高一数学教案
文学网整理的高一数学教案(精选48篇),供大家参考,希望能给您提供帮助。
高一数学教案 篇1
教学目的:
(1)使学生初步理解集合的概念,知道常用数集的概念及记法
(2)使学生初步了解“属于”关系的意义
(3)使学生初步了解有限集、无限集、空集的意义
教学重点:
集合的基本概念及表示方法
教学难点:
运用集合的两种常用表示方法——列举法与描述法,正确表示
一些简单的集合
授课类型:
新授课
课时安排:
1课时
教具:
多媒体、实物投影仪
内容分析:
1.集合是中学数学的一个重要的基本概念在小学数学中,就渗透了集合的初步概念,到了初中,更进一步应用集合的语言表述一些问题例如,在代数中用到的有数集、解集等;在几何中用到的有点集至于逻辑,可以说,从开始学习数学就离不开对逻辑知识的掌握和运用,基本的逻辑知识在日常生活、学习、工作中,也是认识问题、研究问题不可缺少的工具这些可以帮助学生认识学习本章的意义,也是本章学习的基础
把集合的初步知识与简易逻辑知识安排在高中数学的最开始,是因为在高中数学中,这些知识与其他内容有着密切联系,它们是学习、掌握和使用数学语言的基础例如,下一章讲函数的概念与性质,就离不开集合与逻辑
本节首先从初中代数与几何涉及的集合实例入手,引出集合与集合的元素的概念,并且结合实例对集合的概念作了说明然后,介绍了集合的常用表示方法,包括列举法、描述法,还给出了画图表示集合的例子
这节课主要学习全章的引言和集合的基本概念学习引言是引发学生的学习兴趣,使学生认识学习本章的意义本节课的教学重点是集合的基本概念
集合是集合论中的原始的、不定义的概念在开始接触集合的概念时,主要还是通过实例,对概念有一个初步认识教科书给出的“一般地,某些指定的对象集在一起就成为一个集合,也简称集”这句话,只是对集合概念的描述性说明
教学过程:
一、复习引入:
1.简介数集的发展,复习公约数和最小公倍数,质数与和数;
2.教材中的章头引言;
3.集合论的创始人——康托尔(德国数学家)(见附录);
4.“物以类聚”,“人以群分”;
5.教材中例子(P4)
二、讲解新课:
阅读教材第一部分,问题如下:
(1)有那些概念?是如何定义的?
(2)有那些符号?是如何表示的?
(3)集合中元素的特性是什么?
(一)集合的有关概念:
由一些数、一些点、一些图形、一些整式、一些物体、一些人组成的我们说,每一组对象的全体形成一个集合,或者说,某些指定的对象集在一起就成为一个集合,也简称集.集合中的每个对象叫做这个集合的元素.
定义:一般地,某些指定的对象集在一起就成为一个集合.
1、集合的概念
(1)集合:某些指定的对象集在一起就形成一个集合(简称集)
(2)元素:集合中每个对象叫做这个集合的元素
2、常用数集及记法
(1)非负整数集(自然数集):全体非负整数的集合记作N,
(2)正整数集:非负整数集内排除0的集记作Nx或N+
(3)整数集:全体整数的集合记作Z,
(4)有理数集:全体有理数的集合记作Q,
(5)实数集:全体实数的集合记作R
注:(1)自然数集与非负整数集是相同的,也就是说,自然数集包括数0
(2)非负整数集内排除0的集记作Nx或N+Q、Z、R等其它
数集内排除0的集,也是这样表示,例如,整数集内排除0
的集,表示成Zx
3、元素对于集合的隶属关系
(1)属于:如果a是集合A的元素,就说a属于A,记作a∈A
(2)不属于:如果a不是集合A的元素,就说a不属于A,记作
4、集合中元素的特性
(1)确定性:按照明确的判断标准给定一个元素或者在这个集合里,或者不在,不能模棱两可
(2)互异性:集合中的元素没有重复
(3)无序性:集合中的元素没有一定的顺序(通常用正常的顺序写出)
5、⑴集合通常用大写的拉丁字母表示,如A、B、C、P、Q……元素通常用小写的拉丁字母表示,如a、b、c、p、q……
⑵“∈”的开口方向,不能把a∈A颠倒过来写
三、练习题:
1、教材P5练习1、2
2、下列各组对象能确定一个集合吗?
(1)所有很大的实数(不确定)
(2)好心的'人(不确定)
(3)1,2,2,3,4,5.(有重复)
3、设a,b是非零实数,那么可能取的值组成集合的元素是_-2,0,2__
4、由实数x,-x,|x|,所组成的集合,最多含(A)
(A)2个元素(B)3个元素(C)4个元素(D)5个元素
5、设集合G中的元素是所有形如a+b(a∈Z,b∈Z)的数,求证:
(1)当x∈N时,x∈G;
(2)若x∈G,y∈G,则x+y∈G,而不一定属于集合G
证明(1):在a+b(a∈Z,b∈Z)中,令a=x∈N,b=0,
则x=x+0x=a+b∈G,即x∈G
证明(2):∵x∈G,y∈G,
∴x=a+b(a∈Z,b∈Z),y=c+d(c∈Z,d∈Z)
∴x+y=(a+b)+(c+d)=(a+c)+(b+d)
∵a∈Z,b∈Z,c∈Z,d∈Z
∴(a+c)∈Z,(b+d)∈Z
∴x+y=(a+c)+(b+d)∈G,
又∵=
且不一定都是整数,
∴=不一定属于集合G
四、小结:本节课学习了以下内容:
1.集合的有关概念:(集合、元素、属于、不属于)
2.集合元素的性质:确定性,互异性,无序性
3.常用数集的定义及记法
五、课后作业:
六、板书设计(略)
高中数学考试的技巧
一、整体把握、抓大放小
拿到试卷后可以先快速浏览一下所有题目,根据积累的考试经验,大致估计一下每部分应该分配的时间。对于能够很快做出来的题目,一定要拿到应得的分数。
二、确定每部分的答题时间
1、考试时占用了很多时间却一点也没有做出来的题目。对于这类题目,你以后考试时就应该尽量减少时间,或者放弃,等以后学习进阶了再尝试着做。
2、考试时花了过多的时间才做出来的题目。对于这类题目,你以后平时做题时要尽量加快速度,或者通过“反复训练”等提高反应速度,这样,你下次考试时能用较少的时间做出来。
三、碰到难题时
1、你可以先用“直觉”最快的找到解题思路;
2、如果“直觉”不管用,你可以联想以前做过的类似的题目,从而找到解题思路;
3、如果这样也不行,你可以猜测一下这道题目可能涉及到的知识点和解题技巧。
4、对于花了一定时间仍然不能做出来的题目,要勇于放弃。
四、卷面整洁、字迹清楚、注意小节
做到卷面整洁、字迹清楚,把标点、符号、解题步骤等小的地方尽量做好,不要丢掉应得的每一分。
高中数学有效的学习方法
一、课后及时回忆
如果等到把课堂内容遗忘得差不多时才复习,就几乎等于重新学习,所以课堂学习的新知识必须及时复习。
可以一个人单独回忆,也可以几个人在一起互相启发,补充回忆。一般按照教师板书的提纲和要领进行,也可以按教材纲目结构进行,从课题到重点内容,再到例题的每部分的细节,循序渐进地进行复习。在复习过程中要不失时机整理笔记,因为整理笔记也是一种有效的复习方法。
二、定期重复巩固
即使是复习过的内容仍须定期巩固,但是复习的次数应随时间的增长而逐步减小,间隔也可以逐渐拉长。可以当天巩固新知识,每周进行周小结,每月进行阶段性总结,期中、期末进行全面系统的学期复习。从内容上看,每课知识即时回顾,每单元进行知识梳理,每章节进行知识归纳总结,必须把相关知识串联在一起,形成知识网络,达到对知识和方法的整体把握。
三、科学合理安排
复习一般可以分为集中复习和分散复习。实验证明,分散复习的效果优于集中复习,特殊情况除外。分散复习,可以把需要识记的材料适当分类,并且与其他的学习或娱乐或休息交替进行,不至于单调使用某种思维方式,形成疲劳。分散复习也应结合各自认知水平,以及识记素材的特点,把握重复次数与间隔时间,并非间隔时间越长越好,而要适合自己的复习规律。
高一数学教案 篇2
教学目标:
1.进一步理解对数函数的性质,能运用对数函数的相关性质解决对数型函数的常见问题.
2.培养学生数形结合的思想,以及分析推理的能力.
教学重点:
对数函数性质的应用.
教学难点:
对数函数的性质向对数型函数的演变延伸.
教学过程:
一、问题情境
1.复习对数函数的性质.
2.回答下列问题.
(1)函数y=log2x的值域是 ;
(2)函数y=log2x(x≥1)的值域是 ;
(3)函数y=log2x(0
3.情境问题.
函数y=log2(x2+2x+2)的定义域和值域分别如何求呢?
二、学生活动
探究完成情境问题.
三、数学运用
例1 求函数y=log2(x2+2x+2)的定义域和值域.
练习:
(1)已知函数y=log2x的值域是[-2,3],则x的范围是________________.
(2)函数 ,x(0,8]的值域是 .
(3)函数y=log (x2-6x+17)的值域 .
(4)函数 的值域是_______________.
例2 判断下列函数的奇偶性:
(1)f (x)=lg (2)f (x)=ln( -x)
例3 已知loga 0.75>1,试求实数a 取值范围.
例4 已知函数y=loga(1-ax)(a>0,a≠1).
(1)求函数的`定义域与值域;
(2)求函数的单调区间.
练习:
1.下列函数(1) y=x-1;(2) y=log2(x-1);(3) y= ;(4)y=lnx,其中值域为R的有 (请写出所有正确结论的序号).
2.函数y=lg( -1)的图象关于 对称.
3.已知函数 (a>0,a≠1)的图象关于原点对称,那么实数m= .
4.求函数 ,其中x [ ,9]的值域.
四、要点归纳与方法小结
(1)借助于对数函数的性质研究对数型函数的定义域与值域;
(2)换元法;
(3)能画出较复杂函数的图象,根据图象研究函数的性质(数形结合).
五、作业
课本P70~71-4,5,10,11.
高一数学教案 篇3
教学目标
(1)正确理解充分条件、必要条件和充要条件的概念;
(2)能正确判断是充分条件、必要条件还是充要条件;
(3)培养学生的逻辑思维能力及归纳总结能力;
(4)在充要条件的教学中,培养等价转化思想.
教学建议
(一)教材分析
1.知识结构
首先给出推断符号“”,并引出的意义,在此基础上讲述了充要条件的初步知识.
2.重点难点分析
本节的重点与难点是关于充要条件的判断.
(1)充分但不必要条件、必要但不充分条件、充要条件、既不充分也不必要条件是重要的数学概念,主要用来区分命题的条件和结论之间的因果关系.
(2)在判断条件和结论之间的因果关系中应该:
①首先分清条件是什么,结论是什么;
②然后尝试用条件推结论,再尝试用结论推条件.推理方法可以是直接证法、间接证法(即反证法),也可以举反例说明其不成立;
③最后再指出条件是结论的什么条件.
(3)在讨论条件和条件的关系时,要注意:
①若,但,则是的充分但不必要条件;
②若,但,则是的必要但不充分条件;
③若,且,则是的充要条件;
④若,且,则是的充要条件;
⑤若,且,则是的既不充分也不必要条件.
(4)若条件以集合的形式出现,结论以集合的形式出现,则借助集合知识,有助于充要条件的理解和判断.
①若,则是的充分条件;
显然,要使元素,只需就够了.类似地还有:
②若,则是的必要条件;
③若,则是的充要条件;
④若,且,则是的既不必要也不充分条件.
(5)要证明命题的条件是充要条件,就既要证明原命题成立,又要证明它的逆命题成立.证明原命题即证明条件的充分性,证明逆命题即证明条件的必要性.由于原命题逆否命题,逆命题否命题,当我们证明某一命题有困难时,可以证明该命题的逆否命题成立,从而得出原命题成立.
(二)教法建议
1.学习充分条件、必要条件和充要条件知识,要注意与前面有关逻辑初步知识内容相联系.充要条件中的,与四种命题中的,要求是一样的.它们可以是简单命题,也可以是不能判断真假的语句,也可以是含有逻辑联结词或“若则”形式的复合命题.
2.由于这节课概念性、理论性较强,一般的教学使学生感到枯燥乏味,为此,激发学生的学习兴趣是关键.教学中始终要注意以学生为主,让学生在自我思考、相互交流中去结概念“下定义”,去体会概念的本质属性.
3.由于“充要条件”与命题的真假、命题的条件与结论的相互关系紧密相关,为此,教学时可以从判断命题的真假入手,来分析命题的条件对于结论来说,是否充分,从而引入“充分条件”的概念,进而引入“必要条件”的概念.
4.教材中对“充分条件”、“必要条件”的定义没有作过多的解释说明,为了让学生能理解定义的合理性,在教学过程中,教师可以从一些熟悉的命题的条件与结论之间的关系来认识“充分条件”的概念,从互为逆否命题的等价性来引出“必要条件”的.概念.
教学设计示例
充要条件
教学目标:
(1)正确理解充分条件、必要条件和充要条件的概念;
(2)能正确判断是充分条件、必要条件还是充要条件;
(3)培养学生的逻辑思维能力及归纳总结能力;
(4)在充要条件的教学中,培养等价转化思想.
教学重点难点:
关于充要条件的判断
教学用具:
幻灯机或实物投影仪
教学过程设计
1.复习引入
练习:判断下列命题是真命题还是假命题(用幻灯投影):
(1)若,则;
(2)若,则;
(3)全等三角形的面积相等;
(4)对角线互相垂直的四边形是菱形;
(5)若,则;
(6)若方程有两个不等的实数解,则.
(学生口答,教师板书.)
(1)、(3)、(6)是真命题,(2)、(4)、(5)是假命题.
置疑:对于命题“若,则”,有时是真命题,有时是假命题.如何判断其真假的?
答:看能不能推出,如果能推出,则原命题是真命题,否则就是假命题.
对于命题“若,则”,如果由经过推理能推出,也就是说,如果成立,那么一定成立.换句话说,只要有条件就能充分地保证结论的成立,这时我们称条件是成立的充分条件,记作.
2.讲授新课
(板书充分条件的定义.)
一般地,如果已知,那么我们就说是成立的充分条件.
提问:请用充分条件来叙述上述(1)、(3)、(6)的条件与结论之间的关系.
(学生口答)
(1)“,”是“”成立的充分条件;
(2)“三角形全等”是“三角形面积相等”成立的充分条件;
(3)“方程的有两个不等的实数解”是“”成立的充分条件.
从另一个角度看,如果成立,那么其逆否命题也成立,即如果没有,也就没有,亦即是成立的必须要有的条件,也就是必要条件.
(板书必要条件的定义.)
提出问题:用“充分条件”和“必要条件”来叙述上述6个命题.
(学生口答).
(1)因为,所以是的充分条件,是的必要条件;
(2)因为,所以是的必要条件,是的充分条件;
(3)因为“两三角形全等”“两三角形面积相等”,所以“两三角形全等”是“两三角形面积相等”的充分条件,“两三角形面积相等”是“两三角形全等”的必要条件;
(4)因为“四边形的对角线互相垂直”“四边形是菱形”,所以“四边形的对角线互相垂直”是“四边形是菱形”的必要条件,“四边形是菱形”是“四边形的对角线互相垂直”的充分条件;
(5)因为,所以是的必要条件,是的充分条件;
(6)因为“方程的有两个不等的实根”“”,而且“方程的有两个不等的实根”“”,所以“方程的有两个不等的实根”是“”充分条件,而且是必要条件.
总结:如果是的充分条件,又是的必要条件,则称是的充分必要条件,简称充要条件,记作.
(板书充要条件的定义.)
3.巩固新课
例1(用投影仪投影.)
(学生活动,教师引导学生作出下面回答.)
①因为有理数一定是实数,但实数不一定是有理数,所以是的充分非必要条件,是的必要非充分条件;
②一定能推出,而不一定推出,所以是的充分非必要条件,是的必要非充分条件;
③、是奇数,那么一定是偶数;是偶数,、不一定都是奇数(可能都为偶数),所以是的充分非必要条件,是的必要非充分条件;
④表示或,所以是成立的必要非充分条件;
⑤由交集的定义可知且是成立的充要条件;
⑥由知且,所以是成立的充分非必要条件;
⑦由知或,所以是,成立的必要非充分条件;
⑧易知“是4的倍数”是“是6的倍数”成立的既非充分又非必要条件;
(通过对上述问题的交流、思辩,在争论中得到了正确答案,并加深了对充分条件、必要条件的认识.)
例2已知是的充要条件,是的必要条件同时又是的充分条件,试与的关系.(投影)
解:由已知得,
所以是的充分条件,或是的必要条件.
4.小结回授
今天我们学习了充分条件、必要条件和充要条件的概念,并学会了判断条件A是B的什么条件,这为我们今后解决数学问题打下了等价转化的基础.
课内练习:课本(人教版,试验修订本,第一册(上))第35页练习l、2;第36页练习l、2.
(通过练习,检查学生掌握情况,有针对性的进行讲评.)
5.课外作业:教材第36页 习题1.8 1、2、3.
高一数学教案 篇4
一、教学目标
知识与技能:
理解任意角的概念(包括正角、负角、零角)与区间角的概念。
过程与方法:
会建立直角坐标系讨论任意角,能判断象限角,会书写终边相同角的集合;掌握区间角的集合的书写。
情感态度与价值观:
1、提高学生的推理能力;
2、培养学生应用意识。
二、教学重点、难点:
教学重点:
任意角概念的理解;区间角的集合的书写。
教学难点:
终边相同角的集合的表示;区间角的集合的书写。
三、教学过程
(一)导入新课
1、回顾角的定义
①角的第一种定义是有公共端点的两条射线组成的图形叫做角。
②角的第二种定义是角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形。
(二)教学新课
1、角的有关概念:
①角的定义:
角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形。
②角的名称:
注意:
⑴在不引起混淆的情况下,“角α ”或“∠α ”可以简化成“α ”;
⑵零角的终边与始边重合,如果α是零角α =0°;
⑶角的概念经过推广后,已包括正角、负角和零角。
⑤练习:请说出角α、β、γ各是多少度?
2、象限角的概念:
①定义:若将角顶点与原点重合,角的始边与x轴的非负半轴重合,那么角的终边(端点除外)在第几象限,我们就说这个角是第几象限角。
例1、如图⑴⑵中的角分别属于第几象限角?
[热门]高一数学教案
作为一名无私奉献的老师,编写教案是必不可少的,教案是保证教学取得成功、提高教学质量的基本条件。教案应该怎么写呢?下面是小编整理的高一数学教案,欢迎大家借鉴与参考,希望对大家有所帮助。
高一数学教案 篇5
教学目标:
(1)了解集合的表示方法;
(2)能正确选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用;
教学重点:掌握集合的表示方法;
教学难点:选择恰当的表示方法;
教学过程:
一、复习回顾:
1.集合和元素的定义;元素的三个特性;元素与集合的关系;常用的数集及表示。
2.集合{1,2}、{(1,2)}、{(2,1)}、{2,1}的元素分别是什么?有何关系
二、新课教学
(一).集合的表示方法
我们可以用自然语言和图形语言来描述一个集合,但这将给我们带来很多不便,除此之外还常用列举法和描述法来表示集合。
(1) 列举法:把集合中的元素一一列举出来,并用花括号“ ”括起来表示集合的方法叫列举法。
如:{1,2,3,4,5},{x2,3x+2,5y3-x,x2+y2},…;
说明:1.集合中的元素具有无序性,所以用列举法表示集合时不必考
虑元素的顺序。
2.各个元素之间要用逗号隔开;
3.元素不能重复;
4.集合中的元素可以数,点,代数式等;
5.对于含有较多元素的集合,用列举法表示时,必须把元素间的规律显示清楚后方能用省略号,象自然数集N用列举法表示为
例1.(课本例1)用列举法表示下列集合:
(1)小于10的所有自然数组成的集合;
(2)方程x2=x的所有实数根组成的集合;
(3)由1到20以内的所有质数组成的集合;
(4)方程组 的解组成的集合。
思考2:(课本P4的思考题)得出描述法的定义:
(2)描述法:把集合中的元素的公共属性描述出来,写在花括号{ }内。
具体方法:在花括号内先写上表示这个集合元素的一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征。
一般格式:
如:{x|x-3>2},{(x,y)|y=x2+1},{x|直角三角形},…;
说明:
1.课本P5最后一段话;
2.描述法表示集合应注意集合的代表元素,如{(x,y)|y= x2+3x+2}与 {y|y= x2+3x+2}是不同的两个集合,只要不引起误解,集合的代表元素也可省略,例如:{x|整数},即代表整数集Z。
辨析:这里的{ }已包含“所有”的意思,所以不必写{全体整数}。下列写法{实数集},{R}也是错误的。
例2.(课本例2)试分别用列举法和描述法表示下列集合:
(1)方程x2—2=0的所有实数根组成的集合;
(2)由大于10小于20的所有整数组成的集合;
(3)方程组 的解。
思考3:(课本P6思考)
说明:列举法与描述法各有优点,应该根据具体问题确定采用哪种表示法,要注意,一般集合中元素较多或有无限个元素时,不宜采用列举法。
(二).课堂练习:
1.课本P6练习2;
2.用适当的方法表示集合:大于0的所有奇数
3.集合A={x| ∈Z,x∈N},则它的元素是 。
4.已知集合A={x|-3 归纳小结: 本节课从实例入手,介绍了集合的常用表示方法,包括列举法、描述法。 作业布置: 1. 习题1.1,第3.4题; 2. 课后预习集合间的基本关系. 教学目标 1.使学生理解函数单调性的概念,并能判断一些简单函数在给定区间上的单调性. 2.通过函数单调性概念的教学,培养学生分析问题、认识问题的能力.通过例题培养学生利用定义进行推理的逻辑思维能力. 3.通过本节课的教学,渗透数形结合的数学思想,对学生进行辩证唯物主义的教育. 教学重点与难点 教学重点:函数单调性的概念. 教学难点:函数单调性的判定. 教学过程设计 一、引入新课 师:请同学们观察下面两组在相应区间上的函数,然后指出这两组函数之间在性质上的主要区别是什么? (用投影幻灯给出两组函数的图象.) 第一组: 第二组: 生:第一组函数,函数值y随x的增大而增大;第二组函数,函数值y随x的增大而减小. 师:(手执投影棒使之沿曲线移动)对.他(她)答得很好,这正是两组函数的主要区别.当x变大时,第一组函数的函数值都变大,而第二组函数的函数值都变小.虽然在每一组函数中,函数值变大或变小的方式并不相同,但每一组函数却具有一种共同的性质.我们在学习一次函数、二次函数、反比例函数以及幂函数时,就曾经根据函数的图象研究过函数的函数值随自变量的变大而变大或变小的性质.而这些研究结论是直观地由图象得到的.在函数的集合中,有很多函数具有这种性质,因此我们有必要对函数这种性质作更进一步的一般性的讨论和研究,这就是我们今天这一节课的内容. (点明本节课的内容,既是曾经有所认识的,又是新的知识,引起学生的注意.) 二、对概念的分析 (板书课题:) 师:请同学们打开课本第51页,请××同学把增函数、减函数、单调区间的定义朗读一遍. (学生朗读.) 师:好,请坐.通过刚才阅读增函数和减函数的定义,请同学们思考一个问题:这种定义方法和我们刚才所讨论的函数值y随自变量x的增大而增大或减小是否一致?如果一致,定义中是怎样描述的? 生:我认为是一致的.定义中的“当x1<x2时,都有f(x1)<f(x2)”描述了y随x的增大而增大;“当x1<x2时,都有f(x1)>f(x2)”描述了y随x的增大而减少. 师:说得非常正确.定义中用了两个简单的不等关系“x1<x2”和“f(x1)<f(x2)或f(x1)>f(x2)”,它刻划了函数的单调递增或单调递减的性质.这就是数学的魅力! (通过教师的情绪感染学生,激发学生学习数学的兴趣.) 师:现在请同学们和我一起来看刚才的两组图中的第一个函数y=f1(x)和y=f2(x)的图象,体会这种魅力. (指图说明.) 师:图中y=f1(x)对于区间[a,b]上的任意x1,x2,当x1<x2时,都有f1(x1)<f1(x),因此y=f1(x)在区间[a,b]上是单调递增的,区间[a,b]是函数y=f1(x)的单调增区间;而图中y=f2(x)对于区间[a,b]上的任意x1,x2,当x1<x2时,都有f2(x1)>f2(x2),因此y=f2(x)在区间[a,b]上是单调递减的,区间[a,b]是函数y=f2(x)的单调减区间. (教师指图说明分析定义,使学生把函数单调性的定义与直观图象结合起来,使新旧知识融为一体,加深对概念的理解.渗透数形结合分析问题的数学思想方法.) 师:因此我们可以说,增函数就其本质而言是在相应区间上较大的自变量对应…… (不把话说完,指一名学生接着说完,让学生的思维始终跟着老师.) 生:较大的函数值的函数. 师:那么减函数呢? 生:减函数就其本质而言是在相应区间上较大的自变量对应较小的函数值的函数. (学生可能回答得不完整,教师应指导他说完整.) 师:好.我们刚刚以增函数和减函数的定义作了初步的分析,通过阅读和分析你认为在定义中我们应该抓住哪些关键词语,才能更透彻地认识定义? (学生思索.) 学生在高中阶段以至在以后的学习中经常会遇到一些概念(或定义),能否抓住定义中的关键词语,是能否正确地、深入地理解和掌握概念的重要条件,更是学好数学及其他各学科的重要一环.因此教师应该教会学生如何深入理解一个概念,以培养学生分析问题,认识问题的能力. (教师在学生思索过程中,再一次有感情地朗读定义,并注意在关键词语处适当加重语气.在学生感到无从下手时,给以适当的提示.) 生:我认为在定义中,有一个词“给定区间”是定义中的关键词语. 师:很好,我们在学习任何一个概念的时候,都要善于抓住定义中的关键词语,在学习几个相近的概念时还要注意区别它们之间的不同.增函数和减函数都是对相应的区间而言的,离开了相应的区间就根本谈不上函数的增减性.请大家思考一个问题,我们能否说一个函数在x=5时是递增或递减的?为什么? 生:不能.因为此时函数值是一个数. 师:对.函数在某一点,由于它的函数值是唯一确定的常数(注意这四个字“唯一确定”),因而没有增减的变化.那么,我们能不能脱离区间泛泛谈论某一个函数是增函数或是减函数呢?你能否举一个我们学过的例子? 生:不能.比如二次函数y=x2,在y轴左侧它是减函数,在y轴右侧它是增函数.因而我们不能说y=x2是增函数或是减函数. (在学生回答问题时,教师板演函数y=x2的图像,从“形”上感知.) 师:好.他(她)举了一个例子来帮助我们理解定义中的词语“给定区间”.这说明是函数在某一个区间上的性质,但这不排斥有些函数在其定义域内都是增函数或减函数.因此,今后我们在谈论函数的增减性时必须指明相应的区间. 师:还有没有其他的关键词语? 生:还有定义中的“属于这个区间的任意两个”和“都有”也是关键词语. 师:你答的很对.能解释一下为什么吗? (学生不一定能答全,教师应给予必要的提示.) 师:“属于”是什么意思? 生:就是说两个自变量x1,x2必须取自给定的区间,不能从其他区间上取. 师:如果是闭区间的话,能否取自区间端点? 生:可以. 师:那么“任意”和“都有”又如何理解? 生:“任意”就是指不能取特定的值来判断函数的增减性,而“都有”则是说只要x1<x2,f(x1)就必须都小于f(x2),或f(x1)都大于f(x2). 师:能不能构造一个反例来说明“任意”呢? (让学生思考片刻.) 生:可以构造一个反例.考察函数y=x2,在区间[-2,2]上,如果取两个特定的值x1=-2,x2=1,显然x1<x2,而f(x1)=4,f(x2)=1,有f(x1)>f(x2),若由此判定y=x2是[-2,2]上的减函数,那就错了. 师:那么如何来说明“都有”呢? 生:y=x2在[-2,2]上,当x1=-2,x2=-1时,有f(x1)>f(x2);当x1=1,x2=2时,有f(x1)<f(x2),这时就不能说y=x2,在[-2,2]上是增函数或减函数. 师:好极了!通过分析定义和举反例,我们知道要判断函数y=f(x)在某个区间内是增函数或减函数,不能由特定的两个点的情况来判断,而必须严格依照定义在给定区间内任取两个自变量x1,x2,根据它们的函数值f(x1)和f(x2)的大小来判定函数的增减性. (教师通过一系列的设问,使学生处于积极的思维状态,从抽象到具体,并通过反例的反衬,使学生加深对定义的理解.在概念教学中,反例常常帮助学生更深刻地理解概念,锻炼学生的发散思维能力.) 师:反过来,如果我们已知f(x)在某个区间上是增函数或是减函数,那么,我们就可以通过自变量的大小去判定函数值的大小,也可以由函数值的大小去判定自变量的大小.即一般成立则特殊成立,反之,特殊成立,一般不一定成立.这恰是辩证法中一般和特殊的关系. (用辩证法的原理来解释数学知识,同时用数学知识去理解辩证法的原理,这样的分析,有助于深入地理解和掌握概念,分清概念的内涵和外延,培养学生学习的能力.) 三、概念的应用 例1 图4所示的是定义在闭区间[-5,5]上的函数f(x)的图象,根据图象说出f(x)的单调区间,并回答:在每一个单调区间上,f(x)是增函数还是减函数? (用投影幻灯给出图象.) 生甲:函数y=f(x)在区间[-5,-2],[1,3]上是减函数,因此[-5,-2],[1,3]是函数y=f(x)的单调减区间;在区间[-2,1],[3,5]上是增函数,因此[-2,1],[3,5]是函数y=f(x)的单调增区间. 生乙:我有一个问题,[-5,-2]是函数f(x)的单调减区间,那么,是否可认为(-5,-2)也是f(x)的单调减区间呢? 师:问得好.这说明你想的很仔细,思考问题很严谨.容易证明:若f(x)在[a,b]上单调(增或减),则f(x)在(a,b)上单调(增或减).反之不然,你能举出反例吗?一般来说.若f(x)在[a,(增或减).反之不然. 例2 证明函数f(x)=3x+2在(-∞,+∞)上是增函数. 师:从函数图象上观察固然形象,但在理论上不够严格,尤其是有些函数不易画出图象,因此必须学会根据解析式和定义从数量上分析辨认,这才是我们研究函数单调性的基本途径. (指出用定义证明的必要性.) 师:怎样用定义证明呢?请同学们思考后在笔记本上写出证明过程. (教师巡视,并指定一名中等水平的学生在黑板上板演.学生可能会对如何比较f(x1)和f(x2)的大小关系感到无从入手,教师应给以启发.) 师:对于f(x1)和f(x2)我们如何比较它们的大小呢?我们知道对两个实数a,b,如果a>b,那么它们的差a-b就大于零;如果a=b,那么它们的差a—b就等于零;如果a<b,那么它们的差a-b就小于零,反之也成立.因此我们可由差的符号来决定两个数的大小关系. 生:(板演)设x1,x2是(-∞,+∞)上任意两个自变量,当x1<x2时, f(x1)-f(x2)=(3x1+2)-(3x2+2)=3x1-3x2=3(x1-x2)<0, 所以f(x)是增函数. 师:他的证明思路是清楚的.一开始设x1,x2是(-∞,+∞)内任意两个自变量,并设x1<x2(边说边用彩色粉笔在相应的语句下划线,并标注“①→设”),然后看f(x1)-f(x2),这一步是证明的关键,再对式子进行变形,一般方法是分解因式或配成完全平方的形式,这一步可概括为“作差,变形”(同上,划线并标注”②→作差,变形”).但美中不足的是他没能说明为什么f(x1)-f(x2)<0,没有用到开始的假设“x1<x2”,不要以为其显而易见,在这里一定要对变形后的式子说明其符号.应写明“因为x1<x2,所以x1-x2<0,从而f(x1)-f(x2)<0,即f(x1)<f(x2).”这一步可概括为“定符号”(在黑板上板演,并注明“③→定符号”).最后,作为证明题一定要有结论,我们把它称之为第四步“下结论”(在相应位置标注“④→下结论”). 这就是我们用定义证明函数增减性的四个步骤,请同学们记住.需要指出的是第二步,如果函数y=f(x)在给定区间上恒大于零,也可以小. (对学生的做法进行分析,把证明过程步骤化,可以形成思维的定势.在学生刚刚接触一个新的知识时,思维定势对理解知识本身是有益的,同时对学生养成一定的思维习惯,形成一定的解题思路也是有帮助的.) 调函数吗?并用定义证明你的结论. 师:你的结论是什么呢? 上都是减函数,因此我觉得它在定义域(-∞,0)∪(0,+∞)上是减函数. 生乙:我有不同的意见,我认为这个函数不是整个定义域内的减函数,因为它不符合减函数的定义.比如取x1∈(-∞,0),取x2∈(0,+∞),x1<x2显然成立,而f(x1)<0,f(x2)>0,显然有f(x1)<f(x2),而不是f(x1)>f(x2),因此它不是定义域内的减函数. 生:也不能这样认为,因为由图象可知,它分别在(-∞,0)和(0,+∞)上都是减函数. 域内的增函数,也不是定义域内的减函数,它在(-∞,0)和(0,+∞)每一个单调区间内都是减函数.因此在函数的几个单调增(减)区间之间不要用符号“∪”连接.另外,x=0不是定义域中的元素,此时不要写成闭区间. 上是减函数. (教师巡视.对学生证明中出现的问题给予点拔.可依据学生的问题,给出下面的提示: (1)分式问题化简方法一般是通分. (2)要说明三个代数式的符号:k,x1·x2,x2-x1. 要注意在不等式两边同乘以一个负数的时候,不等号方向要改变. 对学生的解答进行简单的分析小结,点出学生在证明过程中所出现的问题,引起全体学生的重视.) 四、课堂小结 师:请同学小结一下这节课的主要内容,有哪些是应该特别注意的? (请一个思路清晰,善于表达的学生口述,教师可从中给予提示.) 生:这节课我们学习了函数单调性的定义,要特别注意定义中“给定区间”、“属于”、“任意”、“都有”这几个关键词语;在写单调区间时不要轻易用并集的符号连接;最后在用定义证明时,应该注意证明的四个步骤. 五、作业 1.课本P53练习第1,2,3,4题. 数. =a(x1-x2)(x1+x2)+b(x1-x2) =(x1-x2)[a(x1+x2)+b].(*) +b>0.由此可知(*)式小于0,即f(x1)<f(x2). 课堂教学设计说明 是函数的一个重要性质,是研究函数时经常要注意的一个性质.并且在比较几个数的大小、对函数作定性分析、以及与其他知识的综合应用上都有广泛的应用.对学生来说,早已有所知,然而没有给出过定义,只是从直观上接触过这一性质.学生对此有一定的感性认识,对概念的理解有一定好处,但另一方面学生也会觉得是已经学过的知识,感觉乏味.因此,在设计教案时,加强了对概念的分析,希望能够使学生认识到看似简单的定义中有不少值得去推敲、去琢磨的东西,其中甚至包含着辩证法的原理. 另外,对概念的分析是在引进一个新概念时必须要做的,对概念的深入的正确的理解往往是学生认知过程中的难点.因此在本教案的设计过程中突出对概念的分析不仅仅是为了分析函数单调性的定义,而且想让学生对如何学会、弄懂一个概念有初步的认识,并且在以后的学习中学有所用. 还有,使用函数单调性定义证明是一个难点,学生刚刚接触这种证明方法,给出一定的步骤是必要的,有利于学生理解概念,也可以对学生掌握证明方法、形成证明思路有所帮助.另外,这也是以后要学习的不等式证明方法中的比较化的基本思路,现在提出要求,对今后的教学作一定的铺垫. 教学目标 1.了解函数的单调性和奇偶性的概念,掌握有关证明和判断的基本方法. (1)了解并区分增函数,减函数,单调性,单调区间,奇函数,偶函数等概念. (2)能从数和形两个角度认识单调性和奇偶性. (3)能借助图象判断一些函数的单调性,能利用定义证明某些函数的单调性;能用定义判断某些函数的奇偶性,并能利用奇偶性简化一些函数图象的绘制过程. 2.通过函数单调性的证明,提高学生在代数方面的推理论证能力;通过函数奇偶性概念的形成过程,培养学生的观察,归纳,抽象的能力,同时渗透数形结合,从特殊到一般的数学思想. 3.通过对函数单调性和奇偶性的理论研究,增学生对数学美的体验,培养乐于求索的精神,形成科学,严谨的研究态度. 教学建议 一、知识结构 (1)函数单调性的概念。包括增函数、减函数的定义,单调区间的概念函数的单调性的判定方法,函数单调性与函数图像的关系. (2)函数奇偶性的概念。包括奇函数、偶函数的定义,函数奇偶性的判定方法,奇函数、偶函数的图像. 二、重点难点分析 (1)本节教学的重点是函数的单调性,奇偶性概念的形成与认识.教学的难点是领悟函数单调性, 奇偶性的本质,掌握单调性的证明. (2)函数的单调性这一性质学生在初中所学函数中曾经了解过,但只是从图象上直观观察图象的上升与下降,而现在要求把它上升到理论的高度,用准确的数学语言去刻画它.这种由形到数的翻译,从直观到抽象的转变对高一的学生来说是比较困难的,因此要在概念的形成上重点下功夫.单调性的证明是学生在函数内容中首次接触到的代数论证内容,学生在代数论证推理方面的能力是比较弱的,许多学生甚至还搞不清什么是代数证明,也没有意识到它的重要性,所以单调性的证明自然就是教学中的难点. 三、教法建议 (1)函数单调性概念引入时,可以先从学生熟悉的一次函数,,二次函数.反比例函数图象出发,回忆图象的增减性,从这点感性认识出发,通过问题逐步向抽象的定义靠拢.如可以设计这样的问题:图象怎么就升上去了?可以从点的坐标的角度,也可以从自变量与函数值的关系的角度来解释,引导学生发现自变量与函数值的的变化规律,再把这种规律用数学语言表示出来.在这个过程中对一些关键的词语(某个区间,任意,都有)的理解与必要性的认识就可以融入其中,将概念的形成与认识结合起来. (2)函数单调性证明的步骤是严格规定的,要让学生按照步骤去做,就必须让他们明确每一步的必要性,每一步的目的,特别是在第三步变形时,让学生明确变换的目标,到什么程度就可以断号,在例题的选择上应有不同的变换目标为选题的标准,以便帮助学生总结规律. 函数的奇偶性概念引入时,可设计一个课件,以的图象为例,让自变量互为相反数,观察对应的函数值的变化规律,先从具体数值开始,逐渐让在数轴上动起来,观察任意性,再让学生把看到的用数学表达式写出来.经历了这样的过程,再得到等式时,就比较容易体会它代表的是无数多个等式,是个恒等式.关于定义域关于原点对称的问题,也可借助课件将函数图象进行多次改动,帮助学生发现定义域的对称性,同时还可以借助图象说明定义域关于原点对称只是函数具备奇偶性的必要条件而不是充分条件. 学 习 目 标 1明确空间直角坐标系是如何建立;明确空间中任意一点如何表示; 2 能够在空间直角坐标系中求出点坐标 教 学 过 程 一 自 主 学 习 1平面直角坐标系建立方法,点坐标确定过程、表示方法? 2一个点在平面怎么表示?在空间呢? 3关于一些对称点坐标求法 关于坐标平面 对称点 ; 关于坐标平面 对称点 ; 关于坐标平面 对称点 ; 关于 轴对称点 ; 关于 对轴称点 ; 关于 轴对称点 ; 二 师 生 互动 例1在长方体 中, , 写出 四点坐标 讨论:若以 点为原点,以射线 方向分别为 轴,建立空间直角坐标系,则各顶点坐标又是怎样呢? 变式:已知 ,描出它在空间位置 例2 为正四棱锥, 为底面中心,若 ,试建立空间直角坐标系,并确定各顶点坐标 练1 建立适当直角坐标系,确定棱长为3正四面体各顶点坐标 练2 已知 是棱长为2正方体, 分别为 和 中点,建立适当空间直角坐标系,试写出图中各中点坐标 三 巩 固 练 习 1 关于空间直角坐标系叙述正确是( ) A 中 位置是可以互换 B空间直角坐标系中点与一个三元有序数组是一种一一对应关系 C空间直角坐标系中三条坐标轴把空间分为八个部分 D某点在不同空间直角坐标系中坐标位置可以相同 2 已知点 ,则点 关于原点对称点坐标为( ) A B C D 3 已知 三个顶点坐标分别为 ,则 重心坐标为( ) A B C D 4 已知 为平行四边形,且 , 则顶点 坐标 5 方程 几何意义是 四 课 后 反 思 五 课 后 巩 固 练 习 1 在空间直角坐标系中,给定点 ,求它分别关于坐标平面,坐标轴和原点对称点坐标 2 设有长方体 ,长、宽、高分别为 是线段 中点分别以 所在直线为 轴, 轴, 轴,建立空间直角坐标系 ⑴求 坐标; ⑵求 坐标; 一、教学目标 1、知识与技能 (1)通过实物操作,增强学生的直观感知。 (2)能根据几何结构特征对空间物体进行分类。 (3)会用语言概述棱柱、棱锥、圆柱、圆锥、棱台、圆台、球的结构特征。 (4)会表示有关于几何体以及柱、锥、台的分类。 2、过程与方法 (1)让学生通过直观感受空间物体,从实物中概括出柱、锥、台、球的几何结构特征。 (2)让学生观察、讨论、归纳、概括所学的知识。 3、情感态度与价值观 (1)使学生感受空间几何体存在于现实生活周围,增强学生学习的积极性,同时提高学生的观察能力。 (2)培养学生的空间想象能力和抽象括能力。 二、教学重点、难点 重点:让学生感受大量空间实物及模型、概括出柱、锥、台、球的结构特征。难点:柱、锥、台、球的结构特征的概括。 三、教学用具 (1)学法:观察、思考、交流、讨论、概括。 (2)实物模型、投影仪四、教学思路 (一)创设情景,揭示课题 1、教师提出问题:在我们生活周围中有不少有特色的建筑物,你能举出一些例子吗?这些建筑的几何结构特征如何?引导学生回忆,举例和相互交流。教师对学生的活动及时给予评价。 2、所举的建筑物基本上都是由这些几何体组合而成的`,(展示具有柱、锥、台、球结构特征的空间物体),你能通过观察。根据某种标准对这些空间物体进行分类吗?这是我们所要学习的内容。 (二)、研探新知 1、引导学生观察物体、思考、交流、讨论,对物体进行分类,分辩棱柱、圆柱、棱锥。 2、观察棱柱的几何物件以及投影出棱柱的图片,它们各自的特点是什么?它们的共同特点是什么? 3、组织学生分组讨论,每小组选出一名同学发表本组讨论结果。在此基础上得出棱柱的主要结构特征。 (1)有两个面互相平行; (2)其余各面都是平行四边形; (3)每相邻两上四边形的公共边互相平行。概括出棱柱的概念。 4、教师与学生结合图形共同得出棱柱相关概念以及棱柱的表示。 5、提出问题:各种这样的棱柱,主要有什么不同?可不可以根据不同对棱柱分类? 请列举身边具有已学过的几何结构特征的物体,并说出组成这些物体的几何结构特征?它们由哪些基本几何体组成的? 6、以类似的方法,让学生思考、讨论、概括出棱锥、棱台的结构特征,并得出相关的概念,分类以及表示。 7、让学生观察圆柱,并实物模型演示,如何得到圆柱,从而概括出圆标的概念以及相关的概念及圆柱的表示。 8、引导学生以类似的方法思考圆锥、圆台、球的结构特征,以及相关概念和表示,借助实物模型演示引导学生思考、讨论、概括。 9、教师指出圆柱和棱柱统称为柱体,棱台与圆台统称为台体,圆锥与棱锥统称为锥体。 10、现实世界中,我们看到的物体大多由具有柱、锥、台、球等几何结构特征的物体组合而成。请列举身边具有已学过的几何结构特征的物体,并说出组成这些物体的几何结构特征?它们由哪些基本几何体组成的? (三)质疑答辩,排难解惑,发展思维,教师提出问题,让学生思考。 1、有两个面互相平行,其余后面都是平行四边形的几何体是不是棱柱(举反例说明,如图) 2、棱柱的何两个平面都可以作为棱柱的底面吗? 3、课本P8,习题1.1 A组第1题。 4、圆柱可以由矩形旋转得到,圆锥可以由直角三角形旋转得到,圆台可以由什么图形旋转得到?如何旋转? 5、棱台与棱柱、棱锥有什么关系?圆台与圆柱、圆锥呢? 四、巩固深化 练习:课本P7练习1、2(1)(2)课本P8习题1.1第2、3、4题五、归纳整理 由学生整理学习了哪些内容六、布置作业 课本P8练习题1.1 B组第1题 课外练习课本P8习题1.1 B组第2题 1、如果把数学比作一个成长中的生气勃勃的人,把问题比作人身体的一个重要的器官,那么你将用什么器官比喻问题的重要性呢 2、“问题是数学的心脏”,是一切科学发现与发明的源泉、在数学学习中,提出问题比解决问题具有同等甚至是更高的价值、因此在进入初中数学学习的时候,同学们要高度重视发现和提出数学问题,把这看作是提升自己数学能力的最重要的途径、 3、看到《有理数》这一章的标题,你想到的第一个问题是什么?接下来你又会提出什么问题呢? 4、“有理数”这个名词有点怪,难道还有“无理数”吗?”这个问题提得好!既然有“有理数”,当然会有“无理数”、要回答什么是“有理数”的问题,一个途径就是先回答“什么是无理数的问题”、 5、我们在小学所学的数中,就有无理数,那就是无限不循环小数、有限小数、无限循环小数都是有理数、大家想一想下面的问题: ①有限小数、无限循环小数与分数是什么关系? ②整数能不能化成分数的形式? ③由此你能不能联想出有理数的“理”是什么?也就是说,什么样的数是有理数? 1、1正数和负数 一、教学目标 知识与技能:了解正数和负数是怎样产生的,会识别正数和负数,理解0表示的量的意义;学会用正数和负数表示相反意义的量; 过程与方法:在形成负数概念的过程中,培养观察、归纳与概括能力、情感、态度与价值观:通过师生合作,联系实际,感受数学与生活的联系,激发学生学习数学的热情、 重点难点 重点:形成负数概念;学会用正数和负数表示相反意义的量、 难点:负数的意义及0的内涵、 二、精讲预设: 1、其实,在进入初中之前,我们就有同学初步学习过“负数”概念,知道什么是正数和负数,但在跨入初中数学的大门的时候,我们还是要隆重地引入负数概念,因为它是我们建立有理数概念不可缺少的基础、 2、什么叫做正数?什么叫做负数?负数的概念是建立在什么基础上的?你能换一种方式解释负数这个概念吗?请注意,给概念下定义的表达方式:……叫做……、 3、①把0以外的数分成正数和负数,起源于什么? ②表示相反意义的量,数的性质(正与负)是怎样规定的?有几种方式? ③表示相反意义的量,要特别注意量的表达,也就是一定不能忽略单位!否则就不是量,而是数了、 ④正数可以省略“+”号,负数可以省略“—”号吗?为什么? 4、还记得我在前面提出的关于“问题”在数学学习中地位的话吗?请你提出关于“正数和负数”的概念与应用的问题,我们来开一次“数学记者招待会”、 三、教学反思 1、这次尝试着从无理数的概念入手,“曲线教学”,一步到位,导出有理数的概念,从后续效果上看,还是比较成功的这一点在今后的教学中还可以延续、 2、在学生自主学习与尝试展示的过程中,采用事前精心设计的连续追问的方式,可以起到打通思维,贯通知识,加深理解的作用、 1、2、1有理数 一、教学目标 知识与技能:理解有理数的意义;能把有理数按要求分类;了解0在分类中作用、 过程与方法:初步了解分类的思想方法,能正确地对有理数进行分类、情感、态度与价值观:在体系中理解知识的内涵,在分类中了解概念之间的联系,在学生的头脑中初步建立起对立与统一的思考方法、 重点难点 重点:理解有理数的分类方法、 难点:掌握有理数的两种分类,避免混淆、 二、精讲预设 1、在罗列出所学过的有理数,并对有理数给出定义之后,提出“你能把所有的这些有理数作出分类吗?”的问题、 2、在让学生充分尝试对有理数作出分类之后,讲解数学学习的效益与分类讨论的标准问题、数学学习的效益,不仅体现在数学知识与数学方法的掌握上,更体现在对数学数学思想方法的理解与运用上,这才是数学学习最重要的价值所在、分类讨论就是一种重要的数学学习方法、在分类时首先要确定分类的标准,其次要注意遵循不重复、不遗漏的原则、 3、在解把有理数填入集合圈的习题时,会出现哪些问题?原因何在?怎么解决? ①在画集合圈时忽略省略号; ②在填分数集合时,把遗漏有限小数和无限循环小数; ③把无限循环小数误成分数、补充分类练习,采用《鼎新教案》P10例2,以加深学生对分类讨论的理解 三、教学反思 1、这是学生在初中数学学习中第一次接触分类思想,课本在这方面的处理太过简略,几乎到忽略不计的地步、为了弥补教材的不足,有必要加以补充、 2、因为有理数的概念在本章教学的开篇就与学生进行过比较深入的讨论,所以本节教学的重点还是以放在对分类的标准与原则上为宜,在这方面对学生进行训练的后续教学效益应该是比较高的,今后还应坚持、 1、2、2数轴 一、教学目标 知识与技能:了解数轴的概念,知道数轴的三要素,会画数轴;能将已知数在数轴上表示出来,能说出数轴上已知点表示的数、 过程与方法:通过对数轴的学习体会数形结合的数学思想、情感、态度与价值观:通过对数轴的直观认识,对数形结合思想的体会,认识不同事物之间的内在关系,感受数学与生活的联系、 重点难点 重点:数轴的概念、 难点:数轴的画法与应用、 二、精讲预设 1、画数轴注意事项歌诀 直线要直切勿曲,原点方向单位齐; 右为箭头左出头,无限延伸要留意; (长度)正负分布须对称,位置长度要适宜 、数轴画在格子中,舒展大方贵清晰、 (数) (原点)(单位长度) 2、在数轴上表示有理数的方法歌诀 先画数轴要素全,数点描成实心圆;注意方向与距离,负数分数思虑全;点在线上勿飘起,数据标在点上面、 3、应用归类、提出问题,组织学生完成、 三、教学反思 1、数轴是学生所接触的数形结合的第一个实例,因为对数轴概念的理解的不足,也因为教学中对数轴画法的练习设计数量偏少,导致形形色色的画法上的问题、对此一方面要在后续教学中加以弥补,另一方面在修改导学案的时候要对这一环节予以加强、 2、在数轴上表示分数与小数,尤其是负分数与负小数时,学生出现了较多的错误,方向性的错误有,距离上的错误更多、对此要反复加以强调与来练习、 1、2、3相反数 一、教学目标 知识与技能:借助数轴理解相反数的概念,知道互为相反数的两个数在数轴上的位置关系,给出一个数,能说出和写出它的相反数、 过程与方法:经历操作、对比,发现、提出、解决问题的过程,从形和数两个不同的侧面来理解相反数的意义,领会数形结合的思想,培养分析问题与解决问题的能力、 情感、态度与价值观:让学生充分参与问题的解决过程,体验参与的快乐与成就感、 重点难点重点:相反数的概念、难点:相反数的识别与理解、 二、精讲预设 1、如何理解“两点关于原点对称”?位置关系,数量关系、 2、如何理解互为相反数的概念? “只有符号不同”,什么必须相同? 3、怎样表示一个数的相反数?在一个数的前面添上“—”时,要注意哪些问题? ①如果数不带符号,直接在数的前面添加“—”号; ②如果数本身带有符号,首先要用括号将这个数括起来,再在括号前前面; ③如果数是几个数的和或差的形式,参照第②条处理; 4、的相反数怎样表示?的相反数怎样表示?的相反数呢?你能提出更复杂的问题并自己解决吗?这里面的规律是什么? 三、教学反思 1、相反数是相对简单的概念,对于这个简单的知识,通过从形到数的认识过程,可以培养学生的数学认识能力,对此如果重视不够,将是一个损失、 2、相反数的表示方法其实是一个有一定难度的问题,解决的最好方法不是直接教给学生要注意什么,而是与学生一起探讨解决的方法、让学生参与解决问题的过程,也许是解决问题的最有效的方法、 1、2、4绝对值 一、教学目标 知识与技能:理解绝对值的意义,会求一个数的绝对值;会比较两个有理数的大小、 过程与方法:通过对正数、负数、0的绝对值的学习,体验分类讨论的数学思想、通关对有理数大小比较的学习,体验数形结合的数学思想、 情感、态度与价值观:在充分的参与中体验数学的美与价值、 重点难点 重点:绝对值的意义;有理数的大小的比较、 难点:绝对值的意义与两个负数的大小比较、 二、精讲预设 1、串讲相反数和绝对值问题提纲: ①相反数的几何意义是什么?(借助数轴解释相反数) ②在数轴上表示互为相反数的两个点的异同点分别是什么? ③什么叫做数的绝对值?数的绝对值是什么? ④依据绝对值的定义,怎样求一个数的绝对值? ⑤求绝对值的方法体现了什么数学思想方法?(分类讨论) ⑥求一个数的绝对值时要注意哪些问题? 2、有理数大小比较的方法讲解提纲: ⑴试用分类讨论的方法分解有理数大小的比较问题: ①比较两个正数的大小; ②比较正数和0的大小; ③比较0和负数的大小; ④比较正数和负数的大小; ⑤比较两个负数的大小、 ⑵上述问题中,真正需要解决的问题是什么?怎么解决?解决的程序是什么 ⑶解决一般的有理数大小问题的思维与表达程序是什么?(先分类,后表述)一看能不能直接比较大小?二看需不需化简后再比较大小?三要注意比较结果的表达要求(答案保持数的原有形式与排列顺序)、 三、教学反思 1、诱导学生分析相反数的几何意义的共同特征,从而引出绝对值的概念,借助于知识之间的联系,使新知识在“出场”的时候,就与学生建立起“亲密”的联系、这一点是本节教学的亮点之一、 1.掌握对数函数的概念,图象和性质,且在掌握性质的基础上能进行初步的应用。 (1) 能在指数函数及反函数的概念的基础上理解对数函数的定义,了解对底数的要求,及对定义域的要求,能利用互为反函数的两个函数图象间的关系正确描绘对数函数的图象。 (2) 能把握指数函数与对数函数的实质去研究认识对数函数的性质,初步学会用对数函数的性质解决简单的问题。 2.通过对数函数概念的学习,树立相互联系相互转化的观点,通过对数函数图象和性质的.学习,渗透数形结合,分类讨论等思想,注重培养学生的观察,分析,归纳等逻辑思维能力。 3.通过指数函数与对数函数在图象与性质上的对比,对学生进行对称美,简洁美等审美教育,调动学生学习数学的积极性。 高一数学对数函数教案:教材分析 (1) 对数函数又是函数中一类重要的基本初等函数,它是在学生已经学过对数与常用对数,反函数以及指数函数的基础上引入的。故是对上述知识的应用,也是对函数这一重要数学思想的进一步认识与理解。对数函数的概念,图象与性质的学习使学生的知识体系更加完整,系统,同时又是对数和函数知识的拓展与延伸。它是解决有关自然科学领域中实际问题的重要工具,是学生今后学习对数方程,对数不等式的基础。 (2) 本节的教学重点是理解对数函数的定义,掌握对数函数的图象性质。难点是利用指数函数的图象和性质得到对数函数的图象和性质。由于对数函数的概念是一个抽象的形式,学生不易理解,而且又是建立在指数与对数关系和反函数概念的基础上,故应成为教学的重点。 (3) 本节课的主线是对数函数是指数函数的反函数,所有的问题都应围绕着这条主线展开。而通过互为反函数的两个函数的关系由已知函数研究未知函数的性质,这种方法是第一次使用,学生不适应,把握不住关键,所以应是本节课的难点。 高一数学对数函数教案:教法建议 (1) 对数函数在引入时,就应从学生熟悉的指数问题出发,通过对指数函数的认识逐步转化为对对数函数的认识,而且画对数函数图象时,既要考虑到对底数 的分类讨论而且对每一类问题也可以多选几个不同的底,画在同一个坐标系内,便于观察图象的特征,找出共性,归纳性质。 (2) 在本节课中结合对数函数教学的特点,一定要让学生动手做,动脑想,大胆猜,要以学生的研究为主,教师只是不断地反函数这条主线引导学生思考的方向。这样既增强了学生的参与意识又教给他们思考问题的方法,获取知识的途径,使学生学有所思,思有所得,练有所获,,从而提高学习兴趣。 1、知识与技能 (1)掌握任意角的正弦、余弦、正切的定义(包括这三种三角函数的定义域和函数值在各象限的符号); (2)理解任意角的三角函数不同的定义方法; (3)了解如何利用与单位圆有关的有向线段,将任意角α的正弦、余弦、正切函数值分别用正弦线、余弦线、正切线表示出来; (4)掌握并能初步运用公式一; (5)树立映射观点,正确理解三角函数是以实数为自变量的函数. 2、过程与方法 初中学过:锐角三角函数就是以锐角为自变量,以比值为函数值的函数.引导学生把这个定义推广到任意角,通过单位圆和角的终边,探讨任意角的三角函数值的求法,最终得到任意角三角函数的定义.根据角终边所在位置不同,分别探讨各三角函数的定义域以及这三种函数的值在各象限的符号.最后主要是借助有向线段进一步认识三角函数.讲解例题,总结方法,巩固练习. 3、情态与价值 任意角的三角函数可以有不同的定义方法,而且各种定义都有自己的特点.过去习惯于用角的终边上点的坐标的“比值”来定义,这种定义方法能够表现出从锐角三角函数到任意角的三角函数的推广,有利于引导学生从自己已有认知基础出发学习三角函数,但它对准确把握三角函数的本质有一定的不利影响,“从角的集合到比值的集合”的对应关系与学生熟悉的一般函数概念中的“数集到数集”的对应关系有冲突,而且“比值”需要通过运算才能得到,这与函数值是一个确定的实数也有不同,这些都会影响学生对三角函数概念的理解. 本节利用单位圆上点的坐标定义任意角的正弦函数、余弦函数.这个定义清楚地表明了正弦、余弦函数中从自变量到函数值之间的对应关系,也表明了这两个函数之间的`关系. 教学重难点 重点:任意角的正弦、余弦、正切的定义(包括这三种三角函数的定义域和函数值在各象限的符号);终边相同的角的同一三角函数值相等(公式一). 难点:任意角的正弦、余弦、正切的定义(包括这三种三角函数的定义域和函数值在各象限的符号);三角函数线的正确理解. 经典例题 已知关于 的方程 的实数解在区间 ,求 的取值范围。 反思提炼:1.常见的四种指数方程的一般解法 (1)方程 的解法: (2)方程 的解法: (3)方程 的解法: (4)方程 的解法: 2.常见的三种对数方程的一般解法 (1)方程 的解法: (2)方程 的解法: (3)方程 的解法: 3.方程与函数之间的转化。 4.通过数形结合解决方程有无根的问题。 课后作业: 1.对正整数n,设曲线 在x=2处的切线与轴交点的纵坐标为 ,则数列 的前n项和的公式是 [答案] 2n+1-2 [解析] ∵=xn(1-x),∴′=(xn)′(1-x)+(1-x)′xn=nxn-1(1-x)-xn. f ′(2)=-n2n-1-2n=(-n-2)2n-1. 在点x=2处点的纵坐标为=-2n. ∴切线方程为+2n=(-n-2)2n-1(x-2). 令x=0得,=(n+1)2n, ∴an=(n+1)2n, ∴数列ann+1的前n项和为2(2n-1)2-1=2n+1-2. 2.在平面直角坐标系 中,已知点P是函数 的图象上的动点,该图象在P处的切线 交轴于点M,过点P作 的垂线交轴于点N,设线段MN的中点的纵坐标为t,则t的最大值是_____________ 解析:设 则 ,过点P作 的垂线 ,所以,t在 上单调增,在 单调减, 。 一、教材分析及处理 函数是高中数学的重要内容之一,函数的基础知识在数学和其他许多学科中有着广泛的应用;函数与代数式、方程、不等式等内容联系非常密切;函数是近一步学习数学的重要基础知识;函数的概念是运动变化和对立统一等观点在数学中的具体体现;函数概念及其反映出的数学思想方法已广泛渗透到数学的各个领域,《函数》教学设计。 对函数概念本质的理解,首先应通过与初中定义的比较、与其他知识的联系以及不断地应用等,初步理解用集合与对应语言刻画的函数概念.其次在后续的学习中通过基本初等函数,引导学生以具体函数为依托、反复地、螺旋式上升地理解函数的本质。 教学重点是函数的概念,难点是对函数概念的本质的理解。 学生现状 学生在第一章的时候已经学习了集合的概念,同时在初中时已学过一次函数、反比例函数和二次函数,那么如何用集合知识来理解函数概念,结合原有的知识背景,活动经验和理解走入今天的课堂,如何有效地激活学生的学习兴趣,让学生积极参与到学习活动中,达到理解知识、掌握方法、提高能力的目的,使学生获得有益有效的学习体验和情感体验,是在教学设计中应思考的。 二、教学三维目标分析 1、知识与技能(重点和难点) (1)、通过实例让学生能够进一步体会到函数是描述变量之间的依赖关系的重要数学模型。并且在此基础上学习应用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用。不但让学生能完成本节知识的学习,还能较好的复习前面内容,前后衔接。 (2)、了解构成函数的三要素,缺一不可,会求简单函数的定义域、值域、判断两个函数是否相等等。 (3)、掌握定义域的表示法,如区间形式等。 (4)、了解映射的概念。 2、过程与方法 函数的概念及其相关知识点较为抽象,难以理解,学习中应注意以下问题: (1)、首先通过多媒体给出实例,在让学生以小组的形式开展讨论,运用猜想、观察、分析、归纳、类比、概括等方法,探索发现知识,找出不同点与相同点,实现学生在教学中的主体地位,培养学生的创新意识。 (2)、面向全体学生,根据课本大纲要求授课。 (3)、加强学法指导,既要让学生学会本节知识点,也要让学生会自我主动学习。 3、情感态度与价值观 (1)、通过多媒体给出实例,学生小组讨论,给出自己的结论和观点,加上老师的辅助讲解,培养学生的实践能力和和大胆创新意识,教案《《函数》教学设计》。 (2)、让学生自己讨论给出结论,培养学生的自我动手能力和小组团结能力。 三、教学器材 多媒体ppt课件 四、教学过程 教学内容教师活动学生活动设计意图 《函数》课题的引入(用时一分钟)配着简单的音乐,从简单的例子引入函数应用的广泛,将同学们的视线引入函数的学习上听着悠扬的音乐,让同学们的视线全注意在老师所讲的内容上从贴近学生生活入手,符合学生的认知特点。让学生在领略大自然的美妙与和谐中进入函数的世界,体现了新课标的理念:从知识走向生活 知识回顾:初中所学习的函数知识(用时两分钟)回顾初中函数定义及其性质,简单回顾一次函数、二次函数、正比例函数、反比例函数的性质、定义及简单作图认真听老师回顾初中知识,发现异同在初中知识的基础上引导学生向更深的内容探索、求知。即复习了所学内容又做了即将所学内容的铺垫 思考与讨论:通过给出的问题,引出本节课的主要内容(用时四分钟)给出两个简单的问题让同学们思考,讲述初中内容无法给出正确答案,需要从新的高度来认识函数结合老师所回顾的知识,结合自己所掌握的知识,思考老师给出的问题,小组形式作讨论,从简单问题入手,循序渐进,引出本节主要知识,回顾前一节的集合感念,应用到本节知识,前后联系、衔接 新知识的讲解:从概念开始讲解本节知识(用时三分钟)详细讲解函数的知识,包括定义域,值域等,回到开始提问部分作答做笔记,专心听讲讲解函数概念,由知识讲解回到问题身上,解决问题 对提问的回答(用时五分钟)引导学生自己解决开始所提的两个问题,然后同个互动给出最后答案通过与老师共同讨论回答开始问题,总结更好的掌握函数概念,通过问题来更好的掌握知识 函数区间(用时五分钟)引入函数定义域的表示方法简洁明了的方法表示函数的定义域或值域,在集合表示方法的基础上引入另一种方法 注意点(用时三分钟)做个简单的的回顾新内容,把难点重点提出来,让同学们记住通过问题回答,概念解答,把重难点给出,提醒学生注意内容和知识点 习题(用时十分钟)给出习题,分析题意在稿纸上简单作答,回答问题通过习题练习明确重难点,把不懂的地方记住,课后学生在做进一步的联系 映射(用时两分钟)从概念方面讲解映射的意义,象与原象在新知识的基础上了解更多知识,映射的学习给以后的知识内容做更好的铺垫 小结(用时五分钟)简单讲述本节的知识点,重难点做笔记前后知识的连贯,总结,使学生更明白知识点 五、教学评价 为了使学生了解函数概念产生的背景,丰富函数的感性认识,获得认识客观世界的体验,本课采用"突出主题,循序渐进,反复应用"的方式,在不同的场合考察问题的不同侧面,由浅入深。本课在教学时采用问题探究式的教学方法进行教学,逐层深入,这样使学生对函数概念的理解也逐层深入,从而准确理解函数的概念。函数引入中的三种对应,与初中时学习函数内容相联系,这样起到了承上启下的作用。这三种对应既是函数知识的生长点,又突出了函数的本质,为从数学内部研究函数打下了基础。 在培养学生的能力上,本课也进行了整体设计,通过探究、思考,培养了学生的实践能力、观察能力、判断能力;通过揭示对象之间的内在联系,培养了学生的辨证思维能力;通过实际问题的解决,培养了学生的分析问题、解决问题和表达交流能力;通过案例探究,培养了学生的创新意识与探究能力。 虽然函数概念比较抽象,难以理解,但是通过这样的教学设计,学生基本上能很好地理解了函数概念的本质,达到了课程标准的要求,体现了课改的教学理念。 一、课标要求: 理解充分条件、必要条件与充要条件的意义,会判断充分条件、必要条件与充要条件. 二、知识与方法回顾: 1、充分条件、必要条件与充要条件的概念: 2、从逻辑推理关系上看充分不必要条件、必要不充分条件与充要条件: 3、从集合与集合之间关系上看充分条件、必要条件与充要条件: 4、特殊值法:判断充分条件与必要条件时,往往用特殊值法来否定结论 5、化归思想: 表示p等价于q,等价命题可以进行相互转化,当我们要证明p成立时,就可以转化为证明q成立; 这里要注意原命题 逆否命题、逆命题 否命题只是等价形式之一,对于条件或结论是不等式关系(否定式)的命题一般应用化归思想. 6、数形结合思想: 利用韦恩图(即集合的包含关系)来判断充分不必要条件,必要不充分条件,充要条件. 三、基础训练: 1、 设命题若p则q为假,而若q则p为真,则p是q的 ( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 2、 设集合M,N为是全集U的两个子集,则 是 的 ( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 3、 若 是实数,则 是 的 ( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 四、例题讲解 例1 已知实系数一元二次方程 ,下列结论中正确的是 ( ) (1) 是这个方程有实根的充分不必要条件 (2) 是这个方程有实根的必要不充分条件 (3) 是这个方程有实根的'充要条件 (4) 是这个方程有实根的充分不必要条件 A.(1)(3) B.(3)(4) C.(1)(3)(4) D.(2)(3)(4) 例2 (1)已知h 0,a,bR,设命题甲: ,命题乙: 且 ,问甲是乙的 ( ) (2)已知p:两条直线的斜率互为负倒数,q:两条直线互相垂直,则p是q的 ( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 变式:a = 0是直线 与 平行的 条件; 例3 如果命题p、q都是命题r的必要条件,命题s是命题r的充分条件,命题q是命题s 的充分条件,那么命题p是命题q的 条件;命题s是命题q的 条件;命题r是命题q的 条件. 例4 设命题p:|4x-3| 1,命题q:x2-(2a+1)x+a(a+1) 0,若﹁p是﹁q的必要不充分条件,求实数a的取值范围; 例5 设 是方程 的两个实根,试分析 是两实根 均大于1的什么条件?并给予证明. 五、课堂练习 1、设命题p: ,命题q: ,则p是q的 ( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 2、给出以下四个命题:①若p则q②若﹁r则﹁q③ 若r则﹁s ④若﹁s则q若它们都是真命题,则﹁p是s的 条件; 3、是否存在实数p,使 是 的充分条件?若存在,求出p的取值范围;若不存在说明理由. 六、课堂小结: 七、教学后记: 高三 班 学号 姓名 日期: 月 日 1、 A B是AB=B的 ( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 2、 是 的 ( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 3、 2x2-5x-30的一个必要不充分条件是 ( ) A.- 4、2且b是a+b4且ab的 ( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 5、设a1、b1、c1、a2、b2、c2均为非零实数,不等式a1x2+b1x+c10和a2x2+b2x+c20的解集分别为集合M和N,那么 是 M=N 的 ( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分又不必要条件 6、若命题A: ,命题B: ,则命题A是B的 条件; 7、设条件p:|x|=x,条件q:x2-x,则p是q的 条件; 8、方程mx2+2x+1=0至少有一个负根的充要条件是 ; 9、关于x的方程x2+mx+n = 0有两个小于1的正根的一个充要条件是 ; 10、已知 ,求证: 的充要条件是 ; 11、已知p:-210,q:1-m1+m,若﹁p是﹁q的必要不充分条件,求实数m的取值范围。 12、已知关于x的方程(1-a)x2+(a+2)x-4=0,aR,求: (1)方程有两个正根的充要条件; (2)方程至少有一正根的充要条件. 本文题目:高一数学教案:对数函数及其性质 2.2.2 对数函数及其性质(二) 内容与解析 (一) 内容:对数函数及其性质(二)。 (二) 解析:从近几年高考试题看,主要考查对数函数的性质,一般综合在对数函数中考查.题型主要是选择题和填空题,命题灵活.学习本部分时,要重点掌握对数的运算性质和技巧,并熟练应用. 一、 目标及其解析: (一) 教学目标 (1) 了解对数函数在生产实际中的简单应用.进一步理解对数函数的图象和性质; (2) 学习反函数的概念,理解对数函数和指数函数互为反函数,能够在同一坐标上看出互为反函数的两个函数的图象性质.. (二) 解析 (1)在对数函数 中,底数 且 ,自变量 ,函数值 .作为对数函数的三个要点,要做到道理明白、记忆牢固、运用准确. (2)反函数求法:①确定原函数的值域即新函数的定义域.②把原函数y=f(x)视为方程,用y表示出x.③把x、y互换,同时标明反函数的定义域. 二、 问题诊断分析 在本节课的教学中,学生可能遇到的问题是不易理解反函数,熟练掌握其转化关系是学好对数函数与反函数的基础。 三、 教学支持条件分析 在本节课一次递推的教学中,准备使用PowerPoint 2003。因为使用PowerPoint 2003,有利于提供准确、最核心的文字信息,有利于帮助学生顺利抓住老师上课思路,节省老师板书时间,让学生尽快地进入对问题的分析当中。 四、 教学过程 问题一. 对数函数模型思想及应用: ① 出示例题:溶液酸碱度的测量问题:溶液酸碱度pH的计算公式 ,其中 表示溶液中氢离子的浓度,单位是摩尔/升. (Ⅰ)分析溶液酸碱读与溶液中氢离子浓度之间的关系? (Ⅱ)纯净水 摩尔/升,计算纯净水的酸碱度. ②讨论:抽象出的函数模型? 如何应用函数模型解决问题? 强调数学应用思想 问题二.反函数: ① 引言:当一个函数是一一映射时, 可以把这个函数的'因变量作为一个新函数的自变量, 而把这个函数的自变量新的函数的因变量. 我们称这两个函数为反函数(inverse function) ② 探究:如何由 求出x? ③ 分析:函数 由 解出,是把指数函数 中的自变量与因变量对调位置而得出的. 习惯上我们通常用x表示自变量,y表示函数,即写为 . 那么我们就说指数函数 与对数函数 互为反函数 ④ 在同一平面直角坐标系中,画出指数函数 及其反函数 图象,发现什么性质? ⑤ 分析:取 图象上的几个点,说出它们关于直线 的对称点的坐标,并判断它们是否在 的图象上,为什么? ⑥ 探究:如果 在函数 的图象上,那么P0关于直线 的对称点在函数 的图象上吗,为什么? 由上述过程可以得到什么结论?(互为反函数的两个函数的图象关于直线 对称) ⑦练习:求下列函数的反函数: ; (师生共练 小结步骤:解x ;习惯表示;定义域) (二)小结:函数模型应用思想;反函数概念;阅读P84材料 五、 目标检测 1.(2009全国卷Ⅱ文)函数y= (x 0)的反函数是 A. (x 0) B. (x 0) C. (x 0) D. (x 0) 1.B 解析:本题考查反函数概念及求法,由原函数x 0可知A、C错,原函数y 0可知D错,选B. 2. (2009广东卷理)若函数 是函数 的反函数,其图像经过点 ,则 ( ) A. B. C. D. 2. B 解析: ,代入 ,解得 ,所以 ,选B. 3. 求函数 的反函数 3.解析:显然y0,反解 可得, ,将x,y互换可得 .可得原函数的反函数为 . 【总结】2013年已经到来,新的一年数学网会为您整理更多更好的文章,希望本文高一数学教案:对数函数及其性质能给您带来帮助! 【摘要】鉴于大家对数学网十分关注,小编在此为大家整理了此文空间几何体的三视图和直观图高一数学教案,供大家参考! 本文题目:空间几何体的三视图和直观图高一数学教案 第一课时 1.2.1中心投影与平行投影 1.2.2空间几何体的三视图 教学要求:能画出简单几何体的三视图;能识别三视图所表示的空间几何体. 教学重点:画出三视图、识别三视图. 教学难点:识别三视图所表示的空间几何体. 教学过程: 一、新课导入: 1. 讨论:能否熟练画出上节所学习的几何体?工程师如何制作工程设计图纸? 2. 引入:从不同角度看庐山,有古诗:横看成岭侧成峰,远近高低各不同。不识庐山真面目,只缘身在此山中。 对于我们所学几何体,常用三视图和直观图来画在纸上. 三视图:观察者从不同位置观察同一个几何体,画出的空间几何体的图形; 直观图:观察者站在某一点观察几何体,画出的空间几何体的图形. 用途:工程建设、机械制造、日常生活. 二、讲授新课: 1. 教学中心投影与平行投影: ① 投影法的提出:物体在光线的照射下,就会在地面或墙壁上产生影子。人们将这种自然现象加以科学的抽象,总结其中的规律,提出了投影的方法。 ② 中心投影:光由一点向外散射形成的投影。其投影的大小随物体与投影中心间距离的变化而变化,所以其投影不能反映物体的实形. ③ 平行投影:在一束平行光线照射下形成的投影. 分正投影、斜投影. 讨论:点、线、三角形在平行投影后的结果. 2. 教学柱、锥、台、球的三视图: 定义三视图:正视图(光线从几何体的前面向后面正投影);侧视图(从左向右)、俯视图 讨论:三视图与平面图形的关系? 画出长方体的三视图,并讨论所反应的长、宽、高 结合球、圆柱、圆锥的模型,从正面(自前而后)、侧面(自左而右)、上面(自上而下)三个角度,分别观察,画出观察得出的各种结果. 正视图、侧视图、俯视图. ③ 试画出:棱柱、棱锥、棱台、圆台的三视图. ( ④ 讨论:三视图,分别反应物体的哪些关系(上下、左右、前后)?哪些数量(长、宽、高) 正视图反映了物体上下、左右的位置关系,即反映了物体的高度和长度; 俯视图反映了物体左右、前后的位置关系,即反映了物体的长度和宽度; 侧视图反映了物体上下、前后的位置关系,即反映了物体的高度和宽度。 ⑤ 讨论:根据以上的三视图,如何逆向得到几何体的形状. (试变化以上的三视图,说出相应几何体的摆放) 3. 教学简单组合体的三视图: ① 画出教材P16 图(2)、(3)、(4)的三视图. ② 从教材P16思考中三视图,说出几何体. 4. 练习: ① 画出正四棱锥的三视图. 画出右图所示几何体的三视图. ③ 右图是一个物体的正视图、左视图和俯视图,试描述该物体的形状. 5. 小结:投影法;三视图;顺与逆 三、巩固练习: 练习:教材P17 1、2、3、4 第二课时 1.2.3 空间几何体的直观图 教学要求:掌握斜二测画法;能用斜二测画法画空间几何体的直观图. 教学重点:画出直观图. 一、教材分析 本节课选自《普通高中课程标准数学教科书—必修1》(人教A版)《1。2。1函数的概念》共3课时,本节课是第1课时。生活中的许多现象如物体运动,气温升降,投资理财等都可以用函数的模型来刻画,是我们更好地了解自己、认识世界和预测未来的重要工具。函数是数学的重要的基础概念之一,是高等数学重多学科的基础概念和重要的研究对象。同时函数也是物理学等其他学科的重要基础知识和研究工具,教学内容中蕴涵着极其丰富的辩证思想。 二、学生学习情况分析 函数是中学数学的主体内容,学生在中学阶段对函数的认识分三个阶段: (一)初中从运动变化的角度来刻画函数,初步认识正比例、反比例、一次和二次函数; (二)高中用集合与对应的观点来刻画函数,研究函数的性质,学习典型的对、指、幂和三解函数; (三)高中用导数工具研究函数的单调性和最值。 1、有利条件 现代教育心理学的研究认为,有效的概念教学是建立在学生已有知识结构的基础上的,因此教师在设计教学的过程中必须注意在学生已有知识结构中寻找新概念的固着点,引导学生通过同化或顺应,掌握新概念,进而完善知识结构。 初中用运动变化的观点对函数进行定义的,它反映了历人们对它的一种认识,而且这个定义较为直观,易于接受,因此按照由浅入深、力求符合学生认知规律的内容编排原则,函数概念在初中介绍到这个程度是合适的。也为我们用集合与对应的观点研究函数打下了一定的基础。 2、不利条件 用集合与对应的观点来定义函数,形式和内容上都是比较抽象的`,这对学生的理解能力是一个挑战,是本节课教学的一个不利条件。 三、教学目标分析 课标要求:通过丰富实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;了解构成函数的要素,会求一些简单函数的定义域和值域。 1、知识与能力目标: ⑴能从集合与对应的角度理解函数的概念,更要理解函数的本质属性; ⑵理解函数的三要素的含义及其相互关系; ⑶会求简单函数的定义域和值域 2、过程与方法目标: ⑴通过丰富实例,使学生建立起函数概念的背景,体会函数是描述变量之间依赖关系的数学模型; ⑵在函数实例中,通过对关键词的强调和引导使学发现它们的共同特征,在此基础上再用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用。 3、情感、态度与价值观目标: 感受生活中的数学,感悟事物之间联系与变化的辩证唯物主义观点。 四、教学重点、难点分析 1、教学重点:对函数概念的理解,用集合与对应的语言来刻画函数; 重点依据:初中是从变量的角度来定义函数,高中是用集合与对应的语言来刻画函数。二者反映的本质是一致的,即“函数是一种对应关系”。但是,初中定义并未完全揭示出函数概念的本质,对y?1这样的函数用运动变化的观点也很难解释。在以函数为重要内容的高中阶段,课本应将函数定义为两个数集之间的一种对应关系,按照这种观点,使我们对函数概念有了更深一层的认识,也很容易说明y?1这函数表达式。因此,分析两种函数概念的关系,让学生融会贯通地理解函数的概念应为本节课的重点。 突出重点:重点的突出依赖于对函数概念本质属性的把握,使学生通过表面的语言描述抓住概念的精髓。 2、教学难点: 第一:从实际问题中提炼出抽象的概念; 第二:符号“y=f(x)”的含义的理解。 难点依据:数学语言的抽象概括难度较大,对符号y=f(x)的理解会受到以前知识的负迁移。 突破难点:难点的突破要依托丰富的实例,从集合与对应的角度恰当地引导,而对抽象符号的理解则要结合函数的三要素和小例子进行说明。 五、教法与学法分析 1、教法分析 本节课我主要采用教师导学法、知识迁移法和知识对比法,从学生熟悉的丰富实例出发,关注学生的原有的知识基础,注重概念的形成过程,从初中的函数概念自然过度到函数的近代定我。 2、学法分析 在教学过程中我注意在教学中引导学生用模型法分析函数问题、通过自主学习法总结“区间”的知识。 【摘要】鉴于大家对数学网十分关注,小编在此为大家整理了此文空间几何体的三视图和直观图高一数学教案,供大家参考! 本文题目:空间几何体的三视图和直观图高一数学教案 第一课时 1.2.1中心投影与平行投影 1.2.2空间几何体的三视图 教学要求:能画出简单几何体的三视图;能识别三视图所表示的空间几何体. 教学重点:画出三视图、识别三视图. 教学难点:识别三视图所表示的空间几何体. 教学过程: 一、新课导入: 1. 讨论:能否熟练画出上节所学习的几何体?工程师如何制作工程设计图纸? 2. 引入:从不同角度看庐山,有古诗:横看成岭侧成峰,远近高低各不同。不识庐山真面目,只缘身在此山中。 对于我们所学几何体,常用三视图和直观图来画在纸上. 三视图:观察者从不同位置观察同一个几何体,画出的空间几何体的图形; 直观图:观察者站在某一点观察几何体,画出的空间几何体的图形. 用途:工程建设、机械制造、日常生活. 二、讲授新课: 1. 教学中心投影与平行投影: ① 投影法的提出:物体在光线的照射下,就会在地面或墙壁上产生影子。人们将这种自然现象加以科学的抽象,总结其中的规律,提出了投影的方法。 ② 中心投影:光由一点向外散射形成的投影。其投影的大小随物体与投影中心间距离的变化而变化,所以其投影不能反映物体的实形. ③ 平行投影:在一束平行光线照射下形成的投影. 分正投影、斜投影. 讨论:点、线、三角形在平行投影后的结果. 2. 教学柱、锥、台、球的三视图: 定义三视图:正视图(光线从几何体的前面向后面正投影);侧视图(从左向右)、俯视图 讨论:三视图与平面图形的关系? 画出长方体的三视图,并讨论所反应的长、宽、高 结合球、圆柱、圆锥的模型,从正面(自前而后)、侧面(自左而右)、上面(自上而下)三个角度,分别观察,画出观察得出的'各种结果. 正视图、侧视图、俯视图. ③ 试画出:棱柱、棱锥、棱台、圆台的三视图. ( ④ 讨论:三视图,分别反应物体的哪些关系(上下、左右、前后)?哪些数量(长、宽、高) 正视图反映了物体上下、左右的位置关系,即反映了物体的高度和长度; 俯视图反映了物体左右、前后的位置关系,即反映了物体的长度和宽度; 侧视图反映了物体上下、前后的位置关系,即反映了物体的高度和宽度。 ⑤ 讨论:根据以上的三视图,如何逆向得到几何体的形状. (试变化以上的三视图,说出相应几何体的摆放) 3. 教学简单组合体的三视图: ① 画出教材P16 图(2)、(3)、(4)的三视图. ② 从教材P16思考中三视图,说出几何体. 4. 练习: ① 画出正四棱锥的三视图. 画出右图所示几何体的三视图. ③ 右图是一个物体的正视图、左视图和俯视图,试描述该物体的形状. 5. 小结:投影法;三视图;顺与逆 三、巩固练习: 练习:教材P17 1、2、3、4 第二课时 1.2.3 空间几何体的直观图 教学要求:掌握斜二测画法;能用斜二测画法画空间几何体的直观图. 教学重点:画出直观图. 第一节 集合的含义与表示 学时:1学时 [学习引导] 一、自主学习 1.阅读课本 . 2.回答问题: ⑴本节内容有哪些概念和知识点? ⑵尝试说出相关概念的含义? 3完成 练习 4小结 二、方法指导 1、要结合例子理解集合的概念,能说出常用的数集的名称和符号。 2、理解集合元素的`特性,并会判断元素与集合的关系 3、掌握集合的表示方法,并会正确运用它们表示一些简单集合。 4、在学习中要特别注意理解空集的意义和记法 [思考引导] 一、提问题 1.集合中的元素有什么特点? 2、集合的常用表示法有哪些? 3、集合如何分类? 4.元素与集合具有什么关系?如何用数学语言表述? 5集合 和 是否相同? 二、变题目 1.下列各组对象不能构成集合的是( ) A.北京大学2008级新生 B.26个英文字母 C.著名的艺术家 D.2008年北京奥运会中所设定的比赛项目 2.下列语句:①0与 表示同一个集合; ②由1,2,3组成的集合可表示为 或 ; ③方程 的解集可表示为 ; ④集合 可以用列举法表示。 其中正确的是( ) A.①和④ B.②和③ C.② D.以上语句都不对 [总结引导] 1.集合中元素的三特性: 2.集合、元素、及其相互关系的数学符号语言的表示和理解: 3.空集的含义: [拓展引导] 1.课外作业: 习题11第 题; 2.若集合 ,求实数 的值; 3.若集合 只有一个元素,则实数 的值为 ;若 为空集,则 的取值范围是 . 撰稿:程晓杰 审稿:宋庆 1.1 集合含义及其表示 教学目标:理解集合的概念;掌握集合的三种表示方法,理解集合中元素的三性及元素与集合的关系;掌握有关符号及术语。 教学过程: 一、阅读下列语句: 1) 全体自然数0,1,2,3,4,5, 2) 代数式 . 3) 抛物线 上所有的点 4) 今年本校高一(1)(或(2))班的全体学生 5) 本校实验室的所有天平 6) 本班级全体高个子同学 7) 著名的科学家 上述每组语句所描述的对象是否是确定的? 二、1)集合: 2)集合的元素: 3)集合按元素的个数分,可分为1)__________2)_________ 三、集合中元素的三个性质: 1)___________2)___________3)_____________ 四、元素与集合的关系:1)____________2)____________ 五、特殊数集专用记号: 1)非负整数集(或自然数集)______2)正整数集_____3)整数集_______ 4)有理数集______5)实数集_____ 6)空集____ 六、集合的表示方法: 1) 2) 3) 七、例题讲解: 例1、 中三个元素可构成某一个三角形的三边长,那么此三角形一定不是 ( ) A,直角三角形 B,锐角三角形 C,钝角三角形 D,等腰三角形 例2、用适当的方法表示下列集合,然后说出它们是有限集还是无限集? 1)地球上的四大洋构成的集合; 2)函数 的全体 值的集合; 3)函数 的全体自变量 的集合; 4)方程组 解的集合; 5)方程 解的集合; 6)不等式 的解的集合; 7)所有大于0且小于10的奇数组成的集合; 8)所有正偶数组成的集合; 例3、用符号 或 填空: 1) ______Q ,0_____N, _____Z,0_____ 2) ______ , _____ 3)3_____ , 4)设 , , 则 例4、用列举法表示下列集合; 1. 2. 3. 4. 例5、用描述法表示下列集合 1.所有被3整除的数 2.图中阴影部分点(含边界)的坐标的集合 课堂练习: 例6、设含有三个实数的集合既可以表示为 ,也可以表示为 ,则 的值等于___________ 例7、已知: ,若 中元素至多只有一个,求 的.取值范围。 思考题:数集A满足:若 ,则 ,证明1):若2 ,则集合中还有另外两个元素;2)若 则集合A不可能是单元素集合。 小结: 作业 班级 姓名 学号 1. 下列集合中,表示同一个集合的是 ( ) A . M= ,N= B. M= ,N= C. M= ,N= D. M= ,N= 2. M= ,X= ,Y= , , .则 ( ) A . B. C. D. 3. 方程组 的解集是____________________. 4. 在(1)难解的题目,(2)方程 在实数集内的解,(3)直角坐标平面内第四象限的一些点,(4)很多多项式。能够组成集合的序号是________________. 5. 设集合 A= , B= , C= , D= ,E= 。 其中有限集的个数是____________. 6. 设 ,则集合 中所有元素的和为 7. 设x,y,z都是非零实数,则用列举法将 所有可能的值组成的集合表示为 8. 已知f(x)=x2-ax+b,(a,b R),A= ,B= , 若A= ,试用列举法表示集合B= 9. 把下列集合用另一种方法表示出来: (1) (2) (3) (4) 10. 设a,b为整数,把形如a+b 的一切数构成的集合记为M,设 ,试判断x+y,x-y,xy是否属于M,说明理由。 11. 已知集合A= (1) 若A中只有一个元素,求a的值,并求出这个元素; (2) 若A中至多只有一个元素,求a的取值集合。 12.若-3 ,求实数a的值。 【总结】20xx年已经到来,新的一年数学网会为您整理更多更好的文章,希望本文高一数学教案:集合含义及其表示能给您带来帮助! 第一节 集合的含义与表示 学时:1学时 [学习引导] 一、自主学习 1.阅读课本 . 2.回答问题: ⑴本节内容有哪些概念和知识点? ⑵尝试说出相关概念的含义? 3完成 练习 4小结 二、方法指导 1、要结合例子理解集合的概念,能说出常用的数集的名称和符号。 2、理解集合元素的特性,并会判断元素与集合的关系 3、掌握集合的表示方法,并会正确运用它们表示一些简单集合。 4、在学习中要特别注意理解空集的意义和记法 [思考引导] 一、提问题 1.集合中的`元素有什么特点? 2、集合的常用表示法有哪些? 3、集合如何分类? 4.元素与集合具有什么关系?如何用数学语言表述? 5集合 和 是否相同? 二、变题目 1.下列各组对象不能构成集合的是( ) A.北京大学2008级新生 B.26个英文字母 C.著名的艺术家 D.2008年北京奥运会中所设定的比赛项目 2.下列语句:①0与 表示同一个集合; ②由1,2,3组成的集合可表示为 或 ; ③方程 的解集可表示为 ; ④集合 可以用列举法表示。 其中正确的是( ) A.①和④ B.②和③ C.② D.以上语句都不对 [总结引导] 1.集合中元素的三特性: 2.集合、元素、及其相互关系的数学符号语言的表示和理解: 3.空集的含义: [拓展引导] 1.课外作业: 习题11第 题; 2.若集合 ,求实数 的值; 3.若集合 只有一个元素,则实数 的值为 ;若 为空集,则 的取值范围是 . 撰稿:程晓杰 审稿:宋庆 教学目标: 1、掌握对数的运算性质,并能理解推导这些法则的依据和过程; 2、能较熟练地运用法则解决问题; 教学重点: 对数的运算性质 教学过程: 一、问题情境: 1、指数幂的运算性质; 2、问题:对数运算也有相应的运算性质吗? 二、学生活动: 1、观察教材P59的表2—3—1,验证对数运算性质、 2、理解对数的运算性质、 3、证明对数性质、 三、建构数学: 1)引导学生验证对数的运算性质、 2)推导和证明对数运算性质、 3)运用对数运算性质解题、 探究: ①简易语言表达:“积的对数=对数的和”…… ②有时逆向运用公式运算:如 ③真数的取值范围必须是:不成立;不成立、 ④注意:, 四、数学运用: 1、例题: 例1、(教材P60例4)求下列各式的值: (1);(2)125;(3)(补充)lg、 例2、(教材P60例4)已知,,求下列各式的值(结果保留4位小数) (1);(2)、 例3、用,,表示下列各式: 例4、计算: (1);(2);(3) 2、练习: P60(练习)1,2,4,5、 五、回顾小结: 本节课学习了以下内容:对数的`运算法则,公式的逆向使用、 六、课外作业: P63习题5 补充: 1、求下列各式的值: (1)6—3;(2)lg5+lg2;(3)3+、 2、用lgx,lgy,lgz表示下列各式: (1)lg(xyz);(2)lg;(3);(4)、 3、已知lg2=0、3010,lg3=0、4771,求下列各对数的值(精确到小数点后第四位) (1)lg6;(2)lg;(3)lg;(4)lg32、 经典例题 已知关于 的方程 的实数解在区间 ,求 的取值范围。 反思提炼:1.常见的四种指数方程的一般解法 (1)方程 的解法: (2)方程 的解法: (3)方程 的解法: (4)方程 的解法: 2.常见的三种对数方程的一般解法 (1)方程 的解法: (2)方程 的解法: (3)方程 的解法: 3.方程与函数之间的转化。 4.通过数形结合解决方程有无根的问题。 课后作业: 1.对正整数n,设曲线 在x=2处的切线与轴交点的纵坐标为 ,则数列 的前n项和的公式是 [答案] 2n+1-2 [解析] ∵=xn(1-x),∴′=(xn)′(1-x)+(1-x)′xn=nxn-1(1-x)-xn. f ′(2)=-n2n-1-2n=(-n-2)2n-1. 在点x=2处点的纵坐标为=-2n. ∴切线方程为+2n=(-n-2)2n-1(x-2). 令x=0得,=(n+1)2n, ∴an=(n+1)2n, ∴数列ann+1的前n项和为2(2n-1)2-1=2n+1-2. 2.在平面直角坐标系 中,已知点P是函数 的图象上的动点,该图象在P处的切线 交轴于点M,过点P作 的垂线交轴于点N,设线段MN的中点的纵坐标为t,则t的最大值是_____________ 解析:设 则 ,过点P作 的垂线 ,所以,t在 上单调增,在 单调减, 。 教学目标: (1)了解集合的表示方法; (2)能正确选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用; 教学重点:掌握集合的表示方法; 教学难点:选择恰当的表示方法; 教学过程: 一、复习回顾: 1.集合和元素的定义;元素的三个特性;元素与集合的关系;常用的数集及表示。 2.集合{1,2}、{(1,2)}、{(2,1)}、{2,1}的`元素分别是什么?有何关系 二、新课教学 (一).集合的表示方法 我们可以用自然语言和图形语言来描述一个集合,但这将给我们带来很多不便,除此之外还常用列举法和描述法来表示集合。 (1) 列举法:把集合中的元素一一列举出来,并用花括号“ ”括起来表示集合的方法叫列举法。 如:{1,2,3,4,5},{x2,3x+2,5y3-x,x2+y2},…; 说明:1.集合中的元素具有无序性,所以用列举法表示集合时不必考 虑元素的顺序。 2.各个元素之间要用逗号隔开; 3.元素不能重复; 4.集合中的元素可以数,点,代数式等; 5.对于含有较多元素的集合,用列举法表示时,必须把元素间的规律显示清楚后方能用省略号,象自然数集N用列举法表示为 例1.(课本例1)用列举法表示下列集合: (1)小于10的所有自然数组成的集合; (2)方程x2=x的所有实数根组成的集合; (3)由1到20以内的所有质数组成的集合; (4)方程组 的解组成的集合。 思考2:(课本P4的思考题)得出描述法的定义: (2)描述法:把集合中的元素的公共属性描述出来,写在花括号{ }内。 具体方法:在花括号内先写上表示这个集合元素的一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征。 一般格式: 如:{x|x-3>2},{(x,y)|y=x2+1},{x|直角三角形},…; 说明: 1.课本P5最后一段话; 2.描述法表示集合应注意集合的代表元素,如{(x,y)|y= x2+3x+2}与 {y|y= x2+3x+2}是不同的两个集合,只要不引起误解,集合的代表元素也可省略,例如:{x|整数},即代表整数集Z。 辨析:这里的{ }已包含“所有”的意思,所以不必写{全体整数}。下列写法{实数集},{R}也是错误的。 例2.(课本例2)试分别用列举法和描述法表示下列集合: (1)方程x2—2=0的所有实数根组成的集合; (2)由大于10小于20的所有整数组成的集合; (3)方程组 的解。 思考3:(课本P6思考) 说明:列举法与描述法各有优点,应该根据具体问题确定采用哪种表示法,要注意,一般集合中元素较多或有无限个元素时,不宜采用列举法。 (二).课堂练习: 1.课本P6练习2; 2.用适当的方法表示集合:大于0的所有奇数 3.集合A={x| ∈Z,x∈N},则它的元素是 。 4.已知集合A={x|-3 归纳小结: 本节课从实例入手,介绍了集合的常用表示方法,包括列举法、描述法。 作业布置: 1. 习题1.1,第3.4题; 2. 课后预习集合间的基本关系. 教材:逻辑联结词 目的:要求学生了解复合命题的意义,并能指出一个复合命题是有哪些简单命题与逻辑联结词,并能由简单命题构成含有逻辑联结词的复合命题。 过程: 一、提出课题:简单逻辑、逻辑联结词 二、命题的概念: 例:125 ① 3是12的约数 ② 0.5是整数 ③ 定义:可以判断真假的'语句叫命题。正确的叫真命题,错误的叫假命题。 如:①②是真命题,③是假命题 反例:3是12的约数吗? x5 都不是命题 不涉及真假(问题) 无法判断真假 上述①②③是简单命题。 这种含有变量的语句叫开语句(条件命题)。 三、复合命题: 1.定义:由简单命题再加上一些逻辑联结词构成的命题叫复合命题。 2.例: (1)10可以被2或5整除④ 10可以被2整除或10可以被5整除 (2)菱形的对角线互相 菱形的对角线互相垂直且菱形的 垂直且平分⑤ 对角线互相平分 (3)0.5非整数⑥ 非0.5是整数 观察:形成概念:简单命题在加上或且非这些逻辑联结词成复合命题。 3.其实,有些概念前面已遇到过 如:或:不等式 x2x60的解集 { x | x2或x3 } 且:不等式 x2x60的解集 { x | 23 } 即 { x | x2且x3 } 四、复合命题的构成形式 如果用 p, q, r, s表示命题,则复合命题的形式接触过的有以下三种: 即: p或q (如 ④) 记作 pq p且q (如 ⑤) 记作 pq 非p (命题的否定) (如 ⑥) 记作 p 小结:1.命题 2.复合命题 3.复合命题的构成形式 1.1 集合含义及其表示 教学目标:理解集合的概念;掌握集合的三种表示方法,理解集合中元素的三性及元素与集合的关系;掌握有关符号及术语。 教学过程: 一、阅读下列语句: 1) 全体自然数0,1,2,3,4,5, 2) 代数式 . 3) 抛物线 上所有的点 4) 今年本校高一(1)(或(2))班的全体学生 5) 本校实验室的所有天平 6) 本班级全体高个子同学 7) 著名的科学家 上述每组语句所描述的对象是否是确定的? 二、1)集合: 2)集合的元素: 3)集合按元素的个数分,可分为1)__________2)_________ 三、集合中元素的三个性质: 1)___________2)___________3)_____________ 四、元素与集合的关系:1)____________2)____________ 五、特殊数集专用记号: 1)非负整数集(或自然数集)______2)正整数集_____3)整数集_______ 4)有理数集______5)实数集_____ 6)空集____ 六、集合的表示方法: 1) 2) 3) 七、例题讲解: 例1、 中三个元素可构成某一个三角形的三边长,那么此三角形一定不是 ( ) A,直角三角形 B,锐角三角形 C,钝角三角形 D,等腰三角形 例2、用适当的方法表示下列集合,然后说出它们是有限集还是无限集? 1)地球上的四大洋构成的集合; 2)函数 的全体 值的集合; 3)函数 的全体自变量 的集合; 4)方程组 解的集合; 5)方程 解的集合; 6)不等式 的解的集合; 7)所有大于0且小于10的奇数组成的集合; 8)所有正偶数组成的集合; 例3、用符号 或 填空: 1) ______Q ,0_____N, _____Z,0_____ 2) ______ , _____ 3)3_____ , 4)设 , , 则 例4、用列举法表示下列集合; 1. 2. 3. 4. 例5、用描述法表示下列集合 1.所有被3整除的数 2.图中阴影部分点(含边界)的坐标的集合 课堂练习: 例6、设含有三个实数的集合既可以表示为 ,也可以表示为 ,则 的值等于___________ 例7、已知: ,若 中元素至多只有一个,求 的取值范围。 思考题:数集A满足:若 ,则 ,证明1):若2 ,则集合中还有另外两个元素;2)若 则集合A不可能是单元素集合。 小结: 作业 班级 姓名 学号 1. 下列集合中,表示同一个集合的是 ( ) A . M= ,N= B. M= ,N= C. M= ,N= D. M= ,N= 2. M= ,X= ,Y= , , .则 ( ) A . B. C. D. 3. 方程组 的解集是____________________. 4. 在(1)难解的题目,(2)方程 在实数集内的解,(3)直角坐标平面内第四象限的一些点,(4)很多多项式。能够组成集合的序号是________________. 5. 设集合 A= , B= , C= , D= ,E= 。 其中有限集的个数是____________. 6. 设 ,则集合 中所有元素的和为 7. 设x,y,z都是非零实数,则用列举法将 所有可能的值组成的集合表示为 8. 已知f(x)=x2-ax+b,(a,b R),A= ,B= , 若A= ,试用列举法表示集合B= 9. 把下列集合用另一种方法表示出来: (1) (2) (3) (4) 10. 设a,b为整数,把形如a+b 的一切数构成的集合记为M,设 ,试判断x+y,x-y,xy是否属于M,说明理由。 11. 已知集合A= (1) 若A中只有一个元素,求a的值,并求出这个元素; (2) 若A中至多只有一个元素,求a的取值集合。 12.若-3 ,求实数a的值。 【总结】20xx年已经到来,新的一年数学网会为您整理更多更好的文章,希望本文高一数学教案:集合含义及其表示能给您带来帮助! 一、教材分析 1、 教材的地位和作用: 函数是数学中最主要的概念之一,而函数概念贯穿在中学数学的始终,概念是数学的基础,概念性强是函数理论的一个显著特点,只有对概念作到深刻理解,才能正确灵活地加以应用。本课中对函数概念理解的程度会直接影响其它知识的学习,所以函数的第一课时非常的重要。 2、 教学目标及确立的依据: 教学目标: (1) 教学知识目标:了解对应和映射概念、理解函数的近代定义、函数三要素,以及对函数抽象符号的理解。 (2) 能力训练目标:通过教学培养的抽象概括能力、逻辑思维能力。 (3) 德育渗透目标:使懂得一切事物都是在不断变化、相互联系和相互制约的辩证唯物主义观点。 教学目标确立的依据: 函数是数学中最主要的概念之一,而函数概念贯穿整个中学数学,如:数、式、方程、函数、排列组合、数列极限等都是以函数为中心的代数。加强函数教学可帮助学好其他的内容。而掌握好函数的概念是学好函数的基石。 3、教学重点难点及确立的依据: 教学重点:映射的概念,函数的近代概念、函数的三要素及函数符号的理解。 教学难点:映射的概念,函数近代概念,及函数符号的理解。 重点难点确立的依据: 映射的概念和函数的近代定义抽象性都比较强,要求学生的理性认识的能力也比较高,对于刚刚升入高中不久的来说不易理解。而且由于函数在高考中可以以低、中、高挡题出现,所以近年来有一种“函数热”的趋势,所以本节的重点难点必然落在映射的概念和函数的近代定义及函数符号的理解与运用上。 二、教材的处理: 将映射的定义及类比手法的运用作为本课突破难点的关键。 函数的定义,是以集合、映射的观点给出,这与初中教材变量值与对应观点给出不一样了,从而给本身就很抽象的函数概念的理解带来更大的困难。为解决这难点,主要是从实际出发调动学生的学习热情与参与意识,运用引导对比的手法,启发引导学生进行有目的的反复比较几个概念的异同,使真正对函数的概念有很准确的认识。 三、教学方法和学法 教学方法:讲授为主,自主预习为辅。 依据是:因为以新的观点认识函数概念及函数符号与运用时,更重要的是必须给学生讲清楚概念及注意事项,并通过师生的共同讨论来帮助学生深刻理解,这样才能使函数的概念及符号的运用在学生的思想和知识结构中打上深刻的烙印,为能学好后面的知识打下坚实的基础。 学法:四、教学程序 一、课程导入 通过举以下一个通俗的例子引出通过某个对应法则可以将两个非空集合联系在一起。 例1:把高一(12)班和高一(11)全体同学分别看成是两个集合,问,通过“找好朋友”这个对应法则是否能将这两个集合的.某些元素联系在一起? 二. 新课讲授: (1) 接着再通过幻灯片给出六组学生熟悉的数集的对应关系引导学生归纳它们的共同性质(一对一,多对一),进而给出映射的概念,表示符号f:a→b,及原像和像的定义。强调指出非空集合a到非空集合b的映射包括三部分即非空集合a、b和a到b的对应法则 f。进一步引导判断一个从a到b的对应是否为映射的关键是看a中的任意一个元素通过对应法则f在b中是否有唯一确定的元素与之对应。 (2)巩固练习课本52页第八题。 此练习能让更深刻的认识到映射可以“一对多,多对一”但不能是“一对多”。 例1. 给出学生初中学过的函数的传统定义和几个简单的一次、二次函数,通过画图表示这些函数的对应关系,引导发现它们是特殊的映射进而给出函数的近代定义(设a、b是两个非空集合,如果按照某种对应法则f,使得a中的任何一个元素在集合b中都有唯一的元素与之对应则这样的对应叫做集合a到集合b的映射,它包括非空集合a和b以及从a到b的对应法则f),并说明把函f:a→b记为y=f(x),其中自变量x的取值范围a叫做函数的定义域,与x的值相对应的y(或f(x))值叫做函数值,函数值的集合{ f(x):x∈a}叫做函数的值域。 并把函数的近代定义与映射定义比较使认识到函数与映射的区别与联系。(函数是非空数集到非空数集的映射)。 再以让判断的方式给出以下关于函数近代定义的注意事项:2. 函数是非空数集到非空数集的映射。 3. f表示对应关系,在不同的函数中f的具体含义不一样。 4. f(x)是一个符号,不表示f与x的乘积,而表示x经过f作用后的结果。 5. 集合a中的数的任意性,集合b中数的唯一性。 66. “f:a→b”表示一个函数有三要素:法则f(是核心),定义域a(要优先),值域c(上函数值的集合且c∈b)。 三.讲解例题 例1.问y=1(x∈a)是不是函数? 解:y=1可以化为y=0*x+1 画图可以知道从x的取值范围到y的取值范围的对应是“多对一”是从非空数集到非空数集的映射,所以它是函数。 [注]:引导从集合,映射的观点认识函数的定义。 四.课时小结: 1. 映射的定义。 2. 函数的近代定义。 3. 函数的三要素及符号的正确理解和应用。 4. 函数近代定义的五大注意点。 五.课后作业及板书设计 书本p51 习题2.1的1、2写在书上3、4、5上交。 预习函数三要素的定义域,并能求简单函数的定义域。 函数(一) 一、映射: 2.函数近代定义: 例题练习 二、函数的定义 [注]1—5 1.函数传统定义 三、作业: 一、教材分析 函数作为初等数学的核心内容,贯穿于整个初等数学体系之中。函数这一章在高中数学中,起着承上启下的作用,它是对初中函数概念的承接与深化。在初中,只停留在具体的几个简单类型的函数上,把函数看成变量之间的依赖关系,而高中阶段不仅把函数看成变量之间的依赖关系,更是从“变量说”到“对应说”,这是对函数本质特征的进一步认识,也是学生认识上的一次飞跃。这一章内容渗透了函数的思想,集合的思想以及数学建模的思想等内容,这些内容的学习,无疑对学生今后的学习起着深刻的影响。 本节《函数的概念》是函数这一章的起始课。概念是数学的基础,只有对概念做到深刻理解,才能正确灵活地加以应用。本课从集合间的对应来描绘函数概念,起到了上承集合,下引函数的作用。也为进一步学习函数这一章的其它内容提供了方法和依据。 二、重难点分析 根据对上述对教材的分析及新课程标准的要求,确定函数的概念既是本节课的重点,也应该是本章的难点。 三、学情分析 1、有利因素:一方面学生在初中已经学习了变量观点下的函数定义,并具体研究了几类最简单的函数,对函数已经有了一定的感性认识;另一方面在本书第一章学生已经学习了集合的概念,这为学习函数的现代定义打下了基础。 2、不利因素:函数在初中虽已讲过,不过较为肤浅,本课主要是从两个集合间对应来描绘函数概念,是一个抽象过程,要求学生的抽象、分析、概括的能力比较高,学生学起来有一定的难度。 四、目标分析 1、理解函数的概念,会用函数的定义判断函数,会求一些最基本的函数的定义域、值域。 2、通过对实际问题分析、抽象与概括,培养学生抽象、概括、归纳知识以及逻辑思维、建模等方面的能力。 3、通过对函数概念形成的探究过程,培养学生发现问题,探索问题,不断超越的创新品质。 五、教法学法 本节课的教学以学生为主体、教师是数学课堂活动的组织者、引导者和参与者,我一方面精心设计问题情景,引导学生主动探索。另一方面,依据本节为概念学习的特点,以问题的提出、问题的解决为主线,始终在学生知识的“最近发展区”设置问题,倡导学生主动参与,通过不断探究、发现,在师生互动、生生互动中,让学习过程成为学生心灵愉悦的主动认知过程。 学法方面,学生通过对新旧两种函数定义的对比,在集合论的观点下初步建构出函数的概念。在理解函数概念的基础上,建构出函数的定义域、值域的概念,并初步掌握它们的求法。 高一必修二数学教案41、教材(教学内容) 本课时主要研究任意角三角函数的定义。三角函数是一类重要的基本初等函数,是描述周期性现象的重要数学模型,本课时的内容具有承前启后的重要作用:承前是因为可以用函数的定义来抽象和规范三角函数的定义,同时也可以类比研究函数的模式和方法来研究三角函数;启后是指定义了三角函数之后,就可以进一步研究三角函数的性质及图象特征,并体会三角函数在解决具有周期性变化规律问题中的作用,从而更深入地领会数学在其它领域中的重要应用、 2、设计理念 本堂课采用“问题解决”教学模式,在课堂上既充分发挥学生的主体作用,又体现了教师的引导作用。整堂课先通过问题引导学生梳理已有的知识结构,展开合理的联想,提出整堂课要解决的中心问题:圆周运动等具周期性规律运动可以建立函数模型来刻画吗?从而引导学生带着问题阅读和钻研教材,引发认知冲突,再通过问题引导学生改造或重构已有的认知结构,并运用类比方法,形成“任意角三角函数的定义”这一新的概念,最后通过例题与练习,将任意角三角函数的定义,内化为学生新的认识结构,从而达成教学目标、 3、教学目标 知识与技能目标:形成并掌握任意角三角函数的定义,并学会运用这一定义,解决相关问题、 过程与方法目标:体会数学建模思想、类比思想和化归思想在数学新概念形成中的重要作用、 情感态度与价值观目标:引导学生学会阅读数学教材,学会发现和欣赏数学的`理性之美、 4、重点难点 重点:任意角三角函数的定义、 难点:任意角三角函数这一概念的理解(函数模型的建立)、类比与化归思想的渗透、 5、学情分析 学生已有的认知结构:函数的概念、平面直角坐标系的概念、任意角和弧度制的相关概念、以直角三角形为载体的锐角三角函数的概念、在教学过程中,需要先将学生的以直角三角形为载体的锐角三角函数的概念改造为以象限角为载体的锐角三角函数,并形成以角的终边与单位园的交点的坐标来表示的锐角三角函数的概念,再拓展到任意角的三角函数的定义,从而使学生形成新的认知结构、 6、教法分析 “问题解决”教学法,是以问题为主线,引导和驱动学生的思维和学习活动,并通过问题,引导学生的质疑和讨论,充分展示学生的思维过程,最后在解决问题的过程中形成新的认知结构、这种教学模式能较好地体现课堂上老师的主导作用,也能充分发挥课堂上学生的主体作用、 7、学法分析 本课时先通过“阅读”学习法,引导学生改造已有的认知结构,再通过类比学习法引导学生形成“任意角的三角函数的定义”,最后引导学生运用类比学习法,来研究三角函数一些基本性质和符号问题,从而使学生形成新的认识结构,达成教学目标。 【内容与解析】 本节课要学的内容有函数的概念指的是函数的概念及符号的理解,理解它关键就是能用集合与对应的语言刻画函数,体会对应关系在刻画函数概念中的作用。学生已经学过了集合并且初中对函数的概念已经作了介绍,本节课的内容函数的概念就是在此基础上的发展的。由于它还与基本初等函数和函数模型等内容有必要的联系,所以在本学科有着很重要的地位,是学习后面知识的基础,是本学科的核心内容。教学的重点是函数的概念,函数的三要素,所以解决重点的关键是通过实例领悟构成函数的三个要素;会求一些简单函数的定义域和值域。 【教学目标与解析】 1、教学目标 (1)理解函数的概念; (2)了解区间的概念; 2、目标解析 (1)理解函数的概念就是指能用集合与对应的语言刻画函数,体会对应关系在刻画函数概念中的作用; (2)了解区间的概念就是指能够体会用区间表示数集的意义和作用; 【问题诊断分析】 在本节课的教学中,学生可能遇到的问题是函数的概念及符号的理解,产生这一问题的原因是:函数本身就是一个抽象的概念,对学生来说一个难点。要解决这一问题,就要在通过从实际问题中抽象概况函数的概念,培养学生的抽象概况能力,其中关键是理论联系实际,把抽象转化为具体。 【教学过程】 问题1:一枚炮弹发射后,经过26s落到地面击中目标.炮弹的射高为845m,且炮弹距离地面的高度h(单位:m)随时间t(单位:s)变化的规律是:h=130t-5t2. 1.1这里的变量t的变化范围是什么?变量h的变化范围是什么?试用集合表示? 1.2高度变量h与时间变量t之间的对应关系是否为函数?若是,其自变量是什么? 设计意图:通过以上问题,让学生正确理解让学生体会用解析式或图象刻画两个变量之间的依赖关系,从问题的实际意义可知,在t的变化范围内任给一个t,按照给定的对应关系,都有唯一的一个高度h与之对应。 问题2:分析教科书中的实例(2),引导学生看图并启发:在t的变化t按照给定的图象,都有唯一的一个臭氧层空洞面积S与之相对应。 问题3:要求学生仿照实例(1)、(2),描述实例(3)中恩格尔系数和时间的关系。 设计意图:通过这些问题,让学生理解得到函数的定义,培养学生的归纳、概况的能力。 问题4:上述三个实例中变量之间的关系都是函数,那么从集合与对应的观点分析,函数还可以怎样定义? 4.1在一个函数中,自变量x和函数值y的变化范围都是集合,这两个集合分别叫什么名称? 4.2在从集合A到集合B的一个函数f:A→B中,集合A是函数的定义域,集合B是函数的值域吗?怎样理解f(x)=1,x∈R? 4.3一个函数由哪几个部分组成?如果给定函数的定义域和对应关系,那么函数的值域确定吗?两个函数相等的条件是什么? 【例题】: 例1求下列函数的定义域 分析:求定义域就是使式子有意义的x的取值所构成的集合;定义域一定是集合! 例2已知函数 分析:理解函数f(x)的意义 例3下列函数中哪个与函数相等? 例4在下列各组函数中与是否相等?为什么? 分析: (1)两个函数相等,要求定义域和对应关系都一致; (2)用x还是用其它字母来表示自变量对函数实质而言没有影响. 【课堂目标检1测】 教科书第19页1、2. 【课堂小结】 1、理解函数的定义,函数的三要素,会球简单的函数的定义域和函数值; 2、理解区间是表示数集的一种方法,会把不等式转化为区间。 教学目标 1.理解等比数列的概念,掌握等比数列的通项公式,并能运用公式解决简单的问题. (1)正确理解等比数列的定义,了解公比的概念,明确一个数列是等比数列的限定条件,能根据定义判断一个数列是等比数列,了解等比中项的概念; (2)正确认识使用等比数列的表示法,能灵活运用通项公式求等比数列的首项、公比、项数及指定的项; (3)通过通项公式认识等比数列的性质,能解决某些实际问题. 2.通过对等比数列的研究,逐步培养学生观察、类比、归纳、猜想等思维品质. 3.通过对等比数列概念的归纳,进一步培养学生严密的思维习惯,以及实事求是的科学态度. 教学建议 教材分析 (1)知识结构 等比数列是另一个简单常见的数列,研究内容可与等差数列类比,首先归纳出等比数列的定义,导出通项公式,进而研究图像,又给出等比中项的概念,最后是通项公式的应用. (2)重点、难点分析 教学重点是等比数列的定义和对通项公式的认识与应用,教学难点在于等比数列通项公式的推导和运用. ①与等差数列一样,等比数列也是特殊的数列,二者有许多相同的性质,但也有明显的区别,可根据定义与通项公式得出等比数列的特性,这些是教学的重点. ②虽然在等差数列的学习中曾接触过不完全归纳法,但对学生来说仍然不熟悉;在推导过程中,需要学生有一定的观察分析猜想能力;第一项是否成立又须补充说明,所以通项公式的推导是难点. ③对等差数列、等比数列的综合研究离不开通项公式,因而通项公式的灵活运用既是重点又是难点. 教学建议 (1)建议本节课分两课时,一节课为等比数列的概念,一节课为等比数列通项公式的应用. (2)等比数列概念的引入,可给出几个具体的例子,由学生概括这些数列的相同特征,从而得到等比数列的定义.也可将几个等差数列和几个等比数列混在一起给出,由学生将这些数列进行分类,有一种是按等差、等比来分的,由此对比地概括等比数列的定义. (3)根据定义让学生分析等比数列的公比不为0,以及每一项均不为0的特性,加深对概念的理解. (4)对比等差数列的表示法,由学生归纳等比数列的各种表示法. 启发学生用函数观点认识通项公式,由通项公式的结构特征画数列的图象. (5)由于有了等差数列的研究经验,等比数列的研究完全可以放手让学生自己解决,教师只需把握课堂的节奏,作为一节课的组织者出现. (6)可让学生相互出题,解题,讲题,充分发挥学生的主体作用. 教学设计示例 课题:等比数列的概念 教学目标 1.通过教学使学生理解等比数列的概念,推导并掌握通项公式. 2.使学生进一步体会类比、归纳的思想,培养学生的观察、概括能力. 3.培养学生勤于思考,实事求是的精神,及严谨的科学态度. 教学重点,难点 重点、难点是等比数列的定义的归纳及通项公式的推导. 教学用具 投影仪,多媒体软件,电脑. 教学方法 讨论、谈话法. 教学过程 一、提出问题 给出以下几组数列,将它们分类,说出分类标准.(幻灯片) ①-2,1,4,7,10,13,16,19,… ②8,16,32,64,128,256,… ③1,1,1,1,1,1,1,… ④243,81,27,9,3,1, , ,… ⑤31,29,27,25,23,21,19,… ⑥1,-1,1,-1,1,-1,1,-1,… ⑦1,-10,100,-1000,10000,-100000,… ⑧0,0,0,0,0,0,0,… 由学生发表意见(可能按项与项之间的关系分为递增数列、递减数列、常数数列、摆动数列,也可能分为等差、等比两类),统一一种分法,其中②③④⑥⑦为有共同性质的一类数列(学生看不出③的情况也无妨,得出定义后再考察③是否为等比数列). 二、讲解新课 请学生说出数列②③④⑥⑦的共同特性,教师指出实际生活中也有许多类似的例子,如变形虫分裂问题.假设每经过一个单位时间每个变形虫都分裂为两个变形虫,再假设开始有一个变形虫,经过一个单位时间它分裂为两个变形虫,经过两个单位时间就有了四个变形虫,…,一直进行下去,记录下每个单位时间的变形虫个数得到了一列数 这个数列也具有前面的几个数列的共同特性,这是我们将要研究的另一类数列——等比数列. (这里播放变形虫分裂的多媒体软件的第一步) 等比数列(板书) 1.等比数列的定义(板书) 根据等比数列与等差数列的名字的区别与联系,尝试给等比数列下定义.学生一般回答可能不够完美,多数情况下,有了等差数列的基础是可以由学生概括出来的.教师写出等比数列的定义,标注出重点词语. 请学生指出等比数列②③④⑥⑦各自的公比,并思考有无数列既是等差数列又是等比数列.学生通过观察可以发现③是这样的数列,教师再追问,还有没有其他的例子,让学生再举两例.而后请学生概括这类数列的一般形式,学生可能说形如 的数列都满足既是等差又是等比数列,让学生讨论后得出结论:当 时,数列 既是等差又是等比数列,当 时,它只是等差数列,而不是等比数列.教师追问理由,引出对等比数列的认识: 2.对定义的认识(板书) (1)等比数列的首项不为0; (2)等比数列的每一项都不为0,即 ; 问题:一个数列各项均不为0是这个数列为等比数列的什么条件? (3)公比不为0. 用数学式子表示等比数列的定义. 是等比数列 ①.在这个式子的写法上可能会有一些争议,如写成 ,可让学生研究行不行,好不好;接下来再问,能否改写为 是等比数列 ?为什么不能? 式子 给出了数列第 项与第 项的数量关系,但能否确定一个等比数列?(不能)确定一个等比数列需要几个条件?当给定了首项及公比后,如何求任意一项的值?所以要研究通项公式. 3.等比数列的通项公式(板书) 问题:用 和 表示第 项 . ①不完全归纳法 ②叠乘法 ,… , ,这 个式子相乘得 ,所以 . (板书)(1)等比数列的通项公式 得出通项公式后,让学生思考如何认识通项公式. (板书)(2)对公式的认识 由学生来说,最后归结: ①函数观点; ②方程思想(因在等差数列中已有认识,此处再复习巩固而已). 这里强调方程思想解决问题.方程中有四个量,知三求一,这是公式最简单的应用,请学生举例(应能编出四类问题).解题格式是什么?(不仅要会解题,还要注意规范表述的训练) 如果增加一个条件,就多知道了一个量,这是公式的更高层次的应用,下节课再研究.同学可以试着编几道题. 三、小结 1.本节课研究了等比数列的概念,得到了通项公式; 2.注意在研究内容与方法上要与等差数列相类比; 3.用方程的思想认识通项公式,并加以应用. 重点 理解角与角的相关概念;掌握角的度量单位以及单位之间的换算. 难点 理解角与角的相关概念;掌握角的度量单位以及单位之间的换算. 一、创设情境,导入新知 展示实物:时钟,圆规,折扇等. (1)观察实物与图片,你发现其中有什么相同图形吗?学生回答,教师点评,注意鼓励学生. (2)你能把观察得到的图形画在本子上或黑板上吗?这是一些什么图形?思考,动手画一画. (3)从黑板上这些不同的图形中,你能归纳出它们的共同特点吗? 学生相互交流并回答,挖掘和利用现实生活中与角相关的背景,让学生在现实背景中认识角,培养学生的动手能力.引导学生观察并归纳角的共同点,进而引入课题. 二、自主合作,感受新知 回顾以前学的知识、阅读课文并结合生活实际,完成“预习导学”部分. 三、师生互动,理解新知 探究点一:角的概念及表示方法 活动一:从生活中认识角 我们看物体时,有视角,钟表的指针转动也形成角.请同学们看课本后回答下面问题. (1)角是一个几何图形,请大家说说,角是由什么图形构成的?(学生回答,教师点评,注意鼓励学生) (2)如果我们把角看作是一条射线绕它的端点旋转围成的图形,那么始边和终边又指什么? 教师总结:角有两个定义,一个是静态的定义,把角看作由一点出发的两条射线组成的图形;另一个定义是动态的,把角看作一条射线绕端点旋转所形成的图形,把开始位置的射线叫做始边,把终止位置的射线叫做终边. (3)请同学们说一说,我们日常生活中,哪些地方有角.(学生举例) 活动二:角的表示方法 我们怎样表示角呢?请同学们看课本上说了几种表示方法?(学生先看书,后回答) 教师总结:(1)用三个大写字母可以表示一个角,比如∠AOB. 练习:谁能指出下列各角的顶点和两条边? 注意:①三个字母的顺序有规定,顶点的字母必须写在中间. ②顶点的字母不一定用O,角的始边与终边的字母也可以随意. (2)当一个顶点只有一个角时,也可以用顶点的字母表示.比如,下面的角可以表示为∠O. 练习:判断下列角可以用顶点的字母表示吗? (3)用数字或小写的希腊字母表示角.(注意:角中不能有角) 练习:下面表示角的方法,哪个是正确的?哪个是错误的? 探究点二:角的度量 活动三:角的度量 (1)请同学们借助量角器画出下列各角: ①30° ②45° ③60° ④90° ⑤120° ⑥150° ⑦62° ⑧105° 学生画图,教师指导.(根据需要教师可先做示范) (2)任意画一个角,用量角器测量角的大小.提问:如果这个角的度数不是整数,应该怎样表示这个角的度数呢?引出角的度量单位是度、分、秒. 教师总结:它们之间的关系是:1°=60′,1′=60″ (强调度、分、秒是60进制,不是十进制). (3)还有什么单位是60进制? (4)让学生画一个1°角,感受1°角有多大. 四、应用迁移,运用新知 1.角的定义 例1 下列说法中,正确的是( ) A.两条射线组成的图形叫做角 B.有公共端点的两条线段组成的图形叫做角 C.角可以看作是由一条射线绕着它的端点旋转而形成的图形 D.角可以看作是由一条线段绕着它的端点旋转而形成的图形 解析:A.有公共端点的两条射线组成的图形叫做角,故错误;B.根据A可得B错误;C.角可以看作是由一条射线绕着它的端点旋转而形成的图形,正确;D.据C可得D错误. 方法总结:此题考查了角的定义,有公共端点的两条不重合的射线组成的图形叫做角.这个公共端点叫做角的顶点,这两条射线叫做角的两条边. 2.角的表示方法 例2 下列四个图形中,能用∠1、∠AOB、∠O三种方法表示同一个角的图形是( ) A B C D 解析:在角的顶点处有多个角时,用一个字母表示这个角,这种方法是错误的.所以A、C、D错误. 方法总结:角的两个基本元素中,边是两条射线, 顶点是这两条射线的公共端点. 3.判断角的数量 例3 如图所示,在∠AOB的内部有3条射线,则图中角的个数为( ) A.10 B.15 C.5 D.20 解析:可以根据图形依次数出角的个数;或者根据公式求图中角的个数是12×5×(5-1)=10. 方法总结:若从一点发出n条射线,则构成12n(n-1)个角. 4.角的度量 例4 见课本P144例1. 方法总结:用度、分、秒表示的角度和用度表示的角度的相互转化的过程正好相反:大单位化小单位,乘以进率;而小单位化大单位要除以进率. 五、尝试练习,掌握新知 课本P144练习第1、2题、P145练习第1、2题. “随堂演练”部分. 六、课堂小结,梳理新知 通过本节课的学习,我们都学到了哪些数学知识和方法? 本节课学习了角及角的有关概念,并会表示角;知道角的度量单位,并能进行单位的转换;会把角的知识与现实生活相联系,用角的知识解释生活中的一些现象. 七、深化练习,巩固新知 课本P145~146习题4.4第1~4题. “课时作业”部分. 【学习目标】 1、感受数学探索的成功感,提高学习数学的兴趣; 2、经历诱导公式的探索过程,感悟由未知到已知、复杂到简单的数学转化思想。 3、能借助单位圆的对称性理解记忆诱导公式,能用诱导公式进行简单应用。 【学习重点】三角函数的诱导公式的理解与应用 【学习难点】诱导公式的推导及灵活运用 【知识链接】(1)单位圆中任意角α的正弦、余弦的定义 (2)对称性:已知点P(x,),那么,点P关于x轴、轴、原点对称的点坐标 【学习过程】 一、预习自学 阅读书第19页——20页内容,通过对-α、π-α、π+α、2π-α、α的终边与单位圆的交点的对称性规律的探究,结合单位圆中任意角的正弦、余弦的定义,从中自我发现归纳出三角函数的诱导公式,并写出下列关系: (1)- 407[导学案]4.4单位圆的对称性与诱导公式与 407[导学案]4.4单位圆的对称性与诱导公式 的正弦函数、余弦函数关系 (2)角407[导学案]4.4单位圆的对称性与诱导公式与角 407[导学案]4.4单位圆的对称性与诱导公式 的正弦函数、余弦函数关系 (3)角 407[导学案]4.4单位圆的对称性与诱导公式与角 407[导学案]4.4单位圆的对称性与诱导公式 的.正弦函数、余弦函数关系 (4)角 407[导学案]4.4单位圆的对称性与诱导公式与角 407[导学案]4.4单位圆的对称性与诱导公式 的正弦函数、余弦函数关系 二、合作探究 探究1、求下列函数值,思考你用到了哪些三角函数诱导公式?试总结一下求任意角的三角函数值的过程与方法。 (1) 407[导学案]4.4单位圆的对称性与诱导公式 (2) 407[导学案]4.4单位圆的对称性与诱导公式 (3)sin(-1650°); 探究2: 化简: 407[导学案]4.4单位圆的对称性与诱导公式 407[导学案]4.4单位圆的对称性与诱导公式(先逐个化简) 探究3、利用单位圆求满足 407[导学案]4.4单位圆的对称性与诱导公式 的角的集合。 三、学习小结 (1)你能说说化任意角的正(余)弦函数为锐角正(余)弦函数的一般思路吗? (2)本节学习涉及到什么数学思想方法? (3)我的疑惑有 【达标检测】 1、在单位圆中,角α的终边与单位圆交于点P(- 407[导学案]4.4单位圆的对称性与诱导公式 , 407[导学案]4.4单位圆的对称性与诱导公式 ), 则sin(-α)= ;cs(α±π)= ;cs(π-α)= 2.求下列函数值: (1)sin( 407[导学案]4.4单位圆的对称性与诱导公式 )= ; (2) cs210&rd;= 3、若csα=-1/2,则α的集合S= 教学目标 1.了解函数的单调性和奇偶性的概念,掌握有关证明和判断的基本方法. (1)了解并区分增函数,减函数,单调性,单调区间,奇函数,偶函数等概念. (2)能从数和形两个角度认识单调性和奇偶性. (3)能借助图象判断一些函数的单调性,能利用定义证明某些函数的单调性;能用定义判断某些函数的奇偶性,并能利用奇偶性简化一些函数图象的绘制过程. 2.通过函数单调性的证明,提高学生在代数方面的推理论证能力;通过函数奇偶性概念的形成过程,培养学生的观察,归纳,抽象的能力,同时渗透数形结合,从特殊到一般的数学思想. 3.通过对函数单调性和奇偶性的理论研究,增学生对数学美的体验,培养乐于求索的精神,形成科学,严谨的研究态度. 教学建议 一、知识结构 (1)函数单调性的概念。包括增函数、减函数的定义,单调区间的概念函数的单调性的判定方法,函数单调性与函数图像的关系. (2)函数奇偶性的概念。包括奇函数、偶函数的定义,函数奇偶性的判定方法,奇函数、偶函数的图像. 二、重点难点分析 (1)本节教学的重点是函数的单调性,奇偶性概念的形成与认识.教学的难点是领悟函数单调性, 奇偶性的本质,掌握单调性的证明. (2)函数的单调性这一性质学生在初中所学函数中曾经了解过,但只是从图象上直观观察图象的上升与下降,而现在要求把它上升到理论的高度,用准确的数学语言去刻画它.这种由形到数的翻译,从直观到抽象的转变对高一的学生来说是比较困难的,因此要在概念的形成上重点下功夫.单调性的证明是学生在函数内容中首次接触到的代数论证内容,学生在代数论证推理方面的能力是比较弱的,许多学生甚至还搞不清什么是代数证明,也没有意识到它的重要性,所以单调性的证明自然就是教学中的难点. 三、教法建议 (1)函数单调性概念引入时,可以先从学生熟悉的一次函数,,二次函数.反比例函数图象出发,回忆图象的增减性,从这点感性认识出发,通过问题逐步向抽象的定义靠拢.如可以设计这样的问题:图象怎么就升上去了?可以从点的坐标的角度,也可以从自变量与函数值的关系的角度来解释,引导学生发现自变量与函数值的的变化规律,再把这种规律用数学语言表示出来.在这个过程中对一些关键的词语(某个区间,任意,都有)的`理解与必要性的认识就可以融入其中,将概念的形成与认识结合起来. (2)函数单调性证明的步骤是严格规定的,要让学生按照步骤去做,就必须让他们明确每一步的必要性,每一步的目的,特别是在第三步变形时,让学生明确变换的目标,到什么程度就可以断号,在例题的选择上应有不同的变换目标为选题的标准,以便帮助学生总结规律. 函数的奇偶性概念引入时,可设计一个课件,以的图象为例,让自变量互为相反数,观察对应的函数值的变化规律,先从具体数值开始,逐渐让在数轴上动起来,观察任意性,再让学生把看到的用数学表达式写出来.经历了这样的过程,再得到等式时,就比较容易体会它代表的是无数多个等式,是个恒等式.关于定义域关于原点对称的问题,也可借助课件将函数图象进行多次改动,帮助学生发现定义域的对称性,同时还可以借助图象说明定义域关于原点对称只是函数具备奇偶性的必要条件而不是充分条件. 一、教学目标 1.知识与技能:掌握画三视图的基本技能,丰富学生的空间想象力。 2.过程与方法:通过学生自己的亲身实践,动手作图,体会三视图的作用。 3.情感态度与价值观:提高学生空间想象力,体会三视图的作用。 二、教学重点: 画出简单几何体、简单组合体的三视图; 难点:识别三视图所表示的空间几何体。 三、学法指导: 观察、动手实践、讨论、类比。 四、教学过程 (一)创设情景,揭开课题 展示庐山的风景图——“横看成岭侧看成峰,远近高低各不同”,这说明从不同的角度看同一物体视觉的效果可能不同,要比较真实反映出物体,我们可从多角度观看物体。 (二)讲授新课 1、中心投影与平行投影: 中心投影:光由一点向外散射形成的投影; 平行投影:在一束平行光线照射下形成的投影。 正投影:在平行投影中,投影线正对着投影面。 2、三视图: 正视图:光线从几何体的前面向后面正投影,得到的投影图; 侧视图:光线从几何体的左面向右面正投影,得到的投影图; 俯视图:光线从几何体的上面向下面正投影,得到的投影图。 三视图:几何体的正视图、侧视图和俯视图统称为几何体的三视图。 三视图的画法规则:长对正,高平齐,宽相等。 长对正:正视图与俯视图的长相等,且相互对正; 高平齐:正视图与侧视图的高度相等,且相互对齐; 宽相等:俯视图与侧视图的宽度相等。 3、画长方体的三视图: 正视图、侧视图和俯视图分别是从几何体的正前方、正左方和正上方观察到有几何体的正投影图,它们都是平面图形。 长方体的三视图都是长方形,正视图和侧视图、侧视图和俯视图、俯视图和正视图都各有一条边长相等。 4、画圆柱、圆锥的三视图: 5、探究:画出底面是正方形,侧面是全等的三角形的棱锥的三视图。 高一数学教案(汇编15篇) 作为一名辛苦耕耘的教育工作者,通常需要用到教案来辅助教学,编写教案有利于我们准确把握教材的重点与难点,进而选择恰当的教学方法。优秀的教案都具备一些什么特点呢?下面是小编为大家收集的高一数学教案,供大家参考借鉴,希望可以帮助到有需要的朋友。 教学目的: (1)使学生初步理解集合的概念,知道常用数集的概念及记法 (2)使学生初步了解“属于”关系的意义 (3)使学生初步了解有限集、无限集、空集的意义 教学重点:集合的基本概念及表示方法 教学难点:运用集合的两种常用表示方法——列举法与描述法,正确表示一些简单的集合 授课类型:新授课 课时安排:1课时 教 具:多媒体、实物投影仪 内容分析: 1、集合是中学数学的一个重要的基本概念 在小学数学中,就渗透了集合的初步概念,到了初中,更进一步应用集合的语言表述一些问题 例如,在代数中用到的有数集、解集等;在几何中用到的有点集 至于逻辑,可以说,从开始学习数学就离不开对逻辑知识的掌握和运用,基本的逻辑知识在日常生活、学习、工作中,也是认识问题、研究问题不可缺少的工具 这些可以帮助学生认识学习本章的意义,也是本章学习的基础 把集合的初步知识与简易逻辑知识安排在高中数学的最开始,是因为在高中数学中,这些知识与其他内容有着密切联系,它们是学习、掌握和使用数学语言的'基础 例如,下一章讲函数的概念与性质,就离不开集合与逻辑 本节首先从初中代数与几何涉及的集合实例入手,引出集合与集合的元素的概念,并且结合实例对集合的概念作了说明 然后,介绍了集合的常用表示方法,包括列举法、描述法,还给出了画图表示集合的例子 这节课主要学习全章的引言和集合的基本概念 学习引言是引发学生的学习兴趣,使学生认识学习本章的意义 本节课的教学重点是集合的基本概念 集合是集合论中的原始的、不定义的概念 在开始接触集合的概念时,主要还是通过实例,对概念有一个初步认识 教科书给出的“一般地,某些指定的对象集在一起就成为一个集合,也简称集 ”这句话,只是对集合概念的描述性说明 教学过程: 一、复习引入: 1、简介数集的发展,复习最大公约数和最小公倍数,质数与和数; 2、教材中的章头引言; 3、集合论的创始人——康托尔(德国数学家)(见附录); 4、“物以类聚”,“人以群分”; 5、教材中例子(P4) 二、讲解新课: 阅读教材第一部分,问题如下: (1)有那些概念?是如何定义的? (2)有那些符号?是如何表示的? (3)集合中元素的特性是什么? (一)集合的有关概念: 由一些数、一些点、一些图形、一些整式、一些物体、一些人组成的我们说,每一组对象的全体形成一个集合,或者说,某些指定的对象集在一起就成为一个集合,也简称集.集合中的每个对象叫做这个集合的元素. 定义:一般地,某些指定的对象集在一起就成为一个集合、 1、集合的概念 (1)集合:某些指定的对象集在一起就形成一个集合(简称集) (2)元素:集合中每个对象叫做这个集合的元素 2、常用数集及记法 (1)非负整数集(自然数集):全体非负整数的集合 记作N,(2)正整数集:非负整数集内排除0的集 记作N或N+ (3)整数集:全体整数的集合 记作Z ,(4)有理数集:全体有理数的集合 记作Q ,(5)实数集:全体实数的集合 记作R 注:(1)自然数集与非负整数集是相同的,也就是说,自然数集包括数0 (2)非负整数集内排除0的集 记作N或N+ Q、Z、R等其它数集内排除0的集,也是这样表示,例如,整数集内排除0的集,表示成Z 3、元素对于集合的隶属关系 (1)属于:如果a是集合A的元素,就说a属于A,记作a∈A (2)不属于:如果a不是集合A的元素,就说a不属于A,记作 4、集合中元素的特性 (1)确定性:按照明确的判断标准给定一个元素或者在这个集合里,或者不在,不能模棱两可 (2)互异性:集合中的元素没有重复 (3)无序性:集合中的元素没有一定的顺序(通常用正常的顺序写出) 5、⑴集合通常用大写的拉丁字母表示,如A、B、C、P、Q……元素通常用小写的拉丁字母表示,如a、b、c、p、q…… ⑵“∈”的开口方向,不能把a∈A颠倒过来写 三、练习题: 1、教材P5练习1、2 2、下列各组对象能确定一个集合吗? (1)所有很大的实数 (不确定) (2)好心的人 (不确定) (3)1,2,2,3,4,5、(有重复) 3、设a,b是非零实数,那么 可能取的值组成集合的元素是_-2,0,2__ 4、由实数x,-x,|x|, 所组成的集合,最多含( A ) (A)2个元素 (B)3个元素 (C)4个元素 (D)5个元素 5、设集合G中的元素是所有形如a+b (a∈Z, b∈Z)的数,求证: (1) 当x∈N时, x∈G; (2) 若x∈G,y∈G,则x+y∈G,而 不一定属于集合G 证明(1):在a+b (a∈Z, b∈Z)中,令a=x∈N,b=0,则x= x+0= a+b ∈G,即x∈G 证明(2):∵x∈G,y∈G,∴x= a+b (a∈Z, b∈Z),y= c+d (c∈Z, d∈Z) ∴x+y=( a+b )+( c+d )=(a+c)+(b+d) ∵a∈Z, b∈Z,c∈Z, d∈Z ∴(a+c) ∈Z, (b+d) ∈Z ∴x+y =(a+c)+(b+d) ∈G,又∵ 不一定都是整数,∴ = 不一定属于集合G 四、小结:本节课学习了以下内容: 1、集合的有关概念:(集合、元素、属于、不属于) 2、集合元素的性质:确定性,互异性,无序性 3、常用数集的定义及记法 一、教材分析 1、 教材的地位和作用: 函数是数学中最主要的概念之一,而函数概念贯穿在中学数学的始终,概念是数学的基础,概念性强是函数理论的一个显著特点,只有对概念作到深刻理解,才能正确灵活地加以应用。本课中对函数概念理解的程度会直接影响其它知识的学习,所以函数的第一课时非常的重要。 2、 教学目标及确立的依据: 教学目标: (1) 教学知识目标:了解对应和映射概念、理解函数的近代定义、函数三要素,以及对函数抽象符号的理解。 (2) 能力训练目标:通过教学培养的抽象概括能力、逻辑思维能力。 (3) 德育渗透目标:使懂得一切事物都是在不断变化、相互联系和相互制约的辩证唯物主义观点。 教学目标确立的依据: 函数是数学中最主要的概念之一,而函数概念贯穿整个中学数学,如:数、式、方程、函数、排列组合、数列极限等都是以函数为中心的代数。加强函数教学可帮助学好其他的内容。而掌握好函数的概念是学好函数的基石。 3、教学重点难点及确立的依据: 教学重点:映射的概念,函数的近代概念、函数的三要素及函数符号的理解。 教学难点:映射的概念,函数近代概念,及函数符号的理解。 重点难点确立的依据: 映射的概念和函数的近代定义抽象性都比较强,要求学生的理性认识的能力也比较高,对于刚刚升入高中不久的来说不易理解。而且由于函数在高考中可以以低、中、高挡题出现,所以近年来有一种“函数热”的趋势,所以本节的重点难点必然落在映射的概念和函数的近代定义及函数符号的理解与运用上。 二、教材的处理: 将映射的定义及类比手法的运用作为本课突破难点的关键。 函数的定义,是以集合、映射的观点给出,这与初中教材变量值与对应观点给出不一样了,从而给本身就很抽象的函数概念的理解带来更大的困难。为解决这难点,主要是从实际出发调动学生的学习热情与参与意识,运用引导对比的手法,启发引导学生进行有目的`的反复比较几个概念的异同,使真正对函数的概念有很准确的认识。 三、教学方法和学法 教学方法:讲授为主,自主预习为辅。 依据是:因为以新的观点认识函数概念及函数符号与运用时,更重要的是必须给学生讲清楚概念及注意事项,并通过师生的共同讨论来帮助学生深刻理解,这样才能使函数的概念及符号的运用在学生的思想和知识结构中打上深刻的烙印,为能学好后面的知识打下坚实的基础。 学法:四、教学程序 一、课程导入 通过举以下一个通俗的例子引出通过某个对应法则可以将两个非空集合联系在一起。 例1:把高一(12)班和高一(11)全体同学分别看成是两个集合,问,通过“找好朋友”这个对应法则是否能将这两个集合的某些元素联系在一起? 二. 新课讲授: (1) 接着再通过幻灯片给出六组学生熟悉的数集的对应关系引导学生归纳它们的共同性质(一对一,多对一),进而给出映射的概念,表示符号f:a→b,及原像和像的定义。强调指出非空集合a到非空集合b的映射包括三部分即非空集合a、b和a到b的对应法则 f。进一步引导判断一个从a到b的对应是否为映射的关键是看a中的任意一个元素通过对应法则f在b中是否有唯一确定的元素与之对应。 (2)巩固练习课本52页第八题。 此练习能让更深刻的认识到映射可以“一对多,多对一”但不能是“一对多”。 例1. 给出学生初中学过的函数的传统定义和几个简单的一次、二次函数,通过画图表示这些函数的对应关系,引导发现它们是特殊的映射进而给出函数的近代定义(设a、b是两个非空集合,如果按照某种对应法则f,使得a中的任何一个元素在集合b中都有唯一的元素与之对应则这样的对应叫做集合a到集合b的映射,它包括非空集合a和b以及从a到b的对应法则f),并说明把函f:a→b记为y=f(x),其中自变量x的取值范围a叫做函数的定义域,与x的值相对应的y(或f(x))值叫做函数值,函数值的集合{ f(x):x∈a}叫做函数的值域。 并把函数的近代定义与映射定义比较使认识到函数与映射的区别与联系。(函数是非空数集到非空数集的映射)。 再以让判断的方式给出以下关于函数近代定义的注意事项:2. 函数是非空数集到非空数集的映射。 3. f表示对应关系,在不同的函数中f的具体含义不一样。 4. f(x)是一个符号,不表示f与x的乘积,而表示x经过f作用后的结果。 5. 集合a中的数的任意性,集合b中数的唯一性。 66. “f:a→b”表示一个函数有三要素:法则f(是核心),定义域a(要优先),值域c(上函数值的集合且c∈b)。 三.讲解例题 例1.问y=1(x∈a)是不是函数? 解:y=1可以化为y=0*x+1 画图可以知道从x的取值范围到y的取值范围的对应是“多对一”是从非空数集到非空数集的映射,所以它是函数。 [注]:引导从集合,映射的观点认识函数的定义。 四.课时小结: 1. 映射的定义。 2. 函数的近代定义。 3. 函数的三要素及符号的正确理解和应用。 4. 函数近代定义的五大注意点。 五.课后作业及板书设计 书本p51 习题2.1的1、2写在书上3、4、5上交。 预习函数三要素的定义域,并能求简单函数的定义域。 函数(一) 一、映射: 2.函数近代定义: 例题练习 二、函数的定义 [注]1—5 1.函数传统定义 三、作业: 教学目标: 1.进一步理解对数函数的性质,能运用对数函数的相关性质解决对数型函数的常见问题. 2.培养学生数形结合的思想,以及分析推理的能力. 教学重点: 对数函数性质的应用. 教学难点: 对数函数的性质向对数型函数的演变延伸. 教学过程: 一、问题情境 1.复习对数函数的性质. 2.回答下列问题. (1)函数y=log2x的值域是 ; (2)函数y=log2x(x≥1)的值域是 ; (3)函数y=log2x(0 3.情境问题. 函数y=log2(x2+2x+2)的定义域和值域分别如何求呢? 二、学生活动 探究完成情境问题. 三、数学运用 例1 求函数y=log2(x2+2x+2)的定义域和值域. 练习: (1)已知函数y=log2x的值域是[-2,3],则x的范围是________________. (2)函数 ,x(0,8]的值域是 . (3)函数y=log (x2-6x+17)的值域 . (4)函数 的值域是_______________. 例2 判断下列函数的奇偶性: (1)f (x)=lg (2)f (x)=ln( -x) 例3 已知loga 0.75>1,试求实数a 取值范围. 例4 已知函数y=loga(1-ax)(a>0,a≠1). (1)求函数的定义域与值域; (2)求函数的.单调区间. 练习: 1.下列函数(1) y=x-1;(2) y=log2(x-1);(3) y= ;(4)y=lnx,其中值域为R的有 (请写出所有正确结论的序号). 2.函数y=lg( -1)的图象关于 对称. 3.已知函数 (a>0,a≠1)的图象关于原点对称,那么实数m= . 4.求函数 ,其中x [ ,9]的值域. 四、要点归纳与方法小结 (1)借助于对数函数的性质研究对数型函数的定义域与值域; (2)换元法; (3)能画出较复杂函数的图象,根据图象研究函数的性质(数形结合). 五、作业 课本P70~71-4,5,10,11. 重点 理解角与角的相关概念;掌握角的度量单位以及单位之间的换算. 难点 理解角与角的相关概念;掌握角的度量单位以及单位之间的换算. 一、创设情境,导入新知 展示实物:时钟,圆规,折扇等. (1)观察实物与图片,你发现其中有什么相同图形吗?学生回答,教师点评,注意鼓励学生. (2)你能把观察得到的图形画在本子上或黑板上吗?这是一些什么图形?思考,动手画一画. (3)从黑板上这些不同的图形中,你能归纳出它们的共同特点吗? 学生相互交流并回答,挖掘和利用现实生活中与角相关的背景,让学生在现实背景中认识角,培养学生的动手能力.引导学生观察并归纳角的共同点,进而引入课题. 二、自主合作,感受新知 回顾以前学的知识、阅读课文并结合生活实际,完成“预习导学”部分. 三、师生互动,理解新知 探究点一:角的概念及表示方法 活动一:从生活中认识角 我们看物体时,有视角,钟表的指针转动也形成角.请同学们看课本后回答下面问题. (1)角是一个几何图形,请大家说说,角是由什么图形构成的?(学生回答,教师点评,注意鼓励学生) (2)如果我们把角看作是一条射线绕它的端点旋转围成的图形,那么始边和终边又指什么? 教师总结:角有两个定义,一个是静态的定义,把角看作由一点出发的两条射线组成的图形;另一个定义是动态的,把角看作一条射线绕端点旋转所形成的图形,把开始位置的射线叫做始边,把终止位置的射线叫做终边. (3)请同学们说一说,我们日常生活中,哪些地方有角.(学生举例) 活动二:角的表示方法 我们怎样表示角呢?请同学们看课本上说了几种表示方法?(学生先看书,后回答) 教师总结:(1)用三个大写字母可以表示一个角,比如∠AOB. 练习:谁能指出下列各角的顶点和两条边? 注意:①三个字母的顺序有规定,顶点的字母必须写在中间. ②顶点的字母不一定用O,角的始边与终边的字母也可以随意. (2)当一个顶点只有一个角时,也可以用顶点的字母表示.比如,下面的角可以表示为∠O. 练习:判断下列角可以用顶点的字母表示吗? (3)用数字或小写的希腊字母表示角.(注意:角中不能有角) 练习:下面表示角的方法,哪个是正确的?哪个是错误的.? 探究点二:角的度量 活动三:角的度量 (1)请同学们借助量角器画出下列各角: ①30° ②45° ③60° ④90° ⑤120° ⑥150° ⑦62° ⑧105° 学生画图,教师指导.(根据需要教师可先做示范) (2)任意画一个角,用量角器测量角的大小.提问:如果这个角的度数不是整数,应该怎样表示这个角的度数呢?引出角的度量单位是度、分、秒. 教师总结:它们之间的关系是:1°=60′,1′=60″ (强调度、分、秒是60进制,不是十进制). (3)还有什么单位是60进制? (4)让学生画一个1°角,感受1°角有多大. 四、应用迁移,运用新知 1.角的定义 例1 下列说法中,正确的是( ) A.两条射线组成的图形叫做角 B.有公共端点的两条线段组成的图形叫做角 C.角可以看作是由一条射线绕着它的端点旋转而形成的图形 D.角可以看作是由一条线段绕着它的端点旋转而形成的图形 解析:A.有公共端点的两条射线组成的图形叫做角,故错误;B.根据A可得B错误;C.角可以看作是由一条射线绕着它的端点旋转而形成的图形,正确;D.据C可得D错误. 方法总结:此题考查了角的定义,有公共端点的两条不重合的射线组成的图形叫做角.这个公共端点叫做角的顶点,这两条射线叫做角的两条边. 2.角的表示方法 例2 下列四个图形中,能用∠1、∠AOB、∠O三种方法表示同一个角的图形是( ) A B C D 解析:在角的顶点处有多个角时,用一个字母表示这个角,这种方法是错误的.所以A、C、D错误. 方法总结:角的两个基本元素中,边是两条射线, 顶点是这两条射线的公共端点. 3.判断角的数量 例3 如图所示,在∠AOB的内部有3条射线,则图中角的个数为( ) A.10 B.15 C.5 D.20 解析:可以根据图形依次数出角的个数;或者根据公式求图中角的个数是12×5×(5-1)=10. 方法总结:若从一点发出n条射线,则构成12n(n-1)个角. 4.角的度量 例4 见课本P144例1. 方法总结:用度、分、秒表示的角度和用度表示的角度的相互转化的过程正好相反:大单位化小单位,乘以进率;而小单位化大单位要除以进率. 五、尝试练习,掌握新知 课本P144练习第1、2题、P145练习第1、2题. “随堂演练”部分. 六、课堂小结,梳理新知 通过本节课的学习,我们都学到了哪些数学知识和方法? 本节课学习了角及角的有关概念,并会表示角;知道角的度量单位,并能进行单位的转换;会把角的知识与现实生活相联系,用角的知识解释生活中的一些现象. 七、深化练习,巩固新知 课本P145~146习题4.4第1~4题. “课时作业”部分. 一、教材的地位和作用 本节课是“空间几何体的三视图和直观图”的第一课时,主要内容是投影和三视图,这部分知识是立体几何的基础之一,一方面它是对上一节空间几何体结构特征的再一次强化,画出空间几何体的三视图并能将三视图还原为直观图,是建立空间概念的基础和训练学生几何直观能力的有效手段。另外,三视图部分也是新课程高考的重要内容之一,常常结合给出的三视图求给定几何体的表面积或体积设置在选择或填空中。同时,三视图在工程建设、机械制造中有着广泛应用,同时也为学生进入高一层学府学习有很大的帮助。所以在人们的日常生活中有着重要意义。 二、教学目标 (1)知识与技能:能画出简单空间图形(长方体,球,圆柱,圆锥,棱柱等的简易组合)的三视图,能识别上述三视图表示的立体模型,从而进一步熟悉简单几何体的结构特征。 (2)过程与方法:通过直观感知,操作确认,提高学生的空间想象能力、几何直观能力,培养学生的应用意识。 (3)情感、态度与价值观:让感受数学就在身边,提高学生学习立体几何的兴趣,培养学生相互交流、相互合作的精神。 三、设计思路 本节课的主要任务是引导学生完成由立体图形到三视图,再由三视图想象立体图形的复杂过程。直观感知操作确认是新课程几何课堂的一个突出特点,也是这节课的'设计思路。通过大量的多媒体直观,实物直观使学生获得了对三视图的感性认识,通过学生的观察思考,动手实践,操作练习,实现认知从感性认识上升为理性认识。培养学生的空间想象能力,几何直观能力为学习立体几何打下基础。 教学的重点、难点 (一)重点:画出空间几何体及简单组合体的三视图,体会在作三视图时应遵循的“长对正、高平齐、宽相等”的原则。 (二)难点:识别三视图所表示的空间几何体,即:将三视图还原为直观图。 四、学生现实分析 本节首先简单介绍了中心投影和平行投影,中心投影和平行投影是日常生活中最常见的两种投影形式,学生具有这方面的直接经验和基础。投影和三视图虽为高中新增内容,但学生在初中有一定基础,在七年级上册“从不同方向看”的基础上给出了三视图的概念。到了九年级下册则是在介绍了投影后,用投影的方法给出了三视图的概念,这一概念已基本接近了高中的三视图定义,只是在名字上略有差异。初中叫做主视图、左视图、俯视图。进入高中后特别是再次学习和认识了柱、锥、台等几何体的概念后,学生在空间想象能力方面有了一定的提高,所以,给出了正视图、侧视图、俯视图的概念。这些概念的变化也说明了学生年龄特点和思维差异。 五、教学方法 (1)教学方法及教学手段 针对本节课知识是由抽象到具体再到抽象、空间思维难度较大的特点,我采用的教法是直观教学法、启导发现法。 在教学中,通过创设问题情境,充分调动学生学习的积极性和主动性,并引导启发学生动眼、动脑、动手、同时采用多媒体的教学手段,加强直观性和启发性,解决了教师“口说无凭”的尴尬境地,增大了课堂容量,提高了课堂效率。 (2)学法指导 力争在新课程要求的大背景下组织教学,为学生创设良好的问题情境,留给学生充分的思考空间,在学生的辩证和讨论前提下,发挥教师的概括和引领的作用。 一、课标要求: 理解充分条件、必要条件与充要条件的意义,会判断充分条件、必要条件与充要条件. 二、知识与方法回顾: 1、充分条件、必要条件与充要条件的概念: 2、从逻辑推理关系上看充分不必要条件、必要不充分条件与充要条件: 3、从集合与集合之间关系上看充分条件、必要条件与充要条件: 4、特殊值法:判断充分条件与必要条件时,往往用特殊值法来否定结论 5、化归思想: 表示p等价于q,等价命题可以进行相互转化,当我们要证明p成立时,就可以转化为证明q成立; 这里要注意原命题 逆否命题、逆命题 否命题只是等价形式之一,对于条件或结论是不等式关系(否定式)的命题一般应用化归思想. 6、数形结合思想: 利用韦恩图(即集合的包含关系)来判断充分不必要条件,必要不充分条件,充要条件. 三、基础训练: 1、 设命题若p则q为假,而若q则p为真,则p是q的 ( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 2、 设集合M,N为是全集U的两个子集,则 是 的 ( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 3、 若 是实数,则 是 的 ( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 四、例题讲解 例1 已知实系数一元二次方程 ,下列结论中正确的是 ( ) (1) 是这个方程有实根的充分不必要条件 (2) 是这个方程有实根的必要不充分条件 (3) 是这个方程有实根的充要条件 (4) 是这个方程有实根的充分不必要条件 A.(1)(3) B.(3)(4) C.(1)(3)(4) D.(2)(3)(4) 例2 (1)已知h 0,a,bR,设命题甲: ,命题乙: 且 ,问甲是乙的 ( ) (2)已知p:两条直线的斜率互为负倒数,q:两条直线互相垂直,则p是q的 ( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 变式:a = 0是直线 与 平行的 条件; 例3 如果命题p、q都是命题r的必要条件,命题s是命题r的充分条件,命题q是命题s 的充分条件,那么命题p是命题q的 条件;命题s是命题q的 条件;命题r是命题q的 条件. 例4 设命题p:|4x-3| 1,命题q:x2-(2a+1)x+a(a+1) 0,若﹁p是﹁q的必要不充分条件,求实数a的取值范围; 例5 设 是方程 的两个实根,试分析 是两实根 均大于1的什么条件?并给予证明. 五、课堂练习 1、设命题p: ,命题q: ,则p是q的 ( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 2、给出以下四个命题:①若p则q②若﹁r则﹁q③ 若r则﹁s ④若﹁s则q若它们都是真命题,则﹁p是s的 条件; 3、是否存在实数p,使 是 的充分条件?若存在,求出p的取值范围;若不存在说明理由. 六、课堂小结: 七、教学后记: 高三 班 学号 姓名 日期: 月 日 1、 A B是AB=B的 ( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 2、 是 的 ( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 3、 2x2-5x-30的一个必要不充分条件是 ( ) A.- 4、2且b是a+b4且ab的 ( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 5、设a1、b1、c1、a2、b2、c2均为非零实数,不等式a1x2+b1x+c10和a2x2+b2x+c20的解集分别为集合M和N,那么 是 M=N 的 ( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分又不必要条件 6、若命题A: ,命题B: ,则命题A是B的 条件; 7、设条件p:|x|=x,条件q:x2-x,则p是q的 条件; 8、方程mx2+2x+1=0至少有一个负根的充要条件是 ; 9、关于x的方程x2+mx+n = 0有两个小于1的正根的一个充要条件是 ; 10、已知 ,求证: 的充要条件是 ; 11、已知p:-210,q:1-m1+m,若﹁p是﹁q的必要不充分条件,求实数m的取值范围。 12、已知关于x的方程(1-a)x2+(a+2)x-4=0,aR,求: (1)方程有两个正根的充要条件; (2)方程至少有一正根的充要条件. 一、教材 首先谈谈我对教材的理解,《两条直线平行与垂直的判定》是人教A版高中数学必修2第三章3.1.2的内容,本节课的内容是两条直线平行与垂直的判定的推导及其应用,学生对于直线平行和垂直的概念已经十分熟悉,并且在上节课学习了直线的倾斜角与斜率,为本节课的学习打下了基础。 二、学情 教材是我们教学的工具,是载体。但我们的教学是要面向学生的,高中学生本身身心已经趋于成熟,管理与教学难度较大,那么为了能够成为一个合格的高中教师,深入了解所面对的学生可以说是必修课。本阶段的学生思维能力已经非常成熟,能够有自己独立的思考,所以应该积极发挥这种优势,让学生独立思考探索。 三、教学目标 根据以上对教材的分析以及对学情的把握,我制定了如下三维教学目标: (一)知识与技能 掌握两条直线平行与垂直的判定,能够根据其判定两条直线的位置关系。 (二)过程与方法 在经历两条直线平行与垂直的判定过程中,提升逻辑推理能力。 (三)情感态度价值观 在猜想论证的过程中,体会数学的`严谨性。 四、教学重难点 我认为一节好的数学课,从教学内容上说一定要突出重点、突破难点。而教学重点的确立与我本节课的内容肯定是密不可分的。那么根据授课内容可以确定本节课的教学重点是:两条直线平行与垂直的判定。本节课的教学难点是:两条直线平行与垂直的判定的推导。 五、教法和学法 现代教学理论认为,在教学过程中,学生是学习的主体,教师是学习的组织者、引导者,教学的一切活动都必须以强调学生的主动性、积极性为出发点。根据这一教学理念,结合本节课的内容特点和学生的年龄特征,本节课我采用讲授法、练习法、小组合作等教学方法。 六、教学过程 下面我将重点谈谈我对教学过程的设计。 (一)新课导入 首先是导入环节,那么我采用复习导入,回顾上节课所学的直线的倾斜角与斜率并顺势提问:能否通过直线的斜率,来判断两条直线的位置关系呢? 利用上节课所学的知识进行导入,很好的克服学生的畏难情绪。 (二)新知探索 接下来是教学中最重要的新知探索环节,我主要采用讲解法、小组合作、启发法等。 一、教材分析 本节课选自《普通高中课程标准数学教科书—必修1》(人教A版)《1。2。1函数的概念》共3课时,本节课是第1课时。生活中的许多现象如物体运动,气温升降,投资理财等都可以用函数的模型来刻画,是我们更好地了解自己、认识世界和预测未来的重要工具。函数是数学的重要的基础概念之一,是高等数学重多学科的基础概念和重要的研究对象。同时函数也是物理学等其他学科的重要基础知识和研究工具,教学内容中蕴涵着极其丰富的辩证思想。 二、学生学习情况分析 函数是中学数学的主体内容,学生在中学阶段对函数的认识分三个阶段: (一)初中从运动变化的角度来刻画函数,初步认识正比例、反比例、一次和二次函数; (二)高中用集合与对应的观点来刻画函数,研究函数的性质,学习典型的对、指、幂和三解函数; (三)高中用导数工具研究函数的单调性和最值。 1、有利条件 现代教育心理学的研究认为,有效的概念教学是建立在学生已有知识结构的基础上的,因此教师在设计教学的过程中必须注意在学生已有知识结构中寻找新概念的固着点,引导学生通过同化或顺应,掌握新概念,进而完善知识结构。 初中用运动变化的观点对函数进行定义的,它反映了历人们对它的一种认识,而且这个定义较为直观,易于接受,因此按照由浅入深、力求符合学生认知规律的'内容编排原则,函数概念在初中介绍到这个程度是合适的。也为我们用集合与对应的观点研究函数打下了一定的基础。 2、不利条件 用集合与对应的观点来定义函数,形式和内容上都是比较抽象的,这对学生的理解能力是一个挑战,是本节课教学的一个不利条件。 三、教学目标分析 课标要求:通过丰富实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;了解构成函数的要素,会求一些简单函数的定义域和值域。 1、知识与能力目标: ⑴能从集合与对应的角度理解函数的概念,更要理解函数的本质属性; ⑵理解函数的三要素的含义及其相互关系; ⑶会求简单函数的定义域和值域 2、过程与方法目标: ⑴通过丰富实例,使学生建立起函数概念的背景,体会函数是描述变量之间依赖关系的数学模型; ⑵在函数实例中,通过对关键词的强调和引导使学发现它们的共同特征,在此基础上再用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用。 3、情感、态度与价值观目标: 感受生活中的数学,感悟事物之间联系与变化的辩证唯物主义观点。 四、教学重点、难点分析 1、教学重点:对函数概念的理解,用集合与对应的语言来刻画函数; 重点依据:初中是从变量的角度来定义函数,高中是用集合与对应的语言来刻画函数。二者反映的本质是一致的,即“函数是一种对应关系”。但是,初中定义并未完全揭示出函数概念的本质,对y?1这样的函数用运动变化的观点也很难解释。在以函数为重要内容的高中阶段,课本应将函数定义为两个数集之间的一种对应关系,按照这种观点,使我们对函数概念有了更深一层的认识,也很容易说明y?1这函数表达式。因此,分析两种函数概念的关系,让学生融会贯通地理解函数的概念应为本节课的重点。 突出重点:重点的突出依赖于对函数概念本质属性的把握,使学生通过表面的语言描述抓住概念的精髓。 2、教学难点: 第一:从实际问题中提炼出抽象的概念; 第二:符号“y=f(x)”的含义的理解。 难点依据:数学语言的抽象概括难度较大,对符号y=f(x)的理解会受到以前知识的负迁移。 突破难点:难点的突破要依托丰富的实例,从集合与对应的角度恰当地引导,而对抽象符号的理解则要结合函数的三要素和小例子进行说明。 五、教法与学法分析 1、教法分析 本节课我主要采用教师导学法、知识迁移法和知识对比法,从学生熟悉的丰富实例出发,关注学生的原有的知识基础,注重概念的形成过程,从初中的函数概念自然过度到函数的近代定我。 2、学法分析 在教学过程中我注意在教学中引导学生用模型法分析函数问题、通过自主学习法总结“区间”的知识。 教材分析:函数是描述客观世界变化规律的重要数学模型.高中阶段不仅把函数看成变量之间的依赖关系,同时还用集合与对应的语言刻画函数,高中阶段更注重函数模型化的思想. 教学目的: (1)通过丰富实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用; (2)了解构成函数的要素; (3)会求一些简单函数的定义域和值域; (4)能够正确使用“区间”的符号表示某些函数的定义域; 教学重点:理解函数的模型化思想,用合与对应的语言来刻画函数; 教学难点:符号“y=f(x)”的含义,函数定义域和值域的区间表示; 教学过程: 一、引入课题 1.复习初中所学函数的概念,强调函数的模型化思想; 2.阅读课本引例,体会函数是描述客观事物变化规律的数学模型的思想: (1)炮弹的射高与时间的变化关系问题; (2)南极臭氧空洞面积与时间的变化关系问题; (3)“八五”计划以来我国城镇居民的恩格尔系数与时间的变化关系问题 备用实例: 我国xxxx年4月份非典疫情统计: 日期222324252627282930 新增确诊病例数1061058910311312698152101 3.引导学生应用集合与对应的语言描述各个实例中两个变量间的依赖关系; 4.根据初中所学函数的概念,判断各个实例中的两个变量间的关系是否是函数关系. 二、新课教学 (一)函数的有关概念 1.函数的概念: 设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数(function). 记作:y=f(x),x∈A. 其中,x叫做自变量,x的取值范围A叫做函数的定义域(domain);与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域(range). 注意: ○1“y=f(x)”是函数符号,可以用任意的字母表示,如“y=g(x)”; ○2函数符号“y=f(x)”中的f(x)表示与x对应的函数值,一个数,而不是f乘x. 2.构成函数的三要素: 定义域、对应关系和值域 3.区间的概念 (1)区间的分类:开区间、闭区间、半开半闭区间; (2)无穷区间; (3)区间的数轴表示. 4.一次函数、二次函数、反比例函数的定义域和值域讨论 (由学生完成,师生共同分析讲评) (二)典型例题 1.求函数定义域 课本P20例1 解:(略) 说明: ○1函数的定义域通常由问题的实际背景确定,如果课前三个实例; ○2如果只给出解析式y=f(x),而没有指明它的定义域,则函数的定义域即是指能使这个式子有意义的实数的集合; ○3函数的定义域、值域要写成集合或区间的形式. 巩固练习:课本P22第1题 2.判断两个函数是否为同一函数 课本P21例2 解:(略) 说明: ○1构成函数三个要素是定义域、对应关系和值域.由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,即称这两个函数相等(或为同一函数) ○2两个函数相等当且仅当它们的定义域和对应关系完全一致,而与表示自变量和函数值的字母无关。 巩固练习: ○1课本P22第2题 ○2判断下列函数f(x)与g(x)是否表示同一个函数,说明理由? (1)f(x)=(x-1)0;g(x)=1 (2)f(x)=x;g(x)= (3)f(x)=x2;f(x)=(x+1)2 (4)f(x)=|x|;g(x)= (三)课堂练习 求下列函数的定义域 (1) (2) (3) (4) (5) (6) 三、归纳小结,强化思想 从具体实例引入了函数的的概念,用集合与对应的语言描述了函数的定义及其相关概念,介绍了求函数定义域和判断同一函数的典型题目,引入了区间的概念来表示集合。 四、作业布置 课本P28习题1.2(A组)第1—7题(B组)第1题 人教版高一数学教案 作为一位杰出的教职工,时常会需要准备好教案,教案有助于顺利而有效地开展教学活动。来参考自己需要的教案吧!下面是小编帮大家整理的人教版高一数学教案,仅供参考,希望能够帮助到大家。 教学目标: 1、掌握平面向量的数量积及其几何意义; 2、掌握平面向量数量积的重要性质及运算律; 3、了解用平面向量的数量积可以处理有关长度、角度和垂直的问题; 4、掌握向量垂直的条件、 教学重难点: 教学重点:平面向量的数量积定义 教学难点:平面向量数量积的定义及运算律的理解和平面向量数量积的应用 教学工具: 投影仪 教学过程: 一、复习引入: 1、向量共线定理向量与非零向量共线的.充要条件是:有且只有一个非零实数λ,使=λ 五,课堂小结 (1)请学生回顾本节课所学过的知识内容有哪些?所涉及到的主要数学思想方法有那些? (2)在本节课的学习过程中,还有那些不太明白的地方,请向老师提出。 (3)你在这节课中的表现怎样?你的体会是什么? 六、课后作业 P107习题2、4A组2、7题 课后小结 (1)请学生回顾本节课所学过的知识内容有哪些?所涉及到的主要数学思想方法有那些? (2)在本节课的学习过程中,还有那些不太明白的地方,请向老师提出。 (3)你在这节课中的表现怎样?你的体会是什么? 课后习题 教学目标 (1)正确理解充分条件、必要条件和充要条件的概念; (2)能正确判断是充分条件、必要条件还是充要条件; (3)培养学生的逻辑思维能力及归纳总结能力; (4)在充要条件的教学中,培养等价转化思想. 教学建议 (一)教材分析 1.知识结构 首先给出推断符号“”,并引出的意义,在此基础上讲述了充要条件的初步知识. 2.重点难点分析 本节的重点与难点是关于充要条件的判断. (1)充分但不必要条件、必要但不充分条件、充要条件、既不充分也不必要条件是重要的数学概念,主要用来区分命题的条件和结论之间的因果关系. (2)在判断条件和结论之间的因果关系中应该: ①首先分清条件是什么,结论是什么; ②然后尝试用条件推结论,再尝试用结论推条件.推理方法可以是直接证法、间接证法(即反证法),也可以举反例说明其不成立; ③最后再指出条件是结论的什么条件. (3)在讨论条件和条件的关系时,要注意: ①若,但,则是的充分但不必要条件; ②若,但,则是的必要但不充分条件; ③若,且,则是的充要条件; ④若,且,则是的充要条件; ⑤若,且,则是的既不充分也不必要条件. (4)若条件以集合的形式出现,结论以集合的形式出现,则借助集合知识,有助于充要条件的理解和判断. ①若,则是的充分条件; 显然,要使元素,只需就够了.类似地还有: ②若,则是的必要条件; ③若,则是的充要条件; ④若,且,则是的既不必要也不充分条件. (5)要证明命题的条件是充要条件,就既要证明原命题成立,又要证明它的逆命题成立.证明原命题即证明条件的充分性,证明逆命题即证明条件的必要性.由于原命题逆否命题,逆命题否命题,当我们证明某一命题有困难时,可以证明该命题的逆否命题成立,从而得出原命题成立. (二)教法建议 1.学习充分条件、必要条件和充要条件知识,要注意与前面有关逻辑初步知识内容相联系.充要条件中的,与四种命题中的,要求是一样的.它们可以是简单命题,也可以是不能判断真假的语句,也可以是含有逻辑联结词或“若则”形式的复合命题. 2.由于这节课概念性、理论性较强,一般的教学使学生感到枯燥乏味,为此,激发学生的学习兴趣是关键.教学中始终要注意以学生为主,让学生在自我思考、相互交流中去结概念“下定义”,去体会概念的本质属性. 3.由于“充要条件”与命题的真假、命题的条件与结论的相互关系紧密相关,为此,教学时可以从判断命题的真假入手,来分析命题的条件对于结论来说,是否充分,从而引入“充分条件”的概念,进而引入“必要条件”的概念. 4.教材中对“充分条件”、“必要条件”的定义没有作过多的解释说明,为了让学生能理解定义的合理性,在教学过程中,教师可以从一些熟悉的命题的条件与结论之间的关系来认识“充分条件”的概念,从互为逆否命题的等价性来引出“必要条件”的概念. 教学设计示例 充要条件 教学目标: (1)正确理解充分条件、必要条件和充要条件的概念; (2)能正确判断是充分条件、必要条件还是充要条件; (3)培养学生的逻辑思维能力及归纳总结能力; (4)在充要条件的教学中,培养等价转化思想. 教学重点难点: 关于充要条件的判断 教学用具: 幻灯机或实物投影仪 教学过程设计 1.复习引入 练习:判断下列命题是真命题还是假命题(用幻灯投影): (1)若,则; (2)若,则; (3)全等三角形的面积相等; (4)对角线互相垂直的四边形是菱形; (5)若,则; (6)若方程有两个不等的实数解,则. (学生口答,教师板书.) (1)、(3)、(6)是真命题,(2)、(4)、(5)是假命题. 置疑:对于命题“若,则”,有时是真命题,有时是假命题.如何判断其真假的? 答:看能不能推出,如果能推出,则原命题是真命题,否则就是假命题. 对于命题“若,则”,如果由经过推理能推出,也就是说,如果成立,那么一定成立.换句话说,只要有条件就能充分地保证结论的成立,这时我们称条件是成立的充分条件,记作. 2.讲授新课 (板书充分条件的定义.) 一般地,如果已知,那么我们就说是成立的充分条件. 提问:请用充分条件来叙述上述(1)、(3)、(6)的条件与结论之间的关系. (学生口答) (1)“,”是“”成立的充分条件; (2)“三角形全等”是“三角形面积相等”成立的充分条件; (3)“方程的有两个不等的实数解”是“”成立的充分条件. 从另一个角度看,如果成立,那么其逆否命题也成立,即如果没有,也就没有,亦即是成立的必须要有的条件,也就是必要条件. (板书必要条件的定义.) 提出问题:用“充分条件”和“必要条件”来叙述上述6个命题. (学生口答). (1)因为,所以是的充分条件,是的必要条件; (2)因为,所以是的必要条件,是的充分条件; (3)因为“两三角形全等”“两三角形面积相等”,所以“两三角形全等”是“两三角形面积相等”的充分条件,“两三角形面积相等”是“两三角形全等”的必要条件; (4)因为“四边形的对角线互相垂直”“四边形是菱形”,所以“四边形的对角线互相垂直”是“四边形是菱形”的必要条件,“四边形是菱形”是“四边形的对角线互相垂直”的充分条件; (5)因为,所以是的必要条件,是的充分条件; (6)因为“方程的有两个不等的实根”“”,而且“方程的有两个不等的实根”“”,所以“方程的有两个不等的实根”是“”充分条件,而且是必要条件. 总结:如果是的充分条件,又是的必要条件,则称是的`充分必要条件,简称充要条件,记作. (板书充要条件的定义.) 3.巩固新课 例1(用投影仪投影.) (学生活动,教师引导学生作出下面回答.) ①因为有理数一定是实数,但实数不一定是有理数,所以是的充分非必要条件,是的必要非充分条件; ②一定能推出,而不一定推出,所以是的充分非必要条件,是的必要非充分条件; ③、是奇数,那么一定是偶数;是偶数,、不一定都是奇数(可能都为偶数),所以是的充分非必要条件,是的必要非充分条件; ④表示或,所以是成立的必要非充分条件; ⑤由交集的定义可知且是成立的充要条件; ⑥由知且,所以是成立的充分非必要条件; ⑦由知或,所以是,成立的必要非充分条件; ⑧易知“是4的倍数”是“是6的倍数”成立的既非充分又非必要条件; (通过对上述问题的交流、思辩,在争论中得到了正确答案,并加深了对充分条件、必要条件的认识.) 例2已知是的充要条件,是的必要条件同时又是的充分条件,试与的关系.(投影) 解:由已知得, 所以是的充分条件,或是的必要条件. 4.小结回授 今天我们学习了充分条件、必要条件和充要条件的概念,并学会了判断条件A是B的什么条件,这为我们今后解决数学问题打下了等价转化的基础. 课内练习:课本(人教版,试验修订本,第一册(上))第35页练习l、2;第36页练习l、2. (通过练习,检查学生掌握情况,有针对性的进行讲评.) 5.课外作业:教材第36页 习题1.8 1、2、3. 一、教材 《直线与圆的位置关系》是高中人教版必修2第四章第二节的内容,直线和圆的位置关系是本章的重点内容之一。从知识体系上看,它既是点与圆的位置关系的延续与提高,又是学习切线的判定定理、圆与圆的位置关系的基础。从数学思想方法层面上看它运用运动变化的观点揭示了知识的发生过程以及相关知识间的内在联系,渗透了数形结合、分类讨论、类比、化归等数学思想方法,有助于提高学生的思维品质。 二、学情 学生初中已经接触过直线与圆相交、相切、相离的定义和判定;且在上节的学习过程中掌握了点的坐标、直线的方程、圆的方程以及点到直线的距离公式;掌握利用方程组的.方法来求直线的交点;具有用坐标法研究点与圆的位置关系的基础;具有一定的数形结合解题思想的基础。 三、教学目标 (一)知识与技能目标 能够准确用图形表示出直线与圆的三种位置关系;可以利用联立方程的方法和求点到直线的距离的方法简单判断出直线与圆的关系。 (二)过程与方法目标 经历操作、观察、探索、总结直线与圆的位置关系的判断方法,从而锻炼观察、比较、概括的逻辑思维能力。 (三)情感态度价值观目标 激发求知欲和学习兴趣,锻炼积极探索、发现新知识、总结规律的能力,解题时养成归纳总结的良好习惯。 四、教学重难点 (一)重点 用解析法研究直线与圆的位置关系。 (二)难点 体会用解析法解决问题的数学思想。 五、教学方法 根据本节课教材内容的特点,为了更直观、形象地突出重点,突破难点,借助信息技术工具,以几何画板为平台,通过图形的动态演示,变抽象为直观,为学生的数学探究与数学思维提供支持.在教学中采用小组合作学习的方式,这样可以为不同认知基础的学生提供学习机会,同时有利于发挥各层次学生的作用,教师始终坚持启发式教学原则,设计一系列问题串,以引导学生的数学思维活动。 六、教学过程 (一)导入新课 教师借助多媒体创设泰坦尼克号的情景,并从中抽象出数学模型:已知冰山的分布是一个半径为r的圆形区域,圆心位于轮船正西的l处,问,轮船如何航行能够避免撞到冰山呢?如何行驶便又会撞到冰山呢? 教师引导学生回顾初中已经学习的直线与圆的位置关系,将所想到的航行路线转化成数学简图,即相交、相切、相离。 设计意图:在已有的知识基础上,提出新的问题,有利于保持学生知识结构的连续性,同时开阔视野,激发学生的学习兴趣。 (二)新课教学——探究新知 教师提问如何判断直线与圆的位置关系,学生先独立思考几分钟,然后同桌两人为一组交流,并整理出本组同学所想到的思路。在整个交流讨论中,教师既要有对正确认识的赞赏,又要有对错误见解的分析及对该学生的鼓励。 判断方法: (1)定义法:看直线与圆公共点个数 即研究方程组解的个数,具体做法是联立两个方程,消去x(或y)后所得一元二次方程,判断△和0的大小关系。 (2)比较法:圆心到直线的距离d与圆的半径r做比较, (三)合作探究——深化新知 教师进一步抛出疑问,对比两种方法,由学生观察实践发现,两种方法本质相同,但比较法只适合于直线与圆,而定义法适用范围更广。教师展示较为基础的题目,学生解答,总结思路。 已知直线3x+4y-5=0与圆x2+y2=1,判断它们的位置关系? 让学生自主探索,讨论交流,并阐述自己的解题思路。 当已知了直线与圆的方程之后,圆心坐标和半径r易得到,问题的关键是如何得到圆心到直线的距离d,他的本质是点到直线的距离,便可以直接利用点到直线的距离公式求d。类比前面所学利用直线方程求两直线交点的方法,联立直线与圆的方程,组成方程组,通过方程组解得个数确定直线与圆的交点个数,进一步确定他们的位置关系。最后明确解题步骤。 (四)归纳总结——巩固新知 为了将结论由特殊推广到一般引导学生思考: 可由方程组的解的不同情况来判断: 当方程组有两组实数解时,直线l与圆C相交; 当方程组有一组实数解时,直线l与圆C相切; 当方程组没有实数解时,直线l与圆C相离。 活动:我将抽取两位同学在黑板上扮演,并在巡视过程中对部分学生加以指导。最后对黑板上的两名学生的解题过程加以分析完善。通过对基础题的练习,巩固两种判断直线与圆的位置关系判断方法,并使每一个学生获得后续学习的信心。 (五)小结作业 在小结环节,我会以口头提问的方式: (1)这节课学习的主要内容是什么? (2)在数学问题的解决过程中运用了哪些数学思想? 设计意图:启发式的课堂小结方式能让学生主动回顾本节课所学的知识点。也促使学生对知识网络进行主动建构。 作业:在学生回顾本堂学习内容明确两种解题思路后,教师让学生对比两种解法,那种更简捷,明确本节课主要用比较d与r的关系来解决这类问题,对用方程组解的个数的判断方法,要求学生课外做进一步的探究,下一节课汇报。 七、板书设计 我的板书本着简介、直观、清晰的原则,这就是我的板书设计。 教学目标: 1、理解集合的概念和性质。 2、了解元素与集合的表示方法。 3、熟记有关数集。 4、培养学生认识事物的能力。 教学重点: 集合概念、性质 教学难点: 集合概念的理解 教学过程: 1、定义: 集合:一般地,某些指定的对象集在一起就成为一个集合(集)。元素:集合中每个对象叫做这个集合的元素。 由此上述例中集合的元素是什么? 例(1)的元素为1、3、5、7, 例(2)的元素为到两定点距离等于两定点间距离的点, 例(3)的元素为满足不等式3x—2> x+3的实数x, 例(4)的元素为所有直角三角形, 例(5)为高一·六班全体男同学。 一般用大括号表示集合,{?}如{我校的篮球队员},{太平洋、大西洋、印度洋、北冰洋}。则上几例可表示为?? 为方便,常用大写的拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5} (1)确定性;(2)互异性;(3)无序性。 3、元素与集合的'关系:隶属关系 元素与集合的关系有“属于∈”及“不属于?(?也可表示为)两种。如A={2,4,8,16},则4∈A,8∈A,32?A。 集合的'元素通常用小写的拉丁字母表示,如:a是集合A的元素,就说a属于集A记作a?A,相反,a不属于集A记作a?A(或) 注:1、集合通常用大写的拉丁字母表示,如A、B、C、P、Q?? 元素通常用小写的拉丁字母表示,如a、b、c、p、q?? 2、“∈”的开口方向,不能把a∈A颠倒过来写。 4 注:(1)自然数集与非负整数集是相同的,也就是说,自然数集包括数0。 (2)非负整数集内排除0的集。记作N__或N+ 。Q、Z、R等其它数集内排除0 的集,也是这样表示,例如,整数集内排除0的集,表示成Z__ 请回答:已知a+b+c=m,A={x|ax2+bx+c=m},判断1与A的关系。 高一数学学习方法归纳 【一、及时回忆】 如果等到把课堂内容遗忘得差不多时才复习,就几乎等于重新学习,所以课堂学习的新知识必须及时复习。 可以一个人单独回忆,也可以几个人在一起互相启发,补充回忆。一般按照教师板书的提纲和要领进行,也可以按教材纲目结构进行,从课题到重点内容,再到例题的每部分的细节,循序渐进地进行复习。在复习过程中要不失时机整理笔记,因为整理笔记也是一种有效的复习方法。 【二、重复巩固】 即使是复习过的内容仍须定期巩固,但是复习的次数应随时间的增长而逐步减小,间隔也可以逐渐拉长。可以当天巩固新知识,每周进行周小结,每月进行阶段性总结,期中、期末进行全面系统的学期复习。从内容上看,每课知识即时回顾,每单元进行知识梳理,每章节进行知识归纳总结,必须把相关知识串联在一起,形成知识网络,达到对知识和方法的整体把握。 【三、合理安排】 复习一般可以分为集中复习和分散复习。实验证明,分散复习的效果优于集中复习,特殊情况除外。分散复习,可以把需要识记的材料适当分类,并且与其他的学习或娱乐或休息交替进行,不至于单调使用某种思维方式,形成疲劳。分散复习也应结合各自认知水平,以及识记素材的特点,把握重复次数与间隔时间,并非间隔时间越长越好,而要适合自己的复习规律。 【四、突破重点难点】 对所学的素材要进行分析、归类,找出重、难点,分清主次。在复习过程中,特别要关注难点及容易造成误解的问题,应分析其关键点和易错点,找出原因,必要时还可以把这类问题进行梳理,记录在一个专题本上,也可以在电脑上做一个重难点“超市”,可随时点击,进行复习。 【五、效果检测】 随着时间的推移,复习的效果会产生变化,有的淡化、有的模糊、有的不准确,到底各环节的内容掌握得如何,需进行效果检测,如:周周练、月月测、单元过关练习、期中考试、期末考试等,都是为了检测学习效果。检测时必须独立,完成,保证检测出的效果的真实性,如果存在问题,应该找到错误的根源,并适时采取补救措施进行校正。目前市场上练习册多如牛毛,请在老师的指导下选用。 高中数学考试的技巧 总体原则 1、先做简单题,后做难题。 2、遇到较难的大题,把所有跟该题有关的知识点都写出来,要知道数学讲究步骤分。 3、若是证明题,万一不会,可以先写出已知条件,再写出要证明的最后一步,再一步一步往上推,中间步骤随便写点。(使用于粗心的教师,但我们不提倡,重点是要平时学好)。 一、整体把握、抓大放小 拿到试卷后可以先快速浏览一下所有题目,根据积累的考试经验,大致估计一下每部分应该分配的时间。对于能够很快做出来的题目,一定要拿到应得的分数。 二、确定每部分的答题时间 1、考试时占用了很多时间却一点也没有做出来的题目。对于这类题目,你以后考试时就应该尽量减少时间,或者放弃,等以后学习进阶了再尝试着做。 2、考试时花了过多的时间才做出来的题目。对于这类题目,你以后平时做题时要尽量加快速度,或者通过“反复训练”等提高反应速度,这样,你下次考试时能用较少的时间做出来。 三、碰到难题时 1、你可以先用“直觉”最快的找到解题思路; 2、如果“直觉”不管用,你可以联想以前做过的类似的题目,从而找到解题思路; 3、如果这样也不行,你可以猜测一下这道题目可能涉及到的知识点和解题技巧。 4、对于花了一定时间仍然不能做出来的题目,要勇于放弃。 四、卷面整洁、字迹清楚、注意小节 做到卷面整洁、字迹清楚,把标点、符号、解题步骤等小的地方尽量做好,不要丢掉应得的每一分。高一数学教案 篇6
高一数学教案 篇7
高一数学教案 篇8
高一数学教案 篇9
高一数学教案 篇10
高一数学教案 篇11
高一数学教案 篇12
高一数学教案 篇13
高一数学教案 篇14
高一数学教案 篇15
高一数学教案 篇16
高一数学教案 篇17
高一数学教案 篇18
高一数学教案 篇19
高一数学教案 篇20
高一数学教案 篇21
高一数学教案 篇22
高一数学教案 篇23
高一数学教案 篇24
高一数学教案 篇25
高一数学教案 篇26
高一数学教案 篇27
高一数学教案 篇28
高一数学教案 篇29
高一数学教案 篇30
高一数学教案 篇31
高一数学教案 篇32
高一数学教案 篇33
高一数学教案 篇34
高一数学教案 篇35
高一数学教案 篇36
高一数学教案 篇37
高一数学教案 篇38
高一数学教案 篇39
高一数学教案 篇40
高一数学教案 篇41
高一数学教案 篇42
高一数学教案 篇43
高一数学教案 篇44
高一数学教案 篇45
高一数学教案 篇46
高一数学教案 篇47
高一数学教案 篇48