.

教学过程

一、复习、引新

(一)确定单位“1”

1.铅笔的支数是钢笔的 倍. 2.杨树的棵数是柳树的 .

3.白兔只数的 是黑兔. 4.红花朵数的 相当于黄花.

(二)小营村全村有耕地75公顷,其中棉田占 .小营村的棉田有多少公顷?

1.找出题目中的已知条件和未知条件.

2.分析题意并列式解答.

二、讲授新课

(一)将复习题改成例1

例1.小营村有棉田45公顷,占全村耕地面积的 ,全村的耕地面积是多少公顷?

1.找出已知条件和问题

2.抓住哪句话来分析?

3.引导学生用线段图来表示题目中的数量关系.

4.比较复习题与例1的`相同点与不同点.

5.教师提问:

(1)棉田面积占全村耕地面积的 ,谁是单位“1”?

(2)如果要求全村耕地面积的 是多少,应该怎样列式?(全村耕地面积× ).

(3)全村耕地面积的 就是谁的面积?(就是棉田的面积)

解:设全村耕地面积是 公顷.

答:全村耕地面积是75公顷.

6.教师提问:应怎样进行检验?你还能用别的方法来解答吗?

(1)把 代入原方程,左边 ,右边是45,左边=右边,所以 是原方程的解.)

(公顷)

(根据棉田面积和 是已知的,全村耕地面积是未知的,根据分数除法意义,已知两个因数的积与其中一个因数,求另一个因数应该用除法计算.)

(二)练习

果园里有桃树560棵,占果树总数的 .果园里一共有果树多少棵?

1.找出已知条件和问题

2.画图并分析数量关系

3.列式解答

解1:设一共有果树 棵.

答:一共有果树640棵.

解1: (棵)

(三)教学例2

例2.一条裤子75元,是一件上衣价格的 .一件上衣多少钱?

1.教师提问

(1)题中的已知条件和问题有什么?

(2)有几个量相比较,应把哪个数量作为单位“1”?

2.引导学生说出线段图应怎样画?上衣价格的

3.分析:上衣价格的 就是谁的价钱?(是裤子的价钱)谁能找出数量间相等的关系?(上衣的单价× =裤子的单价)

4.让学生独立用列方程的方法解答,并加强个别辅导.

解:设一件上衣 元.

答:一件上衣 元.

5.怎样直接用算术方法求出上衣的单价?

6.比较一下算术解法和方程解法的相同之处与不同之处.

相同点:都要根据数量间相等的关系式来列式.

不同点:算术解法是按照分数除法的意义直接列出除法算式;而方程解法则要先设未知数,再按照等量关系式列出方程.

三、巩固练习

(一)一个修路队修一条路,第一天修了全长 ,正好是160米,这条路全长是多少米?

提问:谁是单位“1”?数量间相等的关系式是什么?怎样列式?

(二)幼儿园买来 千克水果糖,是买来的牛奶糖的 ,买来牛奶糖多少千克?

(三)新风小学去年植树320棵,相当于今年植树棵数的 .今年、去年共植树多少棵?

1.课件演示:分数除法应用题

2.列式解答

四、课堂小结

这节课我们学习了列方程解答分数除法应用题的方法.这类题有什么特点?解题时分几步?

五、课后作业

(一)一桶水,用去它的 ,正好是15千克.这桶水重多少千克?

(二)王新买了一本书和一枝钢笔.书的价格是4元,正好是钢笔价格的 .钢笔价格是多少元?

(三)一种小汽车的最快速度是每小时行140千米,相当于一种超音速飞机速度的 .这种超音速飞机每小时飞行多少千米?

分数除法教案 篇44

教学目标

1.使学生理解分数除法的意义与整数除法的意义相同,就是已知两个因数的积与其中一个因数,求另一个因数的运算.

2.掌握分数除以整数的计算法则,并能正确的进行计算.

3.培养学生分析能力、知识的迁移能力和语言表达能力.

教学重点

正确归纳出分数除以整数的计算法则,并能正确的进行计算.

教学难点

正确归纳出分数除以整数的计算法则,并能正确的进行计算.

教学过程

一、复习引新

(一)说出下面各数的倒数.

0。3 6

(二)已知126×45=5670,直接说出5670÷45和5670÷126的得数,再说说你是怎样想的,根据是什么.(学生回答后教师总结:根据整数除法的意义,不用计算就能知道这两题的结果,谁还记得整数除法的意义是什么?已知两个因数的积与其中一个因数,求另一个因数的运算.)

(三)引新:同学们想不想知道分数除法的意义吗?分数除法如何计算呢?这节课我们就一起来学习分数除法.(板书课题:)

二、新授教学

(一).教学分数除法的意义(演示课件:分数除法的意义)

1.每人吃半块月饼,4个人一共吃多少块月饼?

教师提问:半块月饼用分数怎么表示?求4个人一共吃多少块月饼就是求几个 ?求4个 是多少怎样列算式?( )

2.两块月饼,平均分给4人,每人分得多少块?怎样列式?

列式:2÷4

3.两块月饼,分给每人半块,可以分给几个人?

列式:

教师提问:说一说结果是多少?你是如何得出结果的?

4.组织学生讨论:分数除法的意义.

总结:分数除法的.意义与整数除法的意义相同,都是已知两个因数的积与其中一个因数,求另一个因数的运算.

5.练习反馈.

根据: ,写出 ,

(二)教学分数除以整数的计算法则

1.出示例1.把 米铁丝平均分成2段,每段长多少米(演示课件:分数除以整数)

(1)求每段长多少米怎样列算式?

(2)以小组为单位讨论一下得多少呢?

米平均分成2段就是要把6个 米平均分成2份,每份是3个 米是 米.

(3)教师板书整理.

(米)

2.教师质疑:如果把 米铁丝平均分成3段、6段怎样计算?

也可以这样想:把 米铁丝平均分成3段,就是求 米的 是多少,列式是:

把 米铁丝平均分成6段,就是求 米的 是多少,列式是:

3.教师继续质疑:如果把 米铁丝平均分成4段每段长多少米?怎样计算?

(米)

为什么采用转化成分数乘法这种方法比较好呢?

组织学生观察 在转变中,什么变了,什么没变?讨论分数除以整数的计算法则.

4.学生边概括教师边板书:分数除以整数(0除外)等于分数乘以这个整数的倒数.

三、巩固练习

(一)计算下面各题.

学生独立完成,教师巡视,进行个别辅导.

(二)求未知数

1. 2.

(三)判断.

1.分数除法的意义与整数除法的意义相同.( )

2.已知两个分数的积与其中一个分数,求另一个分数,用除法解答.( )

3. ( )

4. ( )

5. ( )

(四)解答下面各题.

1.把 平均分成4份,每份是多少?

2.什么数乘以6等于 ?

3.一个正方形的周长是 米,它的边长是多少米?

四、课堂总结

这节课我们学习了哪些知识?分数除法的意义是什么?分数除以整数的计算法则是什么?还有什么问题?

五、课后作业

(一)计算下面各题.

(二)解下列方程.

六、板书设计

分数除法

分数除法教案 篇45

教学目标

1.使学生掌握列方程解答已知一个数的几分之几是多少,求这个数的应用题的解答方法

2.培养学生分析问题、解答问题能力,以及认真审题的良好习惯.

教学重点

找准单位1,找出等量关系.

教学难点

能正确的分析数量关系并列方程解答应用题.

教学过程

一、复习、引新

(一)确定单位1

1.铅笔的支数是钢笔的 倍.

2.杨树的棵数是柳树的 .

3.白兔只数的 是黑兔.

4.红花朵数的 相当于黄花.

(二)小营村全村有耕地75公顷,其中棉田占 .小营村的棉田有多少公顷?

1.找出题目中的已知条件和未知条件.

2.分析题意并列式解答.

二、讲授新课

(一)将复习题改成例1

例1.小营村有棉田45公顷,占全村耕地面积的' ,全村的耕地面积是多少公顷?

1.找出已知条件和问题

2.抓住哪句话来分析?

3.引导学生用线段图来表示题目中的数量关系.

4.比较复习题与例1的相同点与不同点.

5.教师提问:

(1)棉田面积占全村耕地面积的 ,谁是单位1?

(2)如果要求全村耕地面积的 是多少,应该怎样列式?(全村耕地面积 ).

(3)全村耕地面积的 就是谁的面积?(就是棉田的面积)

解:设全村耕地面积是 公顷.

答:全村耕地面积是75公顷.

6.教师提问:应怎样进行检验?你还能用别的方法来解答吗?

(1)把 代入原方程,左边 ,右边是45,左边=右边,所以 是原方程的解.)

(公顷)

(根据棉田面积和 是已知的,全村耕地面积是未知的,根据分数除法意义,已知两个因数的积与其中一个因数,求另一个因数应该用除法计算.)

分数除法教案 篇46

教学目标:

使学生理解一个数除以分数的算理,掌握一个数除以分数的计算法则,能够正确地进行计算。

教学重点:

掌握分数除法的计算法则。

教学过程:

一、复习

说出下列分数的倒数。

二、新课

1、教学例3

提问:按照题意应该怎样列式?(生说师板书)

想一想:分数除以分数应该怎样计算?(学生回答计算步骤,教师板书)÷=×==3

教师:分数除以分数的计算方法跟整数除以分数有什么联系?

让学生总结:(整数除以分数,被除数不变,把除法转化成乘法,也就是转化成乘原分数的倒数。分数除以分数,也是被除数不变,把除以分数转化成乘除数的倒数。)也就是:(教师板书)一个数除以分数,等于这个数乘以除数的倒数。

学生看书P29读法则。

教学分数除法的统一法则。

做完后让学生进行对比,三道题的计算过程有什么相同点?(第一题是乘整数的倒数,第2、3题是乘分数的倒数。)

教师提问:整数能否看成分数?(可以看成分母是1的分数)

教师:前面学过的分数除以整数和一个数除以分数的计算法则,能否统一成一个法则呢?(可以,这就是:甲数除以乙数(0除外),等于甲数乘乙数的倒数。教师板书)

学生看书P30并读统一的法则。

三、巩固练习

1、做P30例4前面的`做一做题目。学生独立完成,然后集体订正,订正时让学生说一说法则。

2、做练习八第5题第1行的小题。第6题的前两栏的题目。

3、做第7题。注意引导学生列式,(这是求一个数是另一个数的几倍或几分之几的文字题。用除法计算。)

4、做练习八的第8题。

学生做后教师让学生说一说想法。

5、做练习八第9题。

做题前提问:1米等于多少厘米?1千米等于多少米?1 吨等于多少千克?1小时等于多少分?然后让学生独立做题,做完后集体订正。做练习八第10题。教师让学生独立审题,然后提问:这题求什么?分析以后,让学生独立完成,集体订正。

四、小结

教师先问学生今天学习了什么?然后指出:分数除法法则是除法普遍适用的法则。

五、作业

练习八第5题第2行的小题,第6题的第3、4栏小题。

分数除法教案 篇47

教学目标:

4、学习运用线段图帮助分析数量关系。

5、加强列方程的思维训练。

6、培养学生分析问题解决问题的能力。

教学过程:备注

活动一:复习与准备

1、根据题意列出方程。

(1)、六年一班有15人参加了合唱队,占全班人数的1/3,六年一班有多少人?

(2)、美术小组的人数比航模小组多1/4。美术小组的人数比航模小组多5人。航模小组有多少人?

活动二:出示例2

一、

1、审题。

2、看例题的插图,理解题目的意思,说说知道了什么,要求什么

3、分析题意,说说你对美术小组的.人数比航模组多1/4这一条件的理解。

4、理解数量关系

二、

1、分析、解答

2、说说数量关系。

3、学生根据得到的数量关系列方程解答。

4、交流各自的解法。

小结:关键是搞清哪两个量比较,谁多谁少,多或少了谁的几分之几。

活动三:

巩固联系:

1、41页7、8题

2、41页10题

板书设计