《比的应用》教学设计
文学网整理的《比的应用》教学设计(精选45篇),供大家参考,希望能给您提供帮助。
《比的应用》教学设计 篇1
本节课的教学设计反思是围绕着今天“六个有效”的主题活动展开反思的。
一、有效的“复习回顾”
学生已初步掌握了函数的概念、一次函数的图象及性质,并了解了函数的三种表达方式:图象法、列表法、解析式法。在此基础上通过知识提问引导学生进一步掌握一次函数的相关知识并能灵活的应用到习题中,有效的“复习回顾”在本节课起到了承上启下的作用。
二、有效的“新知探究”
根据实际的问题情境感受生活中的一次函数,利用已知的条件,来确定一次函数中正比例函数表达式 ,并理解确定正比例函数表达式的方法和条件。
三、有效的“拓展延伸”
设置这个例题是物理学中的一个弹簧现象,目的在于让学生从不同的`情景中获取信息来求一次函数表达式,一次函数表达式的确定需要两个条件,能由条件利用“待定系数”法求出一些简单的一次函数表达式,并能解决有关现实问题.并进一步体会函数表达式是刻画现实世界的一个很好的数学模型,而且体现了数学这门学科的基础性。
四、有效的“感悟收获”
通过对求一次函数表达式方法的归纳和提升,加强学生对求一次函数表达式方法和步骤的理解,通过“感悟收获”解决本节课的重点和难点。
五、有效的“巩固提高”
通过分小组“比一比、练一练”的活动形式,不仅激发了学生学习数学知识的兴趣,而且能将本节课的知识灵活的应用到习题中,提高了学生的解题能力和思维能力。
六、有效的“作业布置”
根据本班学生及教学情况在教学课堂后为了进一步巩固课堂知识,布置一定量的作业,难度不应过大,有效的作业更能拓展学生的思维,并体会解决问题的多样性。
以上是本人对“六个有效”课堂的体会,有理解不到之处,请各位领导,老师指正批评,谢谢大家
《比的应用》教学设计 篇2
教学内容:九年义务教育五年制小学数学第九册第112一132页的分数应用题。
教学目的:
1、通过一些有联系的分数乘、除法应用题的整理和复习,使学生进一步掌握分数乘、除法应用题的解题思路以及他们之间的内在联系。掌握分数应用题的结构特征和解题规律。
2、使学生会正确、熟练地解答分数应用题,提高学生分析问题和解决问题的能力。
教学重点:进一步掌握分数应用题的结构特征和解题规律。
教学关键:找准单位"1",理清单位"1"的量、分率及分率对应量之间的关系。
教具准备:投影仪
教学过程:
一、梳理知识,使知识建成网状结构
1、口答:(打开投影仪)
(1)分数应用题的基本类型有几种?哪三种?
(2)解答这三种分数应用题的关键是什么?
(找准单位"1",弄清单位"1"的量、分率及分率对应量。)
(3)解答这三类分数应用题的基本关系式是什么?
2、(l)简单的分数应用题
①某班有男生40人,女生人数是男生1/4,女生有多少人?
②某班有女生10人,男生40人,女生人数是男生人数的几分之几?
③某班有女生10人,是男生人数的士,男生有多少人?
(2)稍复杂的分数应用题
①某班有男生40人,女生人数比男生人数少1/4,女生有多少人?
②某班有男生40人,女生30人,男生人数比女生人数多几分之几?
③某班有女生30人,比男生人数少言,男生有多少人?
以上这两组题把分数应用题全部展示出来,教学时可先出示第(1)题的3个小题(打幻灯),让学生口头列式并比较异同,生答师板书:
①求一个数的几分之几是多少?
单位"1"的'量×分率=分率对应量
②求一个数是另一个数的几分之几是多少?
分率对应量÷单位"1"的量=分率
③已知一个数的几分之几是多少,求这个数?
分率对应量÷分率=单位"1"的量
而后出示第(2)题的3个小题(打幻灯),让学生试做,再和第(1)题的三个小题比较异同,使学生进一步懂得,解答这三类应用题的关键是三个小题比较异同,使学生进一步懂得,解答这三类应用题的关键是找准单位。然后根据这三个基本关系式进行解答。
[评析:根据以上复习,使学生对分数应用题从简单到复杂有了整体的认识,这样既梳理了知识,又沟通了联系,通过对知识进行纵向、横向比较和梳理,使知识构成了网状结构,促使学生的思维条理化,进一步理清了学生的解题思路。]
二、抓住结构特征,应用所学知识,提高能力。
(1)某用户三月份用电100度,四月份比三月份节约用电1/10,?
①100×1/10?
②100×(1—1/10)?
③100×(1—1/10+1)?
(2)某用户四月份比三月份节约用电100度,正好节约了1/10,
①100÷1/10?
②100÷1/10×(1—1/10)?
③100÷1/10×2—100?
(3)某用户四月份用电90度,比三月份节约用电1/10,?
①90÷(1—1/10)?
②90÷(1—1/10)×1/10______________?
③90÷(1—1/10)+90________________?
(学生口述,集体订正,比较异同)
2、根据补充的条件或问题列式计算:(发散思维,提高能力)(用幻灯逐题打出)
__________运来的桔子比苹果少,___________?
(1)某商店运来苹果10吨,运来的桔子比苹果少,运来的桔子是苹果的几分之几?
(2)某商店运来苹果10吨,运来的桔子比苹果少,运来的苹果是桔子的几倍?
(3)某商店运来苹果10吨,运来的桔子比苹果少,运来的桔子比苹果少多少吨?
(4)某商店运来苹果10吨,运来的桔子比苹果少,运来的苹果比桔子多多少吨?
(5)某商店运来苹果10吨,运来的桔子比苹果少,运来的桔子有多少吨?
(6)某商店运来苹果10吨,运来的桔子比苹果少,两种水果共运来多少吨?
(7)某商店运来的桔子比苹果少10吨,运来的桔子比苹果少,求运来苹果多少吨?
(8)某商店运来的桔子比苹果少10吨,运来的桔子比苹果少,求运来桔子多少吨?
(9)某商店运来的桔子比苹果少10吨,运来的桔子比苹果少,求两种水果共运来多少吨?
(10)某商店运来的苹果比桔子多10吨,运来的桔子比苹果少,求运来苹果多少吨?
(11)某商店运来的苹果比桔子多10吨,运来的桔子比苹果少?,求运来桔子多少吨?
(12)某商店运来的苹果比桔子多10吨,运来的桔于比苹果少,求两种水果共运来多少吨?
(13)某商店运来桔子10吨,运来的桔了比苹果少,求运来的苹果有多少吨?
(14)某商店运来桔子10吨,运来的桔子比苹果少,求运来的桔子比苹果少多少吨?
(15)某商店运来桔子10吨,运来的桔子比苹果少,求运来的平果比桔子多多少吨?
(16)某商店运来桔子10吨,运来的桔子比苹果少,求两种水果共运来多少吨?
(17)某商店运来桔子和苹果共18吨,运来的桔子比苹果少,求运来苹果有多少吨?
(18)某商店运来桔子和苹果共18,运来的桔子比苹果少,求运来桔子有多少吨?
(19)某商店运来桔子和苹果共18吨,运来的桔子比苹果少,求运来的桔子比苹果少多少吨?
(20)某商店运来桔子和苹果共18吨,运来的桔子比苹果少,求运来的苹果比桔子多多少吨?
以上各题采用先让学生试做,然后老师归纳总结解题思路:
①先找出单位"1"的量
②谁和单位"1"的量相比
③确定算法:a:单位"1"的量是已知的就用乘法(求一个数的几分之几是多少)或除法(求一个数是另一个数的几分之几是多少?);b:单位"1"的量是未知的就用除法(已知一个数的几分之几是多少,求这个数。)
④确定算法(或列式)的依据是什么?
3、发展题(用幻灯逐题打出)
(1)要修一条路,已修了全长的3/5多2千米,还剩了12千米没有修,求这条路有多少千米?
(2)要修一条路,已修了全长的3/5少2千米,还剩下12千米没有修,求这条路有多少千米?
教师先出示第(1)小题,让学生试做,估计有一部分同学会列出错误算式:(12—2)÷(l—3/5),此时,老师不要急于纠正,而应再出示第(2)小题让学生比较异同,引导学生发现两题仅一字之差,列式却不同,然后教师帮助学生画图分析解答。
通过以上两小题的讲解,使学生在找准单位"1"的基础上,通过图形,灵活掌握"量率对应"。
三、课堂小结,再次构成学生的认知结构。
师问:这节课你有哪些收获?
甲生答:这节课我们复习了分数应用题的基本类型。
乙生答:解答分数应用题的关键是找准单位"1",然后看谁跟单位"1"的量相比,它相当于单位"1"量的几分之几。
丙生答:根据分数应用题的基本关系式确定算法。
丁生答:有些灵活题还要通过画图,找出"量率对应"再解答。
《比的应用》教学设计 篇3
本节课选自九年义务教育五年制小学数学第八册第一单元列方程解应用题。
本节课素质教育目标
(一)知识教学点
1、初步学会列方程解比较容易的两步应用题。
2、知道列方程解应用题的关键是找应用题中相等的数量关系。
(二)能力训练点
1、使学生能用方程的方法解较简单的两步计算应用题。
2、引导学生能根据解题过程总结列方程解应用题的一般步骤。
3、能独立用列方程的方法解答此类应用题。
(三)德育渗透点
1、培养学生用不同的方法解决问题的思维方式。
2、渗透在多种方法中选择最简单的方法解决问题。
教学重点:列方程解应用题的方法步骤。
教学难点:根据题意分析数量间的相等关系。
要本节课中,我安排了这样几个教学环节,首先通过复习准备呈现解应用题的两种基本方法——用算术法解和用方程解,并通过学生的讨论分析让学生理解这两种解法的根本区别点,是从问题出发思考问题还是从等量关系出发思考问题,第二个环节就要求学生运用这两种方法分析同一道题,让学生理解用等量关系分析这类应用题要简单、容易得多,从中切实理解用方程解应用题的优越性,提高学生学习列方程解应用题的自觉性和积极性。第三个环节就紧紧抓住等量关系这个关键问题,引导学生分析解答应用题,从中掌握用方程解答应用题的一般步骤。第四个环节是通过例2的教学让学生直接运用这个解题步骤用方程解答应用题,放手给学生一个实践机会,形成在层次、有坡度、符合学生认知特点、符合知识发展逻辑顺序的合理的课堂教学结构。
学解应用题工程问题思路指点
工程问题是研究工作效率、工作时间和工作总量之间相互关系的一种应用题。我们通常所说的:“工程问题”,一般是把工作总量作为单位“1”,因此工作效率就是工作时间的倒数。它们的基本关系式是:工作总量÷工作效率=工作时间。
工程问题是小学分数应用题中的一个重点,也是一个难点。下面列举有关练习中常见的几种题型,分别进行思路分析,并加以简要的评点,旨在使同学们掌握“工程问题”的解题规律和解题技巧。
例1一项工程,由甲工程队修建,需要12天,由乙工程队修建,需要20天,两队共同修建需要多少天?
[思路说明]①把这项工程的工作总量看作“1”。甲队修建需要12天,修建1天完成这项工程的1/12;乙队修建需要20天,修建1天完成这项工程的1/20。甲、乙两队共同修建1天,完成这项工程的1/12+1/20=2/15,工作总量“1”中包含了多少个2/15,就是两队共同修建完成这项工程所需要的天数。
1÷(1/12+1/20)=1÷2/15=15/2(天)
②设这项工程的全部工作量为60(12和20的.最小公倍数),甲队一天的工作量为60÷12=5,乙队一天的工作量为60÷20=3,甲、乙两队合建一天的工作量为5+3=8。用工作总量除以两队合建一天的工作量,就是两队合建的天数。
60÷(60÷12+60÷20)=60÷(5+3)
=60÷8=15/2(天)
评点这是一道工程问题的基本题,也是工程问题中常见的题型。上面列举的两种解题方法,前者比较简便。这种解法把工作量看作“1”,用完成工作总量所需的时间的倒数作为工作效率,用工作总量除以工作效率和,就可以求出完成这项工程所需的时间。工程问题一般采用这种方法求解。
练习:一段公路,甲队单独修要10天完成,乙队单独修要12天完成,丙队单独修要15天完成,甲、乙、丙三队合修,需要几天完成?
例2一项工程,甲队独做8天完成,乙队独做10天完成,两队合做,多少天完成全部工程的3/4?
[思路说明]①把这项工程的工作总量看作“1”,甲队独做8天完成,一天完成这项工程的1/8;乙队独做10天完成,一天完成这项工程的1/10。甲、乙两队合做一天,完成这项工程的1/8+1/10=9/40,工作总量“1”中包含多少个甲乙效率之和,就是甲乙合做所需要的天数。甲乙合做所需时间的3/4,就是甲乙合做完成全部工程的3/4所需的时间。
1÷(1/8+1/10)×3/4
=1÷9/40×3/4=10/3(天)
②把甲、乙两队合做的工作量3/4,除以甲、乙两队的效率之和1/8+1/10=9/40,就是甲乙合做完成全部工程的3/4所需要的时间。
3/4÷(1/8+1/10)=3/4÷9/40=10/3(天)
评点思路①是先求出两队合做一项工程所需的时间,再用乘法求出完成全部工程的3/4所需的时间。思路②是把“3/4”看作工作总量,工作总量除以两队效率之和,就可以求出完成全部工程的3/4所需的时间。两种思路简捷、清晰,都是很好的解法。
练习:一项工程,单独完成,甲队需8天,乙队需12天。两队合干了一段时间后,还剩这项工程的1/6没完成。问甲、乙两队合干了几天?
例3东西两镇,甲从东镇出发,2小时行全程的1/3,乙队从西镇出发,2小时行了全程的1/2。两人同时出发,相向而行,几小时才能相遇?
[思路说明]①由甲2小时行全程的1/3。可知甲行完全程要2÷1/3=6(小时);由乙2小时行全程的1/2,可知乙行完全程要2÷1/2=4(小时)。求出了甲、乙行完全程各需要的时间,时间的倒数便是各自的速度,进而可求出两人速度之和,把东西两镇的路程看作“1”,除以速度之和,就可求出两人同时出发相向而行的相遇时间。
综合算式:
1÷(1/(2÷1/3)+1/(2÷1/2))
=1÷(1/6+1/4)=1÷5/12=12/5(小时)
②由甲2小时行了全程的1/3,可知甲每小时行全程的1/3÷2=1/6;由乙2小时行全程的1/2,可知乙每小时行全程的1/2÷2=1/4。把东西两镇的路程“1”,除以甲、乙的速度之和,就可得到两人同时出发相向而行的相遇时间。
综合算式:
1÷(1/3÷2+1/2÷2)
=1÷(1/6+1/4)=1÷5/12=12/5(小时)
评点本题没有直接告诉甲、乙行完全程各需的时间,所以求出甲、乙行完全程各需的时间或各自的速度,是解题的关键所在。
练习:打印一份稿件,小张5小时可以打完份稿件的1/3,小李3小时可以打完这份稿件的1/4,如果两人合打多少小时完成?
例4一项工程,甲、乙合做6天可以完成。甲独做18天可以完成,乙独做多少天可以完成?
[思路说明]把一项工程的工作总量看作“1”,甲、乙合做6天可以完成,甲、乙合做一天,完成这项工程的1/6,甲独做18天可以完成,甲做一天完成这项工程的1/18。把甲、乙工作效率之和,减去甲的工作效率1/18,就可得到乙的工作效率:1/6-1/18=1/9。工作总量“1”中包含了多少个乙的工作效率,就是乙独做这项工程的需要的时间。
1÷(1/6-1/18)=1÷1/9=9(天)
评点这是一道较复杂的工程问题,是工程问题的主要题型之一。主要考查同学们运用分数的基本知识及工程问题的数量关系,解决实际问题的能力。解答这类工程问题的关键是:先求出独做的队或个人的工作效率,然后用工作总量“1”除以一个队或个人的工作效率,就可以求出一个队或个人独做的工作时间。
有的同学在解这道题时,由于审题马虎,而且受基本工程问题解法的影响,错误地列成:1÷(1/6+1/18),这是同学们应引起注意的地方。
练习:一批货物,用大小两辆卡车同时运送,5小时可以运完。如果用小卡车单独运,15小时可以运完。问大卡车单独运几小时可以运完?
例5加工一批零件,单独1人做,甲要10天完成,乙要15天完成,丙要12天完成。如果先由甲、乙两人合做5天后,剩下的由丙1人做,还要几天完成?
[思路说明]题目要求剩下的工作量由丙1人做,还要几天完成,必须知道剩下的工作量和丙的工作效率。
加工一批零件,单独1人做,甲要10天完成,甲一天加工一批零件的1/10;乙要15天完成,乙一天加工一批零件的1/15;丙要12天完成,丙一天加工一批零件的1/12。甲、乙合做一天,完成这批零件的1/10+1/15=1/6,合做5天完成这批零件的1/6×5=5/6,工作总量“1”减去甲、乙合做5天的工作量,就得到剩下的工作量。把剩下的工作量除以丙的工作效率,就可以求出剩下的工作量由丙1人做还要几天完成。
综合算式:
[1-(1/10+1/15)×5]÷1/12
=[1-1/6×5]÷1/12
=1/6÷1/12=2(天)
评点这是一道较复杂的工程问题,是工程问题中的主要题型之一,也是升学或毕业考试中最常见的试题之一。它的特点是求剩余部分的工作量完成的时间。关键是正确求出剩余部分的工作量。从工作总量“1”中减去已完成的工作量,就是剩余部分的工作量。有的同学由于审题不细,又受前面几例工程问题的解法的影响,容易错误地列成:[1÷(1/10+1/15)×5]÷1/12.
练习:加工一批零件,甲独做要8天完成,乙独做要7天完成,丙独做要14天完成,三人合作2天后,甲因病休息,乙、丙两人继续合做还要几天完成?
例6一件工程,甲、乙合作6天可以完成。现在甲、乙合作2天后,余下的工程由乙独做又用8天正好做完。这件工程如果由甲单独做,需要几天完成?
[思路说明]一件工程,甲、乙合作6天可以完成,可知甲、乙合作1天完成这件工程的1/6,甲、乙合作2天,完成这件工程的1/6×2=1/3。用工作总量“1”减去甲、乙合作2天的工作量1/3,所得的差1-1/3=2/3,就是余下的工作量。又知余下的工程由乙独做用了8天正好做完,用余下的工作量除以8,就可以求出1天的工作量,即乙的工作效率。把甲、乙工作效率之和减去乙的工作效率,就可得到甲的工作效率。求出了甲的工作效率,只要把工作总量“1”除以甲的工作效率,就可得到甲独做这件工程所需要的天数了。
综合算式:
1÷[1/6-(1-1/6×2)÷8]
=1÷[1/6-(1-1/3)÷8]=1÷[1/6-2/3÷8]
=1÷[1/6-1/12]=1÷1/12=12(天)
评点这也是一道复杂的工程问题。解题的关键是正确求出甲的工作效率。要求出甲的工作效率,解题的步骤较多,只有熟悉和掌握工程问题的结构特点和解题思路,熟练掌握前面5道例题的解题方法及解题的技能、技巧,才能正确顺利地解答本题。
练习:一项工程,甲、乙两队合做9天完成,乙、丙两队合做12天完成,现在甲、乙两队合做了3天,接着乙、丙两队又合做了6天,最后由丙队单独12天完成了整个工程。如果整个工程由甲、丙两队合做需要几天完成?
《比的应用》教学设计 篇4
活动目标:
了解自编应用题必须有两个数和一个问题,能编出7以内的数的应用题并说出算式。体验创编过程的成功与快乐,提高语言表达能力。
活动准备:
PPT
活动过程:
1.师:(出示PPT)我们先来复习一下7的分合式有哪些,请小朋友来说一下。
2.现在,谁能根据7可以分成1合6来列算式,提醒一下,这个分合式可以列出4个算式哦!
1+6=7,6+1=7:;7-1=6,7-6=1。
小结:对于加法来说,小的+小的=大的;对于减法来说,大的-小的,对应的那个数就是答案。
(出示第二张PPT),请小朋友来看一下,你看到了什么?
Eg:草地上有1只黄色的蝴蝶,又来了6只粉色的蝴蝶,现在一共有几只蝴蝶?
你还能说出其他的应用题吗?有关心弟弟妹妹的情感,能自己设计、制作小礼品。(提示,加法两个,减法两个。)、
经过第一个的练习,谁能自己说出这一个。
Eg:草地上有5只灰色的兔子,又来了2只白色的`兔子,现在草地上一共有几只兔子?列算式,5+2=7
(根据上一个练习,同样请小朋友说出剩余的3个应用题)
(出示PPt3)刚才小朋友说的都很好,那现在来看这一个,会的举手。
活动延伸:
(PPt4)来看图,谁能根据这个图编出更多的应用题,列出更多的算式。
(根据:树上树下;鸟的大小;尾巴的方向)
活动反思:
在整个教学活动中,“应用题”相对于幼儿来说,是一个较为难理解又难掌握的领域,如何让幼儿们在提倡的“玩中学”这一模式中掌握知识点呢?我将此作为本次课堂设计的一个难点。以动画人物的形象激发幼儿的兴趣,让幼儿随着喜爱的动画人物进入我所创设的环境中,让幼儿们在与动画人物相互交流的基础上,进行知识性的学习。在编应用题时,小朋友基本能大声的来编,可能是父母在场的关系,小朋友积极举手,认真的投入到活动中。在数学练习时,父母们都走去看自己的宝宝做练习,这个环节有点乱,可是家长们的心情可以理解,所以这个环节在父母们的一起参与下结束了。
《比的应用》教学设计 篇5
(一)知识与技能
1、使学生认识摩尔是物质的量的基本单位,了解物质的量与微观粒子之间的关系;了解摩尔质量的概念。
2、了解提出摩尔这一概念的重要性和必要性,懂得阿伏加德罗常数的涵义。
3、使学生了解物质的量、摩尔质量、物质的质量之间的关系。能用于进行简单的化学计算。
(二)过程和方法
初步培养学生演绎推理、归纳推理、逻辑推理和运用化学知识进行计算的.能力。
(三)情感态度与价值观
通过对概念的透彻理解,培养学生严谨、认真的学习态度,体会定量研究的方法对研究和学习化学的重要作用。
重、难点:物质的量及其单位。
过程:
[引言]古时有一个勇敢的小伙子想娶国王美丽的公主,国王出题刁难,其中一个问题是:10kg小米是多少粒?同学们你们能不能帮帮他?
[思考、讨论、回答]
[追问]这些方法中,那种方法最科学?
[追问]谁能介绍几种生活中相似的例子?
[讨论回答]箱、打、令、包、条。
设计意图:引发学习兴趣,引出把微小物质扩大倍数形成一定数目的集体以便于方便生活、方便科学研究、方便相互交流。
[引入] 复习C + O2 =CO2指出化学方程式的意义。
在实验中,我们可以取12 g C和32 g O2反应,而无法只取1个C原子和1个氧分子反应,那么12 g C中含多少个C呢?要解决这个问题,我们来学习“第2节化学计量在实验中的作用”。
《比的应用》教学设计 篇6
教学目标:
(1)知识目标:使学生理解按比例分配的意义。
(2)能力目标:使学生灵活掌握按比例分配应用题的数量关系和解答方法。
(3)情感目标:在教学中渗透事物是相互联系的辩证唯物主义思想。
教学重点:
分析理解按比例分配应用题的数量关系。
教学难点:
掌握按比例分配应用题的解答方法。
教具准备:
多媒体课件
教学过程:
一、学前准备
1、一个农场计划在100公顷的地里播种60公顷的大豆和40公顷玉米。大豆和玉米的播种面积各占这块地的几分之几?大豆和玉米播种面积的比是多少?
60÷100=3/5
40÷100=2/5
这里的3/5和2/5是什么意思?
2、60:40=3:2
你发现了什么?
二、探究新知
1、导入新课
在日常生活中,我们有时需要把一些数量按照一定的比来分配,你能举出这样的例子吗?
2、教学例题2
一个农场计划在100公顷的地里播种大豆和玉米。播种面积的'比是3:2,两种作物各播种多少公顷?
(1) 学生独立思考,相互说说:要分配什么?3:2是什么意思?
(2) 探究问题解决的方法
(3) 交流
(4) 用分数怎么解答?
总面积平均分成的份数:3+2=5
播种大豆的面积:100×3/5=60(公顷)
播种玉米的面积:100×2/5=40(公顷)
(5) 用归一方法怎么解答?
3、归纳小结:按比例分配的应用题有什么特点?怎样解答?
4、学习例题3
(1) 小组尝试解答检验
(2) 全班交流、反馈
三个班的总人数:47+45+48=140(人)
一班应栽的棵数:280×()=( )棵
二班应栽的棵数:280×()=( )棵
三班应栽的棵数:280×()=( )棵
(3) 例题2和例题3有什么相同点和不同点
三、巩固练习与检测
1、水果店运来桔子和梨共840千克,梨和桔子的重量的比是3:2,桔子和梨各重多少千克?
2、一个三角形的三个内角的度数比是2:3:7,求这个三角形的各个内角的度数。
3、教材53页的2、3题
四、小结(略)
五、作业:练习十三的第一、二、五题。
《比的应用》教学设计 篇7
教学目标:
1、知识与技能:在解决实际问题时,能根据实际情况采用“进一法”或“去尾法”取商的近似值。
2、过程与方法:根据实际情况,独立完成学习任务。
3、情感、态度与价值观:让学生通过采用“进一法”或“去尾法”取商的近似值,感受这些方法的现实意义。
教学重、难点:能根据实际情况选择合适的方法取商的近似值解决生活问题。
教具准备:多媒体课件、计算器。
教学过程:
一、复习铺垫。
1、体育室花19.4元买来一筒羽毛球,每筒12个,平均每个多少元?
(1)学生独立解答。
(2)汇报讲评:根据你的生活经验,算钱时可以保留几位小数,为什么?
2、引入:我们在解决实际问题时,要根据实际情况取商的近似值。(板书课题)
二、探索新知。
1、学习例12(1)
(1)出示题目:小强的妈妈要将2.5千克香油分装在一些玻璃瓶里,每个瓶最多可盛0.4千克,需要准备几个瓶?
(2)学生读题理解题意,独立列式计算。
(3)汇报:2.5÷0.4=6.25(个)
(4)设疑:我们算到的结果是6.25个瓶,那在我们的生活中能找到6.25个瓶子吗?根据你的生活经验,这里求“需要准备几个瓶?”得数应该保留什么数?
(5)小组讨论:根据实际情况,这里需要准备几个瓶?为什么?
(6)学生汇报讨论情况。
(7)演示多媒体课件,验证结果。
边演示课件,边提问:如果是用我们以前的`“四舍五入法”取近似数,就需要准备几个瓶子?能装得下2.5千克的香油吗?6个瓶子只能装多少千克香油?所以要准备几个瓶子?
(8)小结:在这道题里,应用我们以前学习的用“四舍五入法”取近似值,能解决问题吗?在这种情况下,出现了不满5也需要向前一位进1,这种方法我们把它叫做“进一法”。
(9)在我们的日常生活中,有像这样的情况吗?请你说一说。
2、填一填
(1)五年级有210个同学,需租车到东莞参观学习,每辆车最多可坐40人,需要租几辆车?
列式为:210÷40=5.25≈( )辆应用( )法取近似值。
(2)把一包150千克的大米平均分成每袋40千克,需要准备几个袋子?
列式为:150÷40=3.75≈( )个应用( )法取近似值。
3、学习例12(2)
(1)出示题目:王阿姨用一根25米长的红丝带包装礼盒。每个礼盒要用1.5米长的丝带,这些红丝带可以包装几个礼盒?
(2)要求这个问题,要用什么方法列式?怎样列?
(3)思考:①根据你的生活经验,要求“这些红丝带可以包装几个礼盒?”,得数应保留什么数?
②如果用“四舍五入法”或“进一法”取近似值,结果是多少?这些丝带够吗?那么这些丝带可以包装几个礼盒?
(4)小结:在这道题里,出现了满5也要把尾数舍去的情况,我们把这种取近似值的方法叫做“去尾法”。
(5)在我们的生活中,有像这样的情况吗?请你说一说。
4、选一选
(1)做一套衣服要用布2.5m,现有30.5m的布,可以做多少套这样的衣服?列式为:()
A、30.5÷2.5=12.2≈12(套)B、30.5÷2.5=12.2≈13(套)
(2)同学们把75.5厘米的纸条按每6厘米裁成一段做圆环,这个纸条最多能做成几个圆环?列式为:()
A、75.5÷6=12.58≈13(个)B、75.5÷6=12.58≈12(个)
5、学生看书本P33的内容,质疑。
6、小结:在解决实际问题时,我们有的时候用“四舍五入法”取近似值,也有的时候用“进一法”或“去尾法”取近似值,总之我们要根据实际情况选择合适的方法取商的近似值。
三、练习提高。
1、P33“做一做”的题目。
2、P35第7题。
3、大家今天的表现真不错,现在老师给大家介绍个漂亮的地方。(出示漂亮的桂林山水的风景)这么美的地方,你想去游览吗?这里有一种既开心刺激又经济实惠的游览方式——“乘坐竹筏游漓江”。请看:(1)一个竹筏一天租金220元,可乘6人。根据这些信息,你能提出什么数学问题?(提出问题后,学生列式解答,讲评时让学生说说这里用了什么方法取近似值,为什么。)
(2)我们班有47人,准备乘坐竹筏游漓江,已知每个竹筏可乘6人,得租几个竹筏?(学生列式解答,讲评时让学生说说这里用了什么方法取近似值,为什么。)
(3)同学们,朴实的桂林人民用自己勤劳的双手建造出一个个精美的竹筏,为桂林的旅游事业争光添彩。我还了解到了一个信息:做一个竹筏需要10根竹子,请问96根符合要求的竹子能做几个这样的竹筏?(学生列式解答,讲评时让学生说说这里用了什么方法取近似值,为什么。)
(4)对学生进行环保教育。
四、全课总结。
同学们,没想到吧,在愉快的旅游之中随处都可以见到数学,由此可见,数学就在我们身边。通过今天的学习,你学到了什么知识?
五、布置作业。
课本P35第6、8、9题。
《比的应用》教学设计 篇8
教材分析:分数连除和乘除复合应用题”这节课的教学是在前面学过的分数乘除一步应用题的基础上发展起来的分数连除应用题和乘除复合应用题,所以在设计复习导入部分作了全面的练习和知识点的概括。本节课的重点是:找准题中的单位“1”和数量关系。难点是:掌握两类应用题的结构特点,明确数量关系。
在设计“授新课”部分,为了避免学生觉得枯燥,我谈话引入本校情况,并对两道例题做了更改。在实施教学过程中,注意到适当的“引”和“放”,以培养学生分析问题和解答问题的能力。
本节课计算是次,分析列式是主,所以在设计“练兵场1、2”时,我做了明确要求,男生做1题,女生做2题,这样学生实际完成了1道题,但在同桌互查和集体订正的过程中就自然列出了另一题的算式。
巩固练习阶段,我分成了两个层次,一是基础练习。设计时题目要求只列式不计算,是为了达到节时高效的目的。二是变式和拓展练习。题目中只有1个单位“1”,目的在于和前面的题目和解法形成对比,使学生养成认真分析数量关系的好习惯。
小结时,师引导学生说内容,说方法,并强调喜欢哪种用哪种,目的在于让学生在课后“优化算法”。当然在教学的实施过程中还有许多不足,还望各位老师批评指正,以提高我的教学水平。
教学目标:1、掌握分数连除应用题和乘除复合应用题的结构特点与数量关系,学会分析解答相关应用题。
2、培养学生分析问题和解答问题的能力。
教学重点:找准每一步的单位“1”和数量关系。
教学难点:掌握两类应用题的结构特点,找准数量关系。
教学过程:
一、复习导入
1、口算天天练。(课件示题,指名口答)
渗透个别算式的知识点。
2、“看谁先找到题中的单位‘‘1‘‘。”指名口答
3、分析分率句,口头列式解答。
教师小结:题目中已知了分率和单位“1”的量,求分率的对应量要用乘法计算;题目中已知了分率和分率的对应量,求单位“1”的量,要用除法计算。
4、谈话引入新课。
东华小学的校园文化生活是丰富的,我们学校也不错。课前老师还对我校部分兴趣小组的.人数情况作了了解,来一起看。(指名读题)
问:在这道题中,有几个单位“1”?这两个单位“1”的量是已知还是未知?
这就是今天我们要学习的分数乘除法应用题的其中一个类型。(板书课题)
二、新授课
1、教学例4。
1.)师引导学生分析题目中的数量关系。
2.)我们还可以用线段图来表示题中的数量关系,生说画法,师画线段图。
3.)师引导,学生确定每一步的算法。
师小结:刚才我们用连除的方法解答了题目中有两个单位“1”并且都未知时,求其中一个单位“1”的量的这类问题。
4.)你愿意根据题中的数量关系用列方程的方法解答这道题吗?(指名板演)
2、完成“练兵场1”中的题目。(要求男生做第1题,女生做第2题,然后同桌交换检查,最后集体订正。)
更让老师感兴趣的是:我校舞蹈队人数、英语组人数及我班学生总数三者有个巧合。想知道吗?
3、教学例5。
1.)出示例题,齐读题目。
2.)师引导学生分析题目中的数量关系。
3.)我们怎样用线段图来表示题中的数量关系呢?师引导学生完成线段图。
4.)师引导,学生确定每一步的算法。
师小结:刚才我们用乘除混合计算的方法解答了题目中有两个单位“1”并且一个已知,一个未知时,求其中未知的一个单位“1”的量的这类问题。
5.)谁还会用列方程的方法解答这道题?(指名板演)
4、完成“练兵场1”中的题目。集体订正。
三、巩固练习
1、基本练习。只列式,不计算
要求先独立做,然后集体订正。
下面几道题和前面的稍稍有点不同,敢挑战吗?
2、变式练习。
3、拓展练习。
四、小结
今天我们学习了题目中含有两个单位“1”的应用题,解答这类题我们可以借助线段图分析题中的数量关系,可以用算术方法的连除或乘除混合运算的方法计算,还可以用列方程的方法解答。你喜欢哪种就用哪种。
五、布置作业
练习十一的2、3、6题。
《比的应用》教学设计 篇9
教学内容:
教科书第49页的例7,完成随后的“练一练”和练习十一的第3、5题。
教学目标:
1、使学生在理解线段比例尺含义的基础上,能按给定的比例尺求相应的实际距离或图上距离。
2、在解决问题的过程中,进一步体会比例以及比例尺的应用价值,感知不同领域数学内容的内在联系,增强用数和图形描述现实问题的意识和能力,丰富解决问题的策略。
教学重点、难点:
能按给定的比例尺求相应的实际距离或图上距离;感知不同领域数学内容的内在联系,增强用数和图形描述现实问题的意识和能力。
教学准备:
教学光盘、了解家到学校的大概距离
教学过程
一、复习导入。
1、什么叫比例尺?求比例尺时要注意哪些问题?
2、在一幅地图上南京到上海相距5厘米,实际相距300千米,求这幅地图的比例尺?你能画出这幅地图的线段比例尺吗?
二、教学新课
1、教学例7。
(1)出示例7,明确题意,找出明华小学到少年宫距离的线段,说出题目告诉了什么,要求什么。(告诉了比例尺,又告诉了图上距离,求实际距离。)
(2)说一说比例尺1:8000所表示的意义。
(3)根据对1:8000的理解让学生尝试练习。
(4)交流算法,说说为什么这样算?帮助学生掌握不同算法以及之间的联系。
重点引导学生理解和掌握用列比例式求实际距离的方法。引导学生思考:根据比例尺的含义,明华小学到少年宫的图上距离与实际距离的比一定与哪个比相等?你能根据这样的相等关系列出比例式?
注意:最后的单位要换算成“米”作单位的数。
2、做“试一试”。
(1)独立算出学校到医院的图上距离。
(2)讨论怎样把医院的位置在图上表示出来。
(3)在图中表示医院的位置。
三、巩固练习。
1、做“练一练”先独立解题,在组织交流
2、做练习十一第4题
重点知道学生在地图上测两地之间的距离和在地图上如何找比例尺。
3、做练习十一第5题。重点帮助学生确定合适的比例尺。在解决问题的过程中,进一步体会比例以及比例尺的应用价值。
4、将下列各题做在课堂作业本上。
(1)北京到天津的距离是140千米,在一幅比例尺是1:2000000的地图上,两地间的距离是多少厘米?
(2)在一幅比例尺是1:500000的地图上,量得甲、乙两城的距离是12.5厘米。甲、乙两城实际相距多少千米?0 40 80 120千米
(3)在一幅比例尺为的地图上,小丽量得某省会城市与北京的距离是32.5厘米。这个城市与北京相距多远?
(4)做练习十一第3题。
(5)学生阅读“你知道吗”,选择两个比例尺说说它们的实际意义。
四、全课小结。
通过本课的学习,你又掌握了什么新的本领?
五、课堂作业
完成补充习题的相关练习
板书设计:
比例尺的应用
5×8000=40000(厘米)解:设明华小学到少年宫的实际距离是x厘米。
40000厘米=400米5:x=1:8000
x=40000
40000厘米=400米
答:明华小学到少年宫的实际距离是400米。
课前思考:
这节课是学生在掌握了比例尺的含义的基础上展开的,让学生根据比例尺的意义来求实际距离或者是图上距离。解决这类问题学生会有不同的方法,应该允许他们按照自己的思考方法进行解答。在引导学生进一步理解不同算法时,特别要引导学生理解和掌握用比例式求实际距离的'方法,帮助学生把握不同算法之间的联系。
根据比例尺=图上距离:实际距离以及学生的不同解法,可以归纳如下:
图上距离=实际距离×比例尺
实际距离=图上距离÷比例尺
在计算的过程中关键还是要让学生注意单位的统一。在用解比例的方法求实际距离时,要和学生强调解设中单位还应该是厘米,因为图上距离的单位就是厘米,所以要统一。
课后反思:
上完这节课,感觉自己课前的准备工作做的不够充分,没有仔细阅读教材。虽然解决这类问题学生会有不同的方法,而且学生基本上都会用计算。但是这节课还是在于引导学生进一步理解和掌握用比例式求实际距离或图上距离的方法。从学生完成的作业质量来看,一开始很有必要让学生用比例式来求实际距离或者图上距离。因为尽管课上一再强调在解设的时候一定要注意单位,但是在练习中仍然有很多学生没有注意。在学生熟练了以后,接下来的练习就让学生选择自己喜欢的方法去完成。
其次,我本来认为根据比例尺的定义可以得出:图上距离=实际距离×比例尺;实际距离=图上距离÷比例尺这两个公式,正如高教导所说上完两节课后,感觉在实际解决问题的过程中根本不需要学生去记忆,学生自己理解了比例尺的含义之后,自然而然会解决。如果强行让学生去记忆,太匡死学生的思维了。
在练习的过程中有时候需要求长方行草坪的面积或者是操场的实际面积,但是题中却没有明确具体的单位,有的学生用平方厘米做单位,有的学生用平方米做单位,我和学生讨论后的想法是是因为没有明确要求,两种答案都可以,但是与实际生活联系起来,用平方米做单位更恰当些,不知道这样的处理是否恰当。
《比的应用》教学设计 篇10
一、教学目标
使学生初步掌握分数除法应用题的数量关系,学会应用一个数乘以分数的意义解答“已知一个数的几分之几是多少,求这个数”的应用题,能熟练地列方程解答这类应用题。
二、教学重点
(一)会用线段图分析数量关系。
(二)使学生理解并掌握“已知一个数的几分之几是多少,求这个数”的应用题。
三、教学过程
(一)复习导入
1.说一说分数除法的计算方法
2.计算25/36÷30
3.用等式表示下列数量关系
鸡的只数是鸭的3/4
女生是男生的`一半
梨重量的3/5相当于苹果的重量
儿童体内的水分占体重的4/5
(二)学一学
出示学习提示:
1.找出例1的条件和问题
(成人体内的水分约占体重的2/3,而儿童体内的水分约占体重的4/5。
小明体内有28千克水分,小明的体重才是爸爸的7/15,小明的体重是多少千克?)
2.思考
问题:题中有几个等量关系?各是哪两个量之间的关系?
所求问题在哪个或哪几个等量关系中?
哪个等量关系中只有所求问题是未知的?
找出这个关系式后用线段图表示它们的数量关系
小明体重×4/5=小明体内的水分质量×4/5=28
(三)做一做
如果用方程解这道题,你会吗?试一试
爸爸体重是多少千克?
(四)议一议
爸爸的体重在哪一个关系式里?写出这个关系式
怎样用线段图表示它们的关系。
如果用方程解答这道题该怎样做?
(学生讨论结束后独立完成 后,让组长检查后汇报)
学生独立阅读教材并填充教材。
(五)练一练
四、小结
本节课你有什么收获?
《比的应用》教学设计 篇11
一、教材分析
“化学计量在实验中的应用”是以化学基本概念为基础,与实验紧密联系,强调概念在实际中的应用,本节教学对整个高中化学的学习乃至今后继续学习起着重要的指导作用。教材内容具有概念比较多,且抽象又难于理解的特点。教材首先从为什么学习这个物理量入手,指出它是联系微观粒子和宏观物质的纽带,认识引入物质的量在实际应用中的重要意义,即引入这一物理量的重要性和必要性。然后介绍物质的量及其单位,物质的量与物质的粒子数之间、物质的量与质量之间的关系。应注意不要随意拓宽和加深有关内容,加大学生学习的困难。
二、学情分析
对于“物质的量”这个新的“量”和“摩尔”这个新的“单位”,学生是很陌生的,而且也很抽象,但通过学习和生活经验的积累,他们已经知道了生活中常用的一些“量”和“单位”,如长度、质量、时间、温度,米、千克等。可采用类比方法,类比方法是根据两个或两类对象之间的某些属性上相同,而推出它们在其他属性也相同的一种科学方法。如物质的量与其他学生熟悉的量类比、摩尔与其他国际单位的类比、集合思想的类比等,运用类比思想阐释物质的量及其单位摩尔的意义,能够提高这两个概念与其他概念之间的兼容性,有利于对这两个陌生概念的深刻理解和掌握。
三、教学目标
1、知识与技能
(1)认识物质的量是描述微观粒子集体的一个物理量,认识摩尔是物质的量的基本单位;了解阿伏加德罗常数的涵义,了解摩尔质量的概念。
(2)了解物质的量与微观粒子数之间的换算关系;了解物质的量、物质的质量、摩尔质量之间的换算关系。
2、过程与方法
(1)通过类比的思想帮助学生更好的理解、运用和巩固概念。
(2)通过阅读教材、参考资料和联系生活实际,培养学生自学的习惯、探究的意识。
(3)体验学习物质的量这一物理量的重要性和必要性。
3、情感态度和价值观
(1)使学生认识到微观和宏观的相互转化是研究化学问题的科学方法之一,培养学生尊重科学的思想。
(2)调动学生参与概念的形成过程,体验科学探究的`艰辛和喜悦。
四、教学重点与难点
1、教学重点
(1)物质的量的概念;
(2)物质的量和微粒数之间的相互转化;
(3)阿伏伽德罗常数的涵义;
(4)通过物质的量、质量、摩尔质量计算实际问题。
2、教学难点
物质的量的概念。
五、教学准备
多媒体、黑板
六、教学方法
采用创设情境方式,通过故事(一粒米的称量)和生活实例,以聚微成宏的科学思维方式,引出新的物理量 — 物质的量,搭建起宏观与微观的桥梁。通过学生列举生活中的常用单位 (箱、包、打等)与抽象概念类比、国际单位之间的类比、集合思想的类比教学,将抽象的概念形象化,让学生感受概念的生成过程,初步形成物质的量的概念并理解其重要性。
七、教学过程(略)
《比的应用》教学设计 篇12
【课题】计划
【教学目标】
知识目标:
(1)理解计划的含义、特点、种类等知识; (2)掌握常用的计划的写作。 能力目标:通过计划的`学习与写作练习,培养学生的应用文写作能力。 情感目标:树立做人做事要有“计划”的意识。
【教学重点】
计划的写作。
【教学难点】
计划的写作格式。
【教学设计】
(1)通过模拟的工作情景导入计划的概念; (2)引导学生认识计划的概念、特点;
(3)针对计划的不同使用情况,辨认计划的种类; (4)通过习作练习,巩固所学的知识。
(5)根据学生的认知规律,顺应学生的学习习惯展开,层层推进教学。
【教学备品】
教学课件。
【课时安排】
1课时。(45分钟)
【教学过程】
《比的应用》教学设计 篇13
教案背景
1、面向学生:√□中学 □小学
2、学科:信息技术
3、课时:1
4、学生课前准备:
熟悉网络搜索;全班学生分成四人一组并产生组长;学生能经小组为单位进行头脑风暴。
教学课题
人类通过信息的传递增进了人与人之间的相互了解,也通过对信息的开发和再利用推动了社会的不断进步。人类社会经历的每一次信息技术的革命,都对当时的社会发展都起到了至关重要的作用,是社会发展的重要基础之一。信息与信息技术是信息技术学科的基础,也是对信息技术的社会地位和信息技术对社会、经济以及人类发展等各个方面影响的总的概括。本部分教学的基本要求是:学生能够描述信息的基本特征;列举信息技术的应用实例;了解信息技术的历史和发展趋势。
教学目标
1、知识与技能:
(1)了解什么是信息;
(2)掌握信息的主要特征;
(3)学会区分信息和信息的载体;
(4)能用生活中的具体事例说明信息的特征。
2、过程与方法:
(1)学会从信息的传播过程了解信息的构成要素;
(2)学会分析信息事例及其特征的方法。
3、情感、态度与价值观:
体验信息知识和信息技术的文化内涵,激发和保持对信息技术的求知欲,形成积极主动地学习信息技术的态度。
教材分析
《信息与信息技术》是上海科技教育出版社出版的高中信息技术必修教材《信息技术基础》第一章教学内容,本课是高中信息技术基础的第一堂课,本课内容是根据课程标准中对信息的内容要求进行编写。主要从信息的定义、信息的五个主要特征两个方面展开论述。
对于信息的定义,教材给出了三种具有代表性的定义,除了要告诉学生信息在不同领域内具有不同的涵义外,更重要的是要让学生体会信息的作用。如果这三种定义仅从阅读的角度让学生理解,过于枯燥,且不利于学生形成认识,因此必须通过贴近现实生活的体验性的小活动、小例子来引起学生的学习兴趣,帮助学生建构认知。
对于信息的五个主要特征,信息的依附性是重点,它蕴涵了信息载体的概念。能否认清信息的载体和信息内容之间的关系直接影响到后面几章的学习。
为了加深学生对信息及载体的认识,教材设计了让学生从两则不同载体形式(文本与图片)的新闻中,分析可获得哪些信息的活动。
教学重点:
对信息概念的全面而正确的理解。
教学难点:
对信息的依附性和价值性的全面、科学的认识,以及信息特征分析方法的掌握。
四、教学方法
任务驱动法与问题驱动法
通过真实与虚拟的情景任务,依托一组框架问题,引发学生高级思维,从而完成教学任务。
内容问题(课本中有专家答案的问题):
1、目前对信息的认识最具有代表性的有那三种观点?
2、信息的主要特征是什么?
3、什么是信息技术?
4、现代信息技术的内容是什么?
5、信息技术经历了那五次革命?每次革命都有什么重大意义?
6、现代信息技术的发展趋势是什么?
单元问题(与单元教学内容相关课本中无答案的开放性问题):
1、为什么说信息是人类生存与发展的三大要素之一?
2、为什么说信息具有价值性与时效性?举例说明
3、为什么说信息技术是代替、扩展和延伸了人的信息功能?
基本问题(脱离了单元教学内容的开放性问题):
如何通过提高社会成员的信息素养促进社会的和谐发展?
教学过程
a、模拟体验,导入新课(以小组为单位讨论)
(ppt展示)我们班现在是某海军陆战队野象分队,接总部命令,野象分队将在原始森林进行为时一个月左右的生存实验,具体要求如下:第一,每个队员除了身上穿的衣服外,随身只能带三件物品,每件物品不能超过二公斤;第二,队员都是由飞机空降到半径为1000公里原始森林的中心地带,要求在一个月时间内从森林里走出来。问题:队员带哪三件物品最合适?(笔记本电脑,钢枪,水,饼干,指南针,打火机,刀,火石)请同学自由组合成探究小组(每组三至五人),在2分钟内给出一个可能的答案。
你要选择的物品是:(刀)、(水)和(火石)。你这样选择的理由是什么?
结论:(能源)、(物质)和(信息)是人类生存与发展的三大要素。
从中看到信息对人的生存与发展的重要性,导入信息概念与课题。
(板书)一、信息与信息特征
b、互动体验,学习新知
(一)模拟感觉剥夺实验。
(ppt展示)1954年,美国做了一项实验。该实验以每天20美元的报酬(在当时是很高的金额)雇用了一批学生作为被测者。
实验内容是这样的:实验要求被测试的人安静地躺在实验室的一张舒适的床上。实验室内一片漆黑,非常安静,被试者看不见任何东西,也听不到一点声音。被试者两只手戴上手套,并用纸卡住,吃的喝的都事先安排好了,用不着被试者移动手脚。总之,尽量剥夺被试的所有感觉信息。
师:请同学们闭上眼睛,想象一下,如果你长时间在那种环境下会怎样?
生闭上眼睛想象,说出自己可能出现的感受。
出示资料:感觉剥夺实验结果。
实验开始时,被试还能安静的睡着,但稍后,被试者开始失眠,焦躁不安,急切地寻找刺激,想唱歌,打口哨,自言自语,用两只手套相互敲打,或者用它去探索这间小屋。虽然被试者每天都可以获得丰厚的报酬,但是这也难以让他们在实验中坚持3天以上。在这种状态下,即使实验结束后让他做一些简单的事情他也会频频出错,精神也集中不起来了。据说,实验后得需要3天以上的时间才能回到原来的正常状态。
结论:(板书)1、信息与物质和能量一样,是我们生存的保障。
(二)感受身边的信息
学生活动:快速阅读p2什么是信息部份。
然后师提问并引导学生说出一些身边常接触的信息,然后让学生根据已有的知识和经验说出自己对信息的认识。
(师)让学生感受身边的信息:刚才我们进行的学习活动中,有没有与信息相关的活动出现了?
(生)刚才阅读时,我们接受了课本传递给我们的信息
你在讲话是,我们听到了你传递给我们的信息
(师)我们身边还有那些与信息相关的事例?请举例说明了。
(生):(举例)
(师):(教师在学生举例时可以将案例记录在黑板上)
师(小结):以上同学们说出了自己对信息的认识,都说的很好,由于信息这一概念被广泛用到各个领域,不同科学领域的专家对信息的理解也不尽相同,例如:“信息对消息接收者来说是预先不知道的消息”,“信息是具有新内容,新知识的'消息”等等,下面我们再来看两个中外学者对信息的认识,再共同感受一下什么是信息。
(三)游戏猜猜猜,感悟信息
(ppt演示信息的几种定义)
(板书)2、对信息认识的三种典型观点
香农的观点:信息是“用来消除不确定的东西”。
维纳的观念:信息是区别于物质与能量的第三类资源。
钟义信的观点:信息是“事物运动的状态与方式”
通过小游戏加深对几种定义的理解
小游戏:根据出示的提示信息猜猜这是什么(ppt提示信息逐条出现)
1、它是学校中经常使用的
它可以有各种颜色
它的形状是圆柱形的
它的主要成份是碳酸钙
它通常可以在其它物体上留下痕迹。
(粉笔)
2、小小绒毛轻又轻,
随风飞舞象伞兵。
飞到东来飞到西,
到处安家把根生。
(蒲公英)
师:同学们是怎样猜到答案的?
生思考回答
师:同学们根据粉笔和蒲公英的用途、形状、颜色、成份特征信息猜出了答案,也就是说我们根据事物所表现出来的信息达到达到了对这个事物的认识,从而消除了对事物的不确定性。
3、分析以下文字,其中包含哪些信息?
冰河解冻
小孩换牙
北京奥运会
精神抖擞,神采飞扬
火车提速
刻舟求剑
我国信息论专家钟义信提出,信息是“事物运动的状态与方式”。也就是说凡是表述了事物运动状态或变化方式的现象都是信息,信息包含了自然界或社会中的各种事物的运动状态或变化方式。
(四)总结(板书)3、什么是信息
(1)、从信息的本质来看,信息是区别于物质与能量的第三种资源。
(2)、从信息的作用来看,信息是用来消除人们对信息所描述事物的不确定性
(3)、从信息的内容来看,信息描述了事物的运动状态与方式。
(五)大家谈
师:通过以上的学习,我们对信息有了一定的认识,请同学们思考:
(ppt展示)烽火连三月,家书抵万金,其中的“家书”是信息吗?
知己知彼,百战不殆,其中的“已、彼”是信息吗?
读书以明理,其中的“书、理”是信息吗?
古长城将士点燃的“烽火”是信息吗?
前面我们学习了什么是信息,下面我们再来讨论信息有那些主要特征
(六)大家说信息(特征)
师:我们已经处在信息时代,每个人要对信息的认知、表达要有充分的认识,能够正确地辨别、分析、描述信息,做到这一点,必须了解一些信息的特征。为什么呢?让我们先来通过讨论和提问,一起感受!
(板书)二、信息的主要特征
师:信息无处不在,我们身边处处都有信息。你在课间休息时怎样会准时来到教室上课?(上课的铃声),你上学放学时,通过十字路口时要注意什么?(交通的红绿灯),每天看到的,听到的是不是信息?所以说:信息具有
(板书)1、普遍性
信息普遍存在于自然界和人类社会之中。
师:有的同学喜欢用座右铭来激励自己奋发学习,学有所成。一条座右铭通常写在哪地方?
生2:写在日记本里!
生3:写在铅笔盒上!
生4:存在文曲星上,打开就看到!
生5:老师我有手机,我放在开机画面上!
生6:刻在课桌上!
师:刻在课桌上是不对的,要爱护公物!鲁迅当年刻在课桌上也是不对的,不过已经过去这么多年,我们就不追究他老人家了。但是现你如果随处乱写乱画,为你的座右铭这条信息的乱找载体,我们就追究你的责任的!
总之,信息具有载体依附性,信息需要依附在一定的载体上存在。并且同一信息可以有不同的载体。
(板书)2、依附性
信息需要依附在一定的载体上存在,同一信息可以有不同的载体。
师:英国作家萧伯纳说:如果你有一个苹果,我有一个苹果,彼此交换,那么每人只有一个苹果;如果你有一种思想,我有一种思想,彼此交换,每个人就有了两种、甚至多于两种思想。
结论:物品交换后,每个人都有失有得,而思想交换后,每个人都有了更多的思想,说明信息是可共享的。
(板书)3、共享性
同一信息可以同时、同地或异地被多个人共同享用
师:有两家鞋厂分别派了一位推销员到一个岛上推销鞋,他们上岛后发现岛上居民一年四季都光着脚。一家鞋厂的推销员失望的给公司拍电报:“岛上无人穿鞋,没有市场。”然后他就回去了。而另一家鞋厂的推销员则心中大喜,他也给公司拍了一份电报:“岛上无人穿鞋,市场潜力很大,请速寄100双鞋来。”他把凉鞋送给了岛上的居民,岛上的居民穿上之后都觉得很舒服,不愿再脱下来,他为公司赢得了市场。
结论:信息是有价值的,但是要以积极开拓的心态去使用信息,才能发挥信息的价值。
(板书)4、价值性
信息、物质、能量是人类社会的三大资源
师:讲了这么多信息知识,下面我在这里公布一个信息:
(ppt展示)
通 知
接教育部通知,我校选送的高中电脑作品《我的蜘蛛人》获全国电脑制作一等奖,学校被评为“最佳组织奖”,为表彰我校取得的优异成绩,教育部于今年国庆节前在上海举办电脑制作表彰大会,要求我校获奖作者及高一学生代表十人参加表彰大会,会后组织与会代表游览上海高校,所有与会代表费用由教育部承担。请有兴趣的高一新生到学校科研处报名。
吉安三中
2006年8月
众生:耶!我去!我去!
有生:是真的吧?不会骗人吧?
师:通知我带来了,请前排的同学过目。(给看通知)
生:呀!老师你看“2006年8月20日”,是几年前的事了,早没用了啊!
师:我看看――的确是过期了,这么让人振奋的信息已经成为一张废张了。
生:(失望~)唉!
师:所以,以后我们可是要注意信息的时效性,时效性会影响对信息价值的认识。
(板书)5、时效性
如果不及时利用最新信息,信息就会毫无价值
c、分析实例,巩固认知
小组讨论分析以下两则新闻,都包含了哪些信息,体现了信息的哪些特征。
建议学生从以下几个方面分析讨论,1、显性信息、2、隐含信息、3、不同人对信息的可能反应(如相关政府工作人员、新闻工作者、普通市民)。
[ 新闻1 ] 记者从长沙血液中心了解到,截至发稿时止,长沙血液中心血库存有a型血液682袋,b型血液230袋,o型血液489袋,ab型血液172袋,但是a型rh阴性、o型rh阴性分别只有一袋。长沙血液中心主任表示,常规血型库存保持在1500袋左右可满足通常的需要,最低库存的警戒线为800袋。
分析:
表达信息1:上海市a型血和o型血均没有达到库存标准。
_________________________________________________________
_________________________________________________________
政府官员:
新闻媒体记者:
普通市民:
外科医生:
[ 新闻2 ](见下一页图)
分析:
表达信息1:天气炎热,土地缺水干裂。
_________________________________________________________
_________________________________________________________
农民:
农村科技人员:
乡镇干部:
水利工作者:
气象工作者:
粮食部门:
一政府官员:
老师通过提问,引导,同学补充,完成对两则信息的正确分析。
信息与信息的特征请大家一定要把握这几个知识点,下面我们就一些来探讨一下信息技术的发展,并展望一下未来的信息技术。
(板书)三、信息技术及其发展
我们先了解技术,然后再来讨论信息技术,最后展望信息技术的发展。
(板书)(一)、技术与信息技术
什么是技术,我查了相关资料,现在把我获取的关于技术的信息传递给大家,大家来共享我的劳动成果。
(板书)1、技术的定义
(板书)定义1:技术是人类为实现社会需要而创造和发展起来的手段、方法和技能的总和。
作为社会生产力的社会总体技术力量,包括工艺技巧、劳动经验、信息知识和实体工具装备,也就是整个社会的技术人才、技术设备和技术资料。
(板书)定义2:技术是为某一目的共同协作组成的各种工具和规则体系。
法国科学家狄德罗主编的《百科全书》给技术下了一个简明的定义:“技术是为某一目的共同协作组成的各种工具和规则体系。”技术的这个定义,基本上指出了现代技术的主要特点,即目的性、社会性、多元性。
举例:外科手术--------微创手术
我们了解了什么是技术,再来讨论一下什么是信息技术
请大家阅读p4页什么是信息技术这一部份,然后回答什么是信息技术?
阅读二分钟,然后回答问题
(板书)(二)、信息技术的定义
1、信息技术是指在信息的获取、整理、加工、存储、传递和利用过程中所采用的技术和方法。
2、信息技术的作用是代替、扩展和延伸人的信息功能。
讨论:为什么说信息技术的作用是代替、扩展和延伸人的信息功能?
小组讨论(头脑风暴)
班级交流
教师小结
信息功能功能与作用
信息功能的延伸
感觉器官(眼、鼻、耳、舌、手、足、皮肤)
获取信息
感测与识别技术(信息获取)
人体的神经系统
信息传递
通信技术(信息的传递)
人体的思维器官(大脑)
信息的认知、信息的加工
计算与智能技术(信息认知与再生,即信息处理)
大脑皮层
信息的存储
存储技术(信息存储)
效应器官
(手、足、嘴等)
信息的执行
控制与显示技术(信息的执行)
3、现代信息技术
现代信息技术以电子技术,尤其是微电子技术为基础,以计算机技术(信息处理技术)为核心,以通信技术(信息传递技术)为支柱,以信息技术应用为目的的科学技术群。
(三)、信息技术的发展
信息技术经历了五次革命,信息技术的革命,推动了社会向前发展。(印刷下表给学生做学具,要求学生通过阅读教材填写下表中的“变革的标志”与“变革的意义”)
变革的标志
变革的意义
信息技术的第一次革命
语言的产生
揭开了人类文明的序幕提高了信息的表达质量和利用效率
信息技术的第二次革命
文字的产生
突破了时空对信息的限制,延长了信息的寿命,使人类可以跨时间、跨地区的传递和交流
信息技术的第三次革命
-造纸术和印刷术的发明
为人类控文明奠定了基础,是信息存储与传播手段的一次重要革命令命令
信息技术的第四次革命
电报、电话、广播、电视的发明和普及
开创了开放式的通信手段,使信息传播的途径、载体、方式和方法产生了质的飞跃,是信息存储与传播手段的再次重要革命
信息技术的第五次革命
电子计算机及网络的普及与通信技术的结合
是信息传播与信息处理的一次重要革命使信息数字化成为可能,信息产业应运而生。
三、现代信息技术的发展趋势
发展趋势:数字化、智能化、网络化、个性化
(四)小结(1分钟)
师:同学们,通过以上的学习,我们理解了什么是信息,掌握了信息的特征,也明确了信息对我们的重要性。由于善于分析信息,主动获取信息,获得了事业的成功,我们也要主动培养自己的信息意识,在今后的学习和生活中,养成多听多看,细心观察,勤于思考和分析的习惯,使我们能够更有效的利用信息,为未来事业的成功奠定基础,成为信息社会的强者。
(五)布置课后作业(2分钟)
课后研修:
文字和图片是表达信息的两种常见的途径,而随着科技的不断发展,信息的载体也越来越多了。那么,信息还可以从哪些载体中获取呢?观察身边的事物,举一个例子说明信息载体和信息之间的关系。
师:同学们可以把课堂内的任何疑问或感想以及课后作业在学校《信息技术》评价网站的交流论坛上发布和交流,老师会随时查看和答复的。
板书内容
一、信息与信息特征
1、信息与物质和能量一样,是我们生存的保障。
2、对信息认识的三种典型观点
3、什么是信息
(1)、从信息的本质来看,信息是区别于物质与能量的第三种资源。
(2)、从信息的作用来看,信息是用来消除人们对信息所描述事物的不确定性
(3)、从信息的内容来看,信息描述了事物的运动状态与方式。
二、信息的主要特征
1、普遍性
2、依附性
3、共享性
4、价值性
5、时效性
三、信息技术及其发展
1、技术与信息技术
2、信息技术的定义
(1)、信息技术是指在信息的获取、整理、加工、存储、传递和利用过程中所采用的技术和方法。
(2)、信息技术的作用是代替、扩展和延伸人的信息功能。
教学反思
这是利用英特尔未来教育理念设计的一堂高中信息技术课。教学中采用了英特尔未来教育理问题式教学方法,并运用到头脑风暴等游戏方法,运用了大量的游戏资源、故事资源,使得课堂更为活跃,学生主动参与的欲望高。
关于信息的定义的教学,以前老师都不太重视,也不太好讲,为了讲好这一概念,设计了一组模拟体现、互动游戏等环节,让学生在活动中体验感受,然后再交流讨论了解信息的定义,并让学生知道多元的定义方法,最后从本质内容作用三方面来定义信息。
实际教学中,由于这是信息技术第一课,学生们刚刚接触,教学中小组活动还是不充分,以后的教学中可以考虑第一课时专门用来游戏,以利于后面的小组学习。
《比的应用》教学设计 篇14
教材与学情:
解直角三角形的应用是在学生熟练掌握了直角三角形的解法的基础上进行教学,它是把一些实际问题转化为解直角三角形的数学问题,对分析问题能力要求较高,这会使学生学习感到困难,在教学中应引起足够的重视。
信息论原理:
将直角三角形中边角关系作为已有信息,通过复习(输入),使学生更牢固地掌握(贮存);再通过例题讲解,达到信息处理;通过总结归纳,使信息优化;通过变式练习,使信息强化并能灵活运用;通过布置作业,使信息得到反馈。
教学目标:
⒈认知目标:
⑴懂得常见名词(如仰角、俯角)的意义
⑵能正确理解题意,将实际问题转化为数学
⑶能利用已有知识,通过直接解三角形或列方程的方法解决一些实际问题。
⒉能力目标:培养学生分析问题和解决问题的能力,培养学生思维能力的灵活性。
⒊情感目标:使学生能理论联系实际,培养学生的对立统一的观点。
教学重点、难点:
重点:利用解直角三角形来解决一些实际问题
难点:正确理解题意,将实际问题转化为数学问题。
信息优化策略:
⑴在学生对实际问题的探究中,神经兴奋,思维活动始终处于积极状态
⑵在归纳、变换中激发学生思维的灵活性、敏捷性和创造性。
⑶重视学法指导,以加速教学效绩信息的顺利体现。
教学媒体:
投影仪、教具(一个锐角三角形,可变换图2-图7)
高潮设计:
1、例1、例2图形基本相同,但解法不同;这是为什么?学生的思维处于积极探求状态中,从而激发学生学习的积极性和主动性
2、将一个锐角三角形纸片通过旋转、翻折等变换,使学生对问题本质有了更深的认识
教学过程:
一、复习引入,输入并贮存信息:
1.提问:如图,在Rt△ABC中,∠C=90°。
⑴三边a、b、c有什么关系?
⑵两锐角∠A、∠B有怎样的关系?
⑶边与角之间有怎样的关系?
2.提问:解直角三角形应具备怎样的条件:
注:直角三角形的边角关系及解直角三角形的条件由投影给出,便于学生贮存信息
二、实例讲解,处理信息:
例1.(投影)在水平线上一点C,测得同顶的.仰角为30°,向山沿直线 前进20为到D处,再测山顶A的仰角为60°,求山高AB。
⑴引导学生将实际问题转化为数学问题。
⑵分析:求AB可以解Rt△ABD和
Rt△ABC,但两三角形中都不具备直接条件,但由于∠ADB=2∠C,很容易发现AD=CD=20米,故可以解Rt△ABD,求得AB。
⑶解题过程,学生练习。
⑷思考:假如∠ADB=45°,能否直接来解一个三角形呢?请看例2。
例2.(投影)在水平线上一点C,测得山顶A的仰角为30°,向山沿直线前进20米到D处,再测山顶A的仰角为45°,求山高AB。
分析:
⑴在Rt△ABC和Rt△ABD中,都没有两个已知元素,故不能直接解一个三角形来求出AB。
⑵考虑到AB是两直角三角形的直角边,而CD是两直角三角形的直角边,而CD均不是两个直角三角形的直角边,但CD=BC=BD,启以学生设AB=X,通过 列方程来解,然后板书解题过程。
解:设山高AB=x米
在Rt△ADB中,∠B=90°∠ADB=45°
∵BD=AB=x(米)
在Rt△ABC中,tgC=AB/BC
∴BC=AB/tgC=√3(米)
∵CD=BC-BD
∴√3x-x=20 解得 x=(10√3+10)米
答:山高AB是(10√3+10)米
三、归纳总结,优化信息
例2的图开完全一样,如图,均已知∠1、∠2及CD,例1中 ∠2=2∠1 求AB,则需解Rt△ABD例2中∠2≠2∠1求AB,则利用CD=BC-BD,列方程来解。
四、变式训练,强化信息
(投影)练习1:如图,山上有铁塔CD为m米,从地上一点测得塔顶C的仰角为∝,塔底D的仰角为β,求山高BD。
练习2:如图,海岸上有A、B两点相距120米,由A、B两点观测海上一保轮船C,得∠CAB=60°∠CBA=75°,求轮船C到海岸AB的距离。
练习3:在塔PQ的正西方向A点测得顶端P的
仰角为30°,在塔的正南方向B点处,测得顶端P的仰角为45°且AB=60米,求塔高PQ。
教师待学生解题完毕后,进行讲评,并利用教具揭示各题实质:
⑴将基本图形4旋转90°,即得图5;将基本图形4中的Rt△ABD翻折180°,即可得图6;将基本图形4中Rt△ABD绕AB旋转90°,即可得图7的立体图形。
⑵引导学生归纳三个练习题的等量关系:
练习1的等量关系是AB=AB;练习2的等量关系是AD+BD=AB;练习3的等量关系是AQ2+BQ2=AB2
五、作业布置,反馈信息
《几何》第三册P57第10题,P58第4题。
板书设计:
解直角三角形的应用
例1已知:………例2已知:………小结:………
求:………求:………
解:………解:………
练习1已知:………练习2已知:………练习3已知:………
求:………求:………求:………
解:………解:………解:………
《比的应用》教学设计 篇15
今天上了一元一次方程的专题复习——行程问题,设计思路如下:
学生首先回顾了行程问题的三个基本量及它们之间的关系(路程=速度乘以时间),及有上述关系式得到的其它式。然后由学生上台讲解预习提纲中学生认为有疑问的题目(上课前通过抽查学生预习提纲获得的信息),题目如下:一列火车从A站开往B站,已知A,B两地相距500千米,若火车以80千米/时的速度行驶,能准时到达B站,现火车以65千米/时的速度行驶了2小时30分后把速度提高到95千米/时,通过计算说明该火车能否准时到达B站。若不能准点到达,则应在2小时30分后把速度变为多少才能准点到达?(学生讲解时教师示意用线段图辅助)。
再次以四人小组互助研讨预习中存在的个案问题,教师深入各小组(特别是比较薄弱的小组进行题目的个别指导),然后学生把预习题目分类,总结行程问题的类型及每类问题常用的等量关系。教师点拨行程问题可用画线段图的'方法直观的表示来理解题意。
最后,学生做拓展提升题目,教师进行面批指导。
反思:本节课能充分放手,让学生真正成为学习的主体,在自主展示、合作交流中锻炼了思维,提升了智慧,使课堂真正成为学生自由发展的天空。但也有一点点担心:学生在小组合作中是否每个学生都能把题目本身和思想方法通过交流悟透呢。
《比的应用》教学设计 篇16
教学目标:
1.知识目标
⑴引导学生自主学习掌握利息按复利计算的概念
⑵掌握每期等额分期付款与到期一次性付款间的关系,应用等比数列的知识体系解决分期付款中的有关计算。
2.能力目标
发现问题、分析问题、解决问题的能力,培养学生利用信息技术将所学数学知识应用于解决实际生活中的问题。
3.发展目标
激发学生学习数学的兴趣及求知欲。渗透理论与实际相结合的思想。
教学重点:
抓住分期付款的本质分析问题;
教学难点:
建立数学模型,理解分期付款的合理性;
教学思路:
教师运用基于分组合作学习探究式教学模式,根据该部分知识内容特点(理论与实际问题相结合)确定主题---分期付款有关计算,教师协调全班学生分为十组,每四人一组,由数学成绩较好者担当组长,每组确定同一任务。学习过程分为三个阶段:第一阶段课前准备,每组确定帮忙解决某组员最想卖的商品,到各大商场记录分期付款的资料,同时寻找分期与数列之间存在的联系;第二阶段通过课中学习,确定分期方案,并核对方案的可行性,教师选几组代表上台借助投影仪向大家介绍组里确定的分期方案;第三阶段学生通过课后练习谈谈自身对本节内容知识的理解及感想。
教材内容:
本节课是等比数列的前n项和公式在购物方式上的一个应用.此前学生已掌握等比数列的通项公式及其前n项和公式,并学习了有关储蓄的计算(单利计息和复利问题),也就是说学生在知识和应用能力方面都有了一定基础。
教学方法:
为调动学生学习的积极性,产生求知欲望,教学中以创设情景,提出问题,采用设问等形式引导学生积极探究、合作、交流发现数学模型,并采用多媒体投影仪辅助教学,提高教学效率
教学手段:
多媒体辅助教学,导学提纲
教学步骤:
一、导入新课:
幽默广告视频:丈夫正看球赛,妻子一过来就换电视剧,丈夫很郁闷,一客服对他说:“您可以分期付款买东西,提前享受。”结果,丈夫和妻子一人一台电视,但当丈夫看球赛正酣时,儿子又过来把台换了。面对商家和银行提供的.各种分期付款服务,究竟选择什么样的方式好呢?(以幽默广告形式导入引起学生对本课题的兴趣)
二、讲授新课:
例:他准备花钱买一台5000元左右的平板电视,采用分期付款方式在一年内将款全部付清。据了解,苏宁电器允许采用分期付款方式进行购物,在一年内将款全部付清,该店提供了如下几种付款方案,以供选择。
分析方案2:(选择次数中间的方案进行举例分析,进一步巩固数列知识)
本题可通过逐月计算欠款来处理,根据题意,到期还清即第12个月的欠款数为0元。设每次应付x元,则:
设每期还款x元,第k个月末还款后的本利欠款数为Ak元,则
解得:
三、随堂练习:
由学生完成上表中“方案1”和“方案3”,熟练探究方法;
可见:方案3使得付款总额较少,同时教师指出:结论具有不确定性——选择什么方案还要参照家庭的经济状况。(一改往日数学答案的唯一性,培养学生解决问题时应具备的全面性)
请同学们总结:
分期付款购买售价为a元的商品,分n次经过m个月还清贷款,每月还款x元,月利率为p,则求x的数学模型:
(重点)练习:分组讨论计算某个组员利用自己零花钱分期付款购买自己最想要的某种商品,并由小组代表到讲台上用投影仪来谈谈组里给他的方案意见,让学生充分体验数学的魅力。(在这段时间里,很多小组代表发表了本小组对某商品的分期方案,较多学生参与其中,体验数学在生活中的用处)
四、课堂小结:
师生共同回顾思维过程,教师提醒.
①分期付款有哪些一般规定?列方程的依据是什么
②分期付款中的计算涉及的数学知识:等比数列前n项和公式;数学思想:方程思想
五、布置作业:
某学生家境贫寒,但自强不息,于xxxx年考上北京大学,因家中无法负担其学费,遂决定向银行申请助学贷款,学制四年,每年9月1日申请贷款5000元。他如何还贷?请为他确定还贷方案。(什么是分期付款?银行贷款程序怎么样?利率是多少?如何计算?每月需还多少?)
教学设计理念:
创设情景,与实际生活相联系,让学生感到数学就在身边,身边处处有数学,从而增强学好数学的信心,用已掌握的数学知识解决身边的实际问题,同时尊重差异,实施合作学习。
教学组织形式:
分组合作学习
《比的应用》教学设计 篇17
教学内容:小学数学六年级上册北师大版第四单元第55页——第56页的内容“比的应用”。
教材分析:
这部分内容是在学生学习了比与分数的联系,已掌握简单分数乘、除法应用题数量关系的基础上,把比的知识应用于解决相关的实际问题的一个课例,掌握了按比分配的解题方法,不仅能有效地解决生活、工作中把一个数量按照一定的比进行分配的问题,也为以后学习“比例”“比例尺”奠定了基础。
学情分析:
对于按比分配问题学生在以往的学习生活过程中曾经遇到过,甚至解决过,每个学生都有一定体悟和经验,但是对于这种分配方法没有总结和比较过,没有一个系统的思维方式。通过今天的学习,将学生的无序思维有序化、数学化、系统化,总结并内化成学生的一个巩固的规范的分配方法。
设计理念:
《数学新课程标准》指出:义务教育阶段的数学课程其基本出发点是促进学生全面、持续、和谐地发展。为此,本课从学生地生活经验出发,把陌生枯燥地应用题与学生地熟悉地生活背景联系起来。通过“问题情景”——“建立模型”——“解释应用与拓展”,这三个阶段让学生亲身经历数学建构地过程,体验策略地多样化,初步形成评价与反思意识,从而提高解决问题地能力。
教学目标:
1、能够运用比的意义,通过计算解决分配的实际问题,进一步体会比的意义,提高解决问题的能力。
2、在解决问题的过程中,培养学生的合情合理的推理能力,旧知的迁移能力,体会解决问题策略的多样性。
3、感受探索知识、合作学习的乐趣,体会比与生活的密切联系,收获积极良好的情感体验。
教学重难点:
重点:运用比的意义解决按比例分配的实际问题。
难点:通过实际操作理解按比例分配的实际意义。
教学准备:课件、小棒若干。
教学时间安排:复习2分钟,导入3分钟,新授20分钟,巩固5分钟,小结3分钟,练习7分钟。
教学过程:
一、课前组织复习旧知
同学们,通过前几节课的学习,我们已经认识了什么是“比”,那么,如果我现在告诉你“某兴趣小组男生和女生的人数比是5:4,从这组比中,你能推断出什么信息呢?”(课件出示题目)
学生自由发言,预设推断如下:
1、全班人数是9份,男生占其中的5份,女生占其中的4份。
2、以全班为单位“1”,男生是全班的,女生是全班的。
3、以女生为单位“1”,男生是女生的,全班是女生的。
4、女生比男生少(或20%)。
5、男生比女生多(或25%)。追问:你还可以从中推断出这个兴趣小组的男生和女生可能各有多少人吗?你的依据是什么?(请3个学生说说,把握总人数比是5:4就可以了。答案不是唯一的。)二、创设情境,导入新知
师:看来大家对比的认识还是相当清楚的。那接下来老师要同学们帮老师一个忙,我这儿有一筐橘子打算分给幼儿园的大班和小班的小朋友,你们认为应该怎么分合理?(出示课件)
同学发言。
小结:平均分不太合理,按两个班的人数比分才公平合理。师:这样吧,我们用小棒代替橘子,小组实际分一分,并记录分的过程。
师:分好了吗?能说说你们是怎样分的吗?学生交流分的方法。
师:在这次分小棒的活动中,你们有什么发现?
师:实际上以前我们学过的平均分就是按1:1进行分配的。 小结:不管我们怎么分,我们都是按3:2的比来分的,也就是我们每次分的小棒的根数比都得是3:2。三、合作探究,解决问题
师:如果我现在给你们140个橘子按3:2来分,你能求出大班和小班各可以分到多少个橘子吗?请把你的方法写下来。然后小组讨论。(出示课件)
1、师巡视辅导。
2、请不同做法的学生交流汇报。方法一:根据分数的意义。板书:3﹢2=5大班:140×3/5=84(个)小班:140×2/5=56(个)
追问:为什么要“× ”?你能不能告诉大家表示什么?(引导明确:因为大班人数占总人数的,所以它分到的橘子个数应该也要占橘子总数的。)方法二:根据比的意义,板书:140÷(3+2)=28大班:28×3=84(个)小班:28×2=56(个)
追问:为什么要“÷(3+2)”?
答:大班分84个,小班分56个,比较合理。
3、引导小结:好,还有其他做法吗?
方法一是根据比与分数的'关系,看看每种物体各占总数的几分之几,再用分数的知识来解答;方法二是根据比的意义,看看一共分成几份,先平均分求出每份的具体数量,再各取所需,乘各自分得的份数。请同学们看书第55页的内容,书中还有哪些刚才我们没有探讨到的方法?(画图法、画表格法)这也是解决问题的方法,但是跟我们探讨的这两种方法比较,我们两种方法更方便。其实这就是我们这节课要学习的内容:比的应用。(出示课件,板书课题)
四、实践应用
1、师:刚才我们共同探讨解决了这样一道“按比分”的问题,觉得有困难吗?有信心独自完成一道这样的题目吗?好,请大家自己读题分析完成,有几种方法都可以把它写下来。课件出示题目—— “幼儿园阿姨要调制2200克巧克力奶,说明书上介绍了其中巧克力和奶的比是2:9,你能帮阿姨算算调制这些巧克力奶需要用多少克奶和多少克巧克力吗?”
独立完成,师巡视辅导。学生上台展示汇报。
2、师:非常棒,但一直做同类型的题目没意思。现在我把题型改一改,看看有谁大家被考倒。请看题,师读题:“幼儿园图书室有图书若干本,按3:2分给大班和小班后,大班小朋友分到了60本,你能帮小班小朋友算算他们能分到多少本吗?”怎么样,谁发现了它和前面题目不一样的地方?能解决吗?好,你能想到几种解题方法,都请你写出来。
师巡视辅导:有句俗话说“三个臭皮匠,抵个诸葛亮”,已经写好的同学不妨把你的做法在小组里和其他同学交流一下,通过思维碰撞,说不定你能得到更多灵感哦。先请一个小组的同学上来把你们的解法写出来。预设方法如下:
(1)60÷3×2=40(本)(2)60÷ × 2=40(本)(3)60× =40(本)(4)60÷ =40(本)
小结:解决生活中的实际问题时,同学们只要认真分析数量关系,就可以找出多种解题方法。
五、拓展延伸(课件出示题目)
1、一座水库按2:3放养鲢鱼和鲤鱼,一共可以放养鱼苗25000尾。其中鲢鱼和鲤鱼的鱼苗各应放养多少尾?
2、一种喷洒果树的药水,农药和水的质量比是1:150。现有3千克农药,需要加多少千克的水?
六、评价总结,促进发展
师:这节课我们利用比的知识解决了许多问题,解决问题关键是讲究实效,所以我们要选择最佳方法也是自己最适合的方法解决问题。
那么学习了“比的应用”,你有什么想法吗?(自由发言)比在我们生活中的应用非常广泛,比如在建筑业、农业、医药等方面都需要非常精确应用比的知识,所以同学们今后要留心观察生活,在实际生活中运用所学的知识来解决问题。
七、巩固新知
完成课本第56页:
1、独立试做:试一试。
2、独立试做练一练的1—3题。
《比的应用》教学设计集合15篇
作为一名教职工,常常需要准备教学设计,教学设计是实现教学目标的计划性和决策性活动。那么优秀的教学设计是什么样的呢?下面是小编帮大家整理的《比的应用》教学设计,希望能够帮助到大家。
《比的应用》教学设计 篇18
教学内容:
人教版六年级数学上册第54页例2和练习十二第1~4题。
教学目标:
1、知识目标:掌握按比例分配应用题的结构特征以及解题方法,能正确运用按比例分配来解决生活中的实际问题。
2、能力目标:培养学生自主探究知识、解决实际问题的能力,提高学生学数学、用数学的意识。并能提高分析问题与解决问题的能力。
3、情感目标:让学生感悟数学与日常生活的联系,激发学生学习数学的兴趣,渗透转化的数学思想。
教学重点:
运用按比分配的知识解决生活中的实际问题。
教学难点:
提高分析问题与解决问题的能力。
教学过程:
一、情景导入。
如果妈妈的菜地里的白菜长虫子了,妈妈会怎么办呢?肯定要买杀虫剂(浓缩剂)进行杀虫。那浓缩剂能不能用来杀虫呢?你们想不想解决这类有关的问题呢?根据学生的回答,那好,我们今天就一起来学习这方面的知识比的应用。
板书:比的应用。
二、探索新知。
请同学们打开教科书的54页。
出示教材54页例2
阅读与理解:
(1)、了解情境中的生活信息。
(2)、已知条件:500mL是配好后的稀释液的体积,1: 4表示的是浓缩液与水的体积的比。
分析与解答:
(1)、稀释液:500ml 总分数:1+ 4=5
1 : 4表示什么意思呢?
浓缩液 : 水
(2)、浓缩液和水的体积比是1: 4 。
浓缩液的体积是稀释液的1/5。
水的.体积是稀释液的4/5。
方法一:
总体积平均分成5份。先算出总分数,再求每份是多少,最后分别求出浓缩液和水的体积。
把每份是:500(1+4)=100(mL)
浓缩液:1001=100(mL)
水:1004=400(mL)
方法二:
先求总份数,再求各部分占总量的几分之几(浓缩液占总体积的1/5;水占总体积的4/5。),最后用总量乘各部分占总数的几分之几,求出各部分量。
浓缩液有:5001/5=100(mL)
水有:5004/5=400(mL)
回顾与反思:
浓缩液体积:水的体积
=( ):( )
=( ):( )
答:浓缩液有100mL,水的体积有400mL。
三、巩固练习
练习十二第1、2题。
四、小结:
1、今天我们应用比解决了一些实际问题。你有什么收获?
2、按比的配制应用题的解题方法是: a、先算出总分数,再求每份是多少,最后分别求出浓缩液和水的体积。b、先求总份数,再求各部分占总量的几分之几,最后用总量乘各部分占总数的几分之几,求出各部分量。
五、作业:
练习十二第3、4题。
六、板书设计:
比的应用
方法一 方法二
总分数1+4=5
每份数: 500(1+4)=100(mL) 浓缩液占总体积的1/5
水占总体积的4/5
浓缩液:1100=100(mL) 浓缩液有:5001/5=100(mL) 水:4100=400(mL ) 水有:1004/5=400(mL)
答:浓缩液有100mL,水的体积有400mL。
课后反思:
按比的配制稀释液解决生产生活中的实际问题。在这一节课中我的做法是:首先让学生在现实情境中体会按比的配制的合理性,理解什么是按比配制。按比的配制是一种分配思想,在生活、生产中是很常见的已学过的平均分,其实是按比的配制是比例的一种特例。教学中要通过解决实际生活的问题。让学生了解在生活、生产中常常要把一个数量按照数量的多少来进行配制,去感悟按比的配制存在的价值。以生活实际例子入手,让学生思考实际生活中所面临的问题,是自己生活中的问题。由此激发学生产生解决问题的兴趣,让学生主动地参与到学习中去。并在解决问题的过程中让每学生都能体会到数学的存在,其实就在他们的身边,因为数学源自于生活。其次充分展示学生的思考过程,在解决问题的过程中,让学生体会到同一问题可以从不同角度去思考,同时能得到不同的解决问题的方法,有利于学生多向思维的发展,也凸现出学生个性化的学习。
《比的应用》教学设计 篇19
知识目标: 1、知道离心运动及其产生的原因.
2、知道离心现象的一些应用和可能带来的危害.
能力目标: 1、培养学生应用理论知识解决实际问题的能力
情感目标:1、培养学生用理论解释实际问题的能力与习惯.
教材首先分析了离心现象发生的条件和离心运动的定义,接着从生产、生活的实际问题中说明离心运动的应用和危害,充分体现了学以致用的思想.
学习离心运动的概念时,通过充分讨论,让学生明确几点:
第一:做圆周运动的物体,一旦失去向心力或向心力不足,都不能再满足把物体约束在原来的圆周上运动的条件,这时会出现物体远离圆心而去的现象.
第二:可补充加上提供的向心力F大于物体所需向心力时,(),表现为向心的趋势(离圆心越来越近)这对学生全面理解“外力必须等于时,物体才可做匀速圆周运动”有好处.
第三:离心运动是物体具有惯性的表现,而不是物体受到“离心力”作用的结果.有些学生可能提出,“离心力”的问题,教师可以说明那是在另一参照系(非惯性系)中引入的概念,在中学阶段不予研究.
关于离心运动的应用和防止,可引导同学讨论完成.
教学设计方案离心现象及其应用
教学重点:离心运动产生的`条件
教学主要设计:一、离心运动(一)讨论:在光滑水平面上,用细绳系一个小球,使其在桌面上做匀速圆周运动.若细绳突然断了,小球将如何运动?若拉绳的力变小了,小球如何运动?若拉绳的力变大了,小球如何运动?(二)展示“魔盘”娱乐设施的动画资料讨论:“魔盘”上的人所需向心力由什么力提供?为什么转速一定时,有的人能随之一块做圆周运动,而有的人逐渐向边缘滑去?(三)用提供的力与需要的向心力的关系角度解释上述现象,得到离心运动的条件和概念.(配合课件1)
二、离心运动的应用和防止:可提出一些问题让学生讨论解决:如:(1)洗衣机的脱水筒中的衣物上的水滴,在脱水筒工作时,水滴需要的向心力由什么决定?提供的向心力由什么决定?什么情况下,水滴将被甩出?(2)在公路转弯处,为什么车辆行驶不允许超过规定的速度?(3)为什么砂轮、飞轮等都不得超过允许的最大转速?等等
探究活动观察并思考: 1、汽车、自行车等在水平面上转弯时,为什么速度不能过大?2、滑冰运动员及摩托车运动员在弯道处的姿势,并分析其受力情况?
《比的应用》教学设计 篇20
【教材解读】
自读:例5教学面积公式的应用。求出学生最熟悉的数学书封面的面积大小,并用数学书封面的面积去测量课桌的面积。
做一做,用学生身上的尺子来测量长度,进而求出教室的面积。(反思:知道了这样做,要再深入问:为什么要这样做?)
细读:例5的编排意图与前面“做一做”的编排意图基本相同。在计算数学书封面面积后,又安排利用计算结果估计桌面面积的活动,一方面体现了上面计算的价值;另一方面提示,可用自己熟悉的物品面积作为“非标准”的面积单位,估计其他面积,从而发展学生的估测意识与能力。
“做一做”利用学生自己的“步长”作为单位,测量教室的长和宽,并估测教室面积。目的是使学生进一步了解自己,用自己随身携带的“标尺”,随时随地地认识更多的事物,积累更多的实践经验,发展学生的估测意识与估测能力。
【教学目标】
使学生进一步理解面积公式的含义;
使学生进一步掌握面积公式的计算;
【教学流程】
一、面积公式的复习
1.出示:练习十五的第1题。
学生独立计算
如果满铺是这样的 如果半铺又是怎样的 你会选择铺吗?
2.完成练习第2题
出示:两个信息,学生提出问题?
二、教学例5
1.出示题目
读题计算
468平方厘米到底有多大呢?
我们熟悉的数学书封面是500平方厘米,估计一下我们的课桌面积大约有多少?
师:你是怎么估测的呢?
小结:我们可以用尺子量出长和宽计算出桌面面积的大小;但当没有尺子时,可以用已知的数学书封面面积来测量桌面面积。
2.做一做
如果没有尺子,如何测量我们教室的面积呢?
生预:用课本面积;
生预:用课桌面积;
生预:用身上的尺子。(脚步的`“尺子”)
小结:用自己随身携带的“标尺”,随时随地地认识更多的事物。
3.目测实物面积和测量计算面积
黑板的面积;长方形的面积;地面方格的面积。
猜测 依据 测量。
三、巩固练习
1.练习第7题,面积和周长(练习本上)
2.第9题,知道周长,如何求面积?
3.第8题,选择。1.全部的面积;2.正方形的面积;3.剩下的面积
四、拓展题
练习第10题:面积减去后,面积相等,周长变了。
《比的应用》教学设计 篇21
教学内容:教材第60页练习十二第8~12题。
教学要求:
1.使学生进一步掌握列含有未知数工的等式解答加、减法简单应用题的思路和方法,以及解题的步骤,能正确地列出含有未知数x的等式解答加、减法一步计算应用题。
2.使学生进一步认识有关的加、减法应用题的数量关系,提高分析能力和解题能力。
教学过程:
一、复习旧知
1.口算。
小黑板出示练习十二第8题,指名学生口算。
2.列含有未知数j的方法解文字题。
(1)一个数减去170后得150,这个数是多少?
(2)280加上某数后等于400,求某数。
(3)135比什么数多287
指名三人板演,其余学生做在练习本上。
集体订正。结合提问每道题是怎样想的。
指出:列含有未知数的等式解这类题时,都要先用刀表示未知数,再根据题意列出等式,然后求出未知数x。
3.揭示课题。
我们在列含有未知数x的等式解答加、减法应用题时,也是按这样的步骤来解答的。今天这节课,就来练习列含有未知’数的等式解答应用题。(板书课题)
二、解应用题练习
1.练习十二第9题。
指名读题。
提问:按照题意,这道题有怎样的数量关系式?
你能用列含有未知数x的等式解答吗?
让学生做在练习本上。
学生口答是怎样做的,老师板书。
提问:解答这道应用题时你是分哪几步的?x一720=280是根据什么列出来的?谁能说一说最重要的是哪一步?
2.根据下面的条件,说出数量关系式。
(1)一批货物,运走30吨,还剩15吨。
(2)原有货物30吨,运来一批后,一共45吨。
(3)原有货物45吨,运走一批后,还剩30吨。
(4)篮球比足球多20个。
(5)科技书比故事书少100本。
3.练习补充题。
(1)同学们植树,四年级植96棵,比三年级多植18棵,三年级植多少棵?
(2)同学们植树,四年级植96棵,比五年级少植18棵,五年级植多少棵?
指名两人板演,其余学生做在练习本上。
集体订正。结合让学生说说列等式时是怎样想的'。
提问:这两道题列的等式,为什么第(1)题是x+18=96,而第(2)题要用x一18=967(或第(1)题是96一x=18,而第(2)题要用
x一96=187)
小结:列含有未知数j的等式解答比多、少的应用题时,一定要根据谁比谁多(少)几的条件想数量关系,再根据数量关系式列等式解答。
4.练习十二第11题。
学生读题,然后要求用直接列算式计算和列含有未知数j的等式两种方法解答。
学生做在练习本上。
指名学生口答,老师板书。
提问:直接列算式时你是怎样想的?列含有未知数工的等式时你是怎样想的?哪一种方法是顺着题意想的?
小结:列含有未知数j的等式解答应用题时,一般只要顺着题意想数量关系式,列出等式来解答。这样想,思考过程比较容易。
三、课堂小结
这节课,我们练习了列含有未知数的等式解答应用题。谁来说一说,用这种方法解答应用题时要分哪几步?怎样列出含有未知数x的等式?
四、课堂作业
练习十二第10、12题。
《比的应用》教学设计 篇22
【教学内容】苏教版五年级数学下册第119至120页内容。
【教学目标】
1.使学生在学习数学中,进一步体会数学知识与实际生活的联系,能综合运用学过的数学知识和方法解决生活当中的各种实际问题。提高解决问题的能力
2.使学生在自觉整理复习知识中,进一步评价和反思自己在本学期的整体学习情况,体会与同学交流和学习成功的乐趣,感受数学的意义和价值,发展对数学的积极情感。
【课前要求】
1.每名学生收集统计图或一些分数表示的信息;
2.每名学生制作一张日历卡。
3.收集本学期与生活应用有关的题型。
【教学过程】
一、谈话引
入学是为了用,本学期同学们学习了很多数学知识,请同学们说说这些数学知识都帮你解决了哪些生活中出现的问题。
1.拿出收集到的与生活应用有关的题型,四人小组人单位,互相交流;
2.个别上台汇报结果。
【设计意图:数学源于生活,用于生活。让学生将各自的体会进行交流,增加了认识的宽度,同时激发了学生的积极性。】
二、教学第25题。
让学生拿出收集到的统计图或分数表示的信息,在小组当中交流。请个别学生上来汇报自己的成果与心得(你收集到的是什么数据,从这些数据当中你看出了什么?)。
【设计意图:学生有可能对同一统计图会有自己不一样的理解,互相交流,分享心得与意见,能进一步加深学生对统计图的认识。】
二、 教学第26题。
拿出日历卡。理解题意,明确要求,只能横着框。尝试完成。 用投影配合展示结果。
【设计意图:培养学生综合运用知识解决实际问题的能力。】
三、教学第27题。
1.说出分母是8的最简真分数有哪几个?它们的和是多少?(让学生迅速动笔,在规定的时间内完成,汇报)
2.再任选几个整数,分别写出用这几个数作分母的所有最简真分数,并求出每组真分数的和。(每人选两个整数,并写出用这个整数作分母的所有最简真分数,再求出和。)
3.你发现了什么规律?
(任何一个比2大的整数,用它作分母的所有最简真分数的.和一定是整数。)
【设计意图:通过自己的实际操作,培养学生学会发现规律、总结规律。】
四、教学第28题。
学生独立完成,用投影展示结果。
【设计意图:培养学生位置感与方向感。】
五、教学第31题。
读题,理解题意。学生尝试做游戏。
要想取胜,可以倒过来推想(自己最后一次取之前,应该留几根给对手)。
指出:每次取完后,留下的火柴根数必须是4的倍数。再次尝试游戏。
说说取胜的策略。
【设计意图:游戏中学,游戏中发现规律,远比在枯燥的笔算中要有效果。】
六、教学第29题。
小组交流。
汇报结论,注意表述的正确性。
七、课后延伸第30题。
分组课后完成测量、计算。
【设计意图:课后作业,紧密地与生活联系在一起,进一步体现小组合作的重要性,加强小组合作意识。】
八、总结。
说说本节课的收获与自己的不足。
《比的应用》教学设计
作为一名无私奉献的老师,常常要根据教学需要编写教学设计,教学设计一般包括教学目标、教学重难点、教学方法、教学步骤与时间分配等环节。那么优秀的教学设计是什么样的呢?下面是小编为大家收集的《比的应用》教学设计,欢迎阅读,希望大家能够喜欢。
《比的应用》教学设计 篇23
今年暑假,我有幸参加了电教馆组织的《多媒体环境下的教学设计与资源应用》教师培训,《多媒体环境下的教学设计与资源应用》培训心得体会。五天的培训,系统学习了多媒体教学资源的应用、多媒体环境下的教学设计、研讨“中小学班班通工程”教学环境下的教学设计、学习成果展示和分享等方面的知识。教师的精彩讲解给我留下了很深的印象,我结合我的教学实践,就这五天的`学习情况,谈一谈我的一点拙见。
新时代的大潮将我们带入信息社会、知识型社会、学习型社会,教育和信息化不断交织、融合和深化。如果没有计算机多媒体技术,单纯靠粉笔、黑板等传统的教学工具来进行教学的传统教学模式显然是跟不上现代化教学的要求的,掌握一定的计算机多媒体技术,作为教师,提高多媒体环境下的教学能力尤为重要。提高自己的课件制作水平势在必行。计算机多媒体技术作为教学的一项辅助手段,对我们的教学工作起到了重要的作用,心得体会《《多媒体环境下的教学设计与资源应用》培训心得体会》。运用多媒体技术可以将我们用语言难以表达清楚的问题直观、形象地展现给学生,有助于教学重点和难点的突破;在教学过程中把丰富多彩的视频、动画、图片等资料展示给学生,可以引起学生的学习兴趣;通过某些问题的设置,可以培养学生对教学过程的参与意识,加深他们对问题的认识和理解程度;选择合适的媒体进行教学,可以增大我们的课容量,节约时间。
通过培训,我对教学资源有了更深层次的认识,它是为师生有效开展教学提供帮助的各种可利用的条件。最宝贵的资源是思维方式,最重要的资源是学生的大脑,最生动形象的资源是多媒体资源,最容易复制和传播的资源是数字化资源。从广义角度讲,不仅教师、教材、教室是教学资源,而且学习伙伴也是教学资源;不仅学习小组是一种资源,而且学生遇到的困惑也是一种资源,甚至学生所犯的错误也是一种很好的资源。课堂教学是一个动态的、复杂的、多变的过程,单一的某种资源很难满足实际教学需求,通常是多种教学资源一起使用或按一定序列使用。所以,要科学合理地使用教学资源,考虑各种资源的特性,整体协调,互相配合。信息化教学模式相比于传统教学模式有着明显的差异。信息化教学中,教师是主导地位,是学习的帮促者,学生是学习的主体,进行生成性、创造性、自主探索、交互学习,教学形式是交叉学科、带实际情境的开放性的,学习环境很丰富。
“路漫漫其修远兮,吾将上下而求索”,在今后的教学中,我要结合实际情况,尽可能地把信息化教学模式融入自己的课堂,努力提高教学质量!
《比的应用》教学设计 篇24
教学内容:
人教版实验教材第十一册第49页。
教材分析:
这部分内容是在学生学过比、分数乘法意义以及分数乘除应用题之后安排的,既加强知识间的内在联系,又为后面的学习奠定了基础。
学生分析:
按比例分配问题是把一个数量按照一定的比进行分配。按比例分配问题有多种不同解法。现在小学教材中一般都采用把比转化为分数用分数知识来解答。因为学生对理解比和分数的关系比较了解,对分数应用题有了一定的基础,所以学习起来应该比较容易。所以本节课的重点应放在如何把比的问题转化为分数问题来解决。何如解决生活中的按比分配问题。
教学目标:
1.知识与技能:使学生理解按比例分配的意义,掌握按比分配的思想,形成按比分配的能力。
2.过程与方法:在探索学习的过程中使学生掌握按比例分配问题的特征,能运用按比例分配的知识解决生活中的实际问题。培养学生发现问题、提出问题、分析问题和运用知识解决问题的实际能力。
3.情感态度价值观:重视学生数学探索按比分配问题的活动经验的.积累。培养学生自主、探究、合作的意识和了解家乡,热爱家乡,喜欢数学的情感。
教学重点:掌握按比分配应用题的结构特点和解题思路。
教学难点:正确分析,灵活解决按比分配的各种类型的实际问题。
教学方法:引导、探究、尝试发现法。
学法指导:自主探究与合作交流有机结合。
教具:多媒体
教学过程:
一、创设教学情境
1.听着歌曲《秦岭最美是商洛》,欣赏商州莲湖公园的图片。
2.莲湖公园这么美,那你对莲湖公园了解多少呢?新建的莲湖公园水域面积有多少亩?绿化面积有多少亩呢?
【设计意图】通过学生听音乐、赏美景、猜地点,吸引学生的注意力,激发学生了解家乡、热爱家乡、为建设家乡而发奋学习的激情。使学生感悟到数学来源生活,学数学是为了更好地生活!
二、实施教学
1.出示例1.扩建后的莲湖公园绿化面积和水域面积共165亩,绿化面积和水域面积的比是1:2.
(1)从这句话中你能获得什么信息呢?
(2)你能提出什么问题?
(3)讨论提示
①绿化与水域总面积被平均分成几份?每份是多少?各占几份?
②绿化面积占它们总面积的几分之几?水域面积呢?
(4)展示学生的四种做法
①先算每一份,再按各部分的份数算。
②先算各部分占全部得分率,再按分数乘法应用题算。
③先算全部是各部分的几分之几,再按分数除法应用题算。
④列方程计算。
(5)让学生比较哪种方法较好。
2.展示课题《比的应用》
【设计意图】首先对教材进行了整合。这里我用孩子们熟悉的,感兴趣的题材呈现“按比分配”的知识点,舍弃了教材原有的题材。其次,在呈现的过程中,培养了学生发现问题、提出问题、分析问题和运用知识解决问题的实际能力。再次,是重视了对课堂生成的有效引导和巧妙运用。既重视了学生的创新意识的培养,有对算法进行了优化。
3.知识运用:例题变形
扩建后莲湖公园总面积220亩,其中未绿化的陆地面积、绿化面积和水域面积的比是1:1:2.问未绿化的陆地面积、绿化面积和水域面积各是多少亩?
4.学以致用:医用酒精是用蒸馏水和纯酒精按1:3配制而成。
①若有200ml蒸馏水,需要多少毫升纯酒精恰好能配制成符合要求的医用酒精?
②若有1200ml纯酒精,有足够的蒸馏水能配制成多少毫升符合要求的医用酒精?
【设计意图】重视孩子对知识灵活迁移运用能力的培养。
5.我是小法官:判断正误并说明理由。
(1)学校把栽300棵树的任务分配给六年级三个班,三个班的人数分别是46人、54人和50人。最合理的分配方案是每班栽100棵树。()
(2)有一些苹果分给幼儿园得小朋友们,大班分得二分之一,中班分得三分之一,小班分得六分之一。大中小班分得苹果的数量之比是
即3:2:1()。
【设计意图】首先,让学生知道平均分是按比分配的一种特殊形式。其次,为拓展运用清障护航。
6.拓展运用
有一位老人,他有三个儿子和17匹马。在他临终前对他的儿子们说:“我已经写好了遗嘱,我把马留给你们,你们一定要按我的要求去分。”老人去世后,三兄弟看到了遗嘱。遗嘱上写着:“我把17匹马全都留给我的三个儿子。长子得一半,次子得三分之一,幼子得九分之一。不许杀马,不许流血。你们必须遵从父亲的遗嘱。”
温馨提示:三个儿子分得马的数量之比是几比几比几?化成最简整数比结果是几比几比几?
【设计意图】让学生了解古代趣题中折射出的按比分配原理。
三、谈谈你这节课的收获?
(1)解决“按比分配”型实际问题的方法
①、求出各部分之间的数量比,由各部分之间的数量比可得出各部分占总体的分率。
②、用分数乘法求出各部分的量分别是多少。
(2)我对新建后的莲湖公园有了更多的了解。
四、布置作业
必做题:课本55第4题;
选做题:课本56页第7题;
思考题:课本56页第11题。
《比的应用》教学设计 篇25
教学目标:
1.理解此类连除应用题的数量关系,能用两种方法解答此类应用题.
2.正确列综合算式解答应用题,理解连除与连乘应用题的互逆关系.
3.培养学生分析推理能力和逆向思维能力.
4.渗透事物间联系的思想和比较的思想.
教学重点:分析理解数量关系.
教学难点:利用线段图理解数量关系,确定计算步骤.
教学步骤:
一、铺垫孕伏
出示复习题:一种织布机每台每小时织布4米,5台织布机8小时可织布多少米?
要求学生:画线段图,并用两种方法解答.
二、探究新知
出示例2:一种织布机5台8小时织布160米,平均每台每小时可织布多少米?
对比复习题组织讨论:例题与复习题相比较,有什么特点?
讨论结果:例题与复习题的'问题与已知条件换了位
根据学生汇报的讨论结果,让学生在已画成的两个线段图中标注一下,已知什么,求什么?
(通过线段图,从直观到抽象,使学生感知算理.)
4.指导学生对照线段图讨论:要想求出每台每小时织布多少米,我们怎样做?
5.根据学生汇报的讨论情况,让学生在线段图中标注出先要求的是图中的哪一段,应该怎样求?学生说清解答步骤后,教师板书每一步的小标题.然后再要求学生在练习本上直接试做,分步解答.同桌间互相讨论订正.
6.指名学生口述分步解答过程,教师板书:
(1)每台织布机8小时织布多少米?
160÷5=32(米)
(2)每台织布机每小时织布多少米?
32÷8=4(米)
引导学生列综合算式解答,先自己直接列式,再指名在线段留下对应位置板演成板书:
160÷5÷8
=32÷8
=4(米)
答:平均每台织布机每小时织布4米.
(引导学生讨论、思考、试算,感知计算方法.)
7.改例2线段图的问题和条件成下图,根据这幅图,我们应该先求什么?怎样求?
8.学生讨论确定先求“5台1小时织布多少米”,再求“1台1小时织布多少米”,教师根据学生汇报书写小标题.
然后自己在书上第10页填空,由一名学生板演,形成以下板书:
(1)5台织布机1小时织布多少米?
161÷8=20(米)
(2)每台织布机每小时织布多少米?
20÷5=4(米)
列综合算式解答为
160÷8÷5
=20÷5
=4(米)
答:平均每台织布机每小时织布4米.
9.集体订正,订正时进一步强调每一步求的是什么?
10.讨论:比较一下,两种解法有什么相同点和不同点?
11.反馈练习:(投影出示)第10页“做一做”.
读题,思考:找出已知条件和所求问题,要想求“1只母鸡1个月下多少蛋”这个问题,可以先求出什么?
(三)巩固发展
根据题中提供的条件进行分组练习,练习题目由各组任选一组.
条件:“书法小组每人每天写8个大字,5个人4天共写了160个大字.”
第三组题目:
连线题,把意义相同的算式用线连接起来.
8×4160÷4
8×5160÷5
8×5×416÷5÷4
(注意:此题并非一一对应关系.)
(四)课堂小结
通过小结,进一步把连乘应用题与连除应用题进行比较区分,指明课题(板书课题:连除应用题),并对两种解题方法再进行理解区分.
(五)布置作业(略)
板书设计
《比的应用》教学设计 篇26
教学目标:
1、结合生活实例,使学生进一步掌握按比例分配应用题的结构特点和解题思路,能运用这个知识来解决一些日常工作、生活中的实际问题。
2、培养学生运用知识进行分析、推理等思维能力,以及探求解决问题途径的能力。
3、渗透数学的对应思想及函数思想,培养学生认真审题、独立思考、自觉检验的好习惯,增强学好数学的信心。
教学重点:
进一步掌握按比例分配应用题的结构特点和解题思路。
教学难点:
正确分析解答比例分配应用题。
教学过程:
一、复习。
1、我们在教学中学过平均分,平均分的结果有什么特点?(每份都相等)在日常生活中,为了分配的合理,往往需要把一个数量分成不等的几部分,即把一个数量按照一定的比来进行分配。这种方法通常叫按比例分配。
2、一瓶500ml的稀释液,其中浓缩液和水的体积分别是100ml和400ml,__________?(补充问题并解答)
二、新授。
1、教学例2。
(1)出示例2:
(2)引导学生弄清题意后,问:题目中要分配什么?是按什么进行分配的?(分配500ml的稀释液;浓缩液和水的体积按1:4进行分配。)
(3)问:“浓缩液和水的体积1:4”,是什么意思?(就是说在500ml的.稀释液,浓缩液占1份,水的体积占1份,一共是5份,浓缩液占稀释液的5分之4,水的体积占稀释液的5分之1。)
(4)你能求出两种各多少ml吗?怎样求?(引导学生进行解题)
①稀释液平均分成的份数:1+4=5
②浓缩液的体积:500×()=100(ml)
③水的体积:500×()=400(ml)
答:稀释液100ml,水400ml。
(5)如何检验解答是否正确呢?(说明:检验的方法有两种:一是把求得的浓缩液和水的体积相加,看是不是等于稀释液的总体积;二是把求得的浓缩液和水的体积写成比的形式,看化简后是不是等于1:4
(6)学生试做:练习:做一做第1题。(订正时说说解题时先求什么?再求什么?)
2、补充练习
(1)出示:学校把栽280棵树的任务,按照六年级三个班的人数分配给各班。一班有47人,二班有45人,三班有48人。三个班各应栽树多少棵?
(2)引导学生弄清题意后,问:题中要把280棵树按照什么进行分配?(着重使学生明确要按照一班、二班、三班的人数的比来分配,即按47:45:48来分配。)
(3)根据一班、二班、三班的人数怎样算出各班栽的棵数占总棵数的几分之几?(使学生明确:要先算三个班总共有多少人(即总份数),然后才能算出各班栽的棵数占总棵数的几分之几。)
(4)怎样分别算出各班应种的棵数?引导学生解答:
①三个班的总人数:47+45+48=140(人)
②一班应栽的棵数:280×()=94(人)
③二班应栽的棵数:280×()=90(人)
④三班应栽的棵数:280×()=96(人)
答:一班栽树94棵,二班栽树90棵,三班栽树96棵。
(5)学生进行检验。
(6)学生试做“做一做”中的第2题。
三、巩固练习。
练习十二的第1、3题。
四、布置作业。
练习十二第2、4、5、6、7题。
教学追记:
本节课的内容相对而言较容易掌握,因而学生在学习中并没有出现什么困难。教学中,我两种方法并重,并让学生理解两种方法的殊途同归之处。对于类型稍有不同的题目,如“做一做”第2题,以人数为比例进行分配的,我在教学时添加了一道例题,教学后再让学生独力完成第2题,这样的教学让学生学得较为轻松,也对这种类型题掌握得较扎实。
《比的应用》教学设计 篇27
教材第43页例2,练习十一第4、5题。
教学目标:
1.使学生进一步掌握平均数的意义和求平均数的方法。
2.懂得平均数在统计学上的意义和作用。
3.培养学生能够灵活运用所学的知识,灵活的解决一些简单的实际问题。
教学重点:
掌握平均数的意义。
教学难点:
掌握求平均数的方法。
教学过程:
一、复习引入
三年级二班分成三组投小篮球,第一组投中28个,第二组投中33个,第三组投中23个,平均每一组投中多少个?
提问:题目的已知条件和问题分别是什么?
要求平均每一组投中多少个?应该怎样列?
提问:(28+33+23)3表示什么?3表示什么?把投中的总数以3表示什么?
二、快乐体验,学习新知
1、出示教科书第43页的例题2。
提问:从这两张统计表中,大家发现了什么?
在一场篮球比赛中,除了技术因素以外,还有什么因素也比较重要?
场上哪一个对的'身高占优势,我们能根据个别队员来作判断吗?我们要看整个对的平均身高。现在就请大家算一算,哪一个对的平均身高占优势。
2、学生动手列式计算。
3、教师:从这两个平均数,能反映出这两个队除技术外的另一个实力,说明平均书可以反映一组数据的总体情况和区别于不同数据的总体情况,这是我们学习平均数的一个重要的作用。
三、巩固练习
1、科书第45页练习十一的第4题:
(1)完成第1小题。提问:什么叫月平均销售量?
要求哪种饼干月平均销售量多?多多少?应该怎样列式?
(2)完成第2小题让学生自由发表看法。
(3)完成第3小题。你从图中还得到什么信息,告诉全班同学。
2、练习十一的第5题。
学生独立完成,集体订正。
四、课堂小结:
本节课学习了什么?你有什么收获?
《比的应用》教学设计 篇28
教学目标:
1.通过分析社会各领域的具体例子,理解控制的涵义及其在生产和生活中的应用。
2.通过学习,培养学生注意观察问题,发现问题,帮助学生了解控制的作用。
3.激发学生了解控制,研究控制的兴趣与热情。
4.理解控制的含义
教学重点:
理解控制的涵义。
教学难点:
理解控制的涵义。
教学过程:
引入:
提出本学期的教学计划,引导学生重视本学期的教学工作,做好会考的复习准备。
[录像]通过卓别林的《城市之光》录像片段,引入新课。
新课教学:
一、控制是普遍存在。
用一些典型的、生活中的例子让学生了解控制是普遍存在,对控制有初步的认识,打破其神秘感。
现代社会中的例子:
生产、生活中的例子
古代社会中的例子:
案例1:大禹治水
请学生讲述《大禹治水》的故事
并提出问题,让学生思考。
问题:大禹治水过程中,通过什么手段实现治理好水患的'目的?
通过“疏通河道,泄洪为主” 手段实现治理好水患的目的。
案例2:木牛流马
请学生讲述《木牛流马》的故事:“(建兴)九年,亮复出祁山,以木牛运,粮尽退军,与魏将张郃交战,射杀郃。十二年春,亮悉大众由斜谷出,以流马运。…”
据研究:木牛和流马是汉代独轮手推车的两种改进设计,通过改进使人的负重有所减轻。木牛是一种轮子稍小一些的独轮手推车,载重大,前由人拉、后由人推,运行较慢;流马载重小,轮子稍大一些,由一人推,运行速度很快。诸葛亮所说“木牛流马”应是比喻它们运行的灵便程度和载重量的大小:木牛行动较笨而慢,像牛;流马行动敏捷而快,像马。不是说它们外形像牛像马。
目的:帮助军队运送战略物资。
案例3:希罗自动门
希罗自动门的相关材料见教参P66或江苏版P107。
希罗自动门说明了什么道理?
道理是:利用气压和液压动力装置,实现自动开门、关门。
总结:事物发展的结果可能是人们预先期望的,也可能与预期的目标不相符,甚至是不希望得到的。如果人们想达到某一特定的目的,就必须运用适当的手段来实现。
那么,运用什么手段来实现呢?
(引入控制的概念)
二、控制的涵义
控制是根据自己的目的,通过一定的手段使事物沿着某一确定方向发展的行为和过程。
结合事例(用音乐喷泉的事例),重点阐明控制的对象是什么;控制要达到什么目的;采取什么控制手段。
课本马上行动
控制事例
控制的对象
控制的目的
控制的手段
电风扇扇叶转速快慢的控制
电风扇
调节速度
换档
音响的音量控制
音响
音量的调节
旋钮
燃气热水器温度的控制
热水器
调节出水口温度的高低
改变燃气火头的大小
用喷雾器喷洒农药
喷雾器
给庄稼治病
操作喷雾器的手柄
[探究活动]
请同学们说说你在生活学习中所见到的应用控制的事例。
如:
学校:学校的音乐铃声、多媒体教学系统、足球场草地自动喷淋系统、体育馆的自动伸缩坐椅等。
家庭:冰箱、电饭煲、微波炉等。
社会:交通信号灯、电子警察、电梯、程控电话交换机等
三、控制的分类
从控制过程中人工干预的情形来分:
人工控制:人工纺纱、普通自来水龙头,旋转按钮打开电灯、驾驶汽车等;
自动控制:数控机床、饮料自动装罐生产线、花房恒温控制、十字路口红绿灯的转换等
按照执行部件的不同,控制分为:机械控制、气动控制、液压控制、电子控制等
对于自动控制
按控制方式分为:开环控制、闭环控制和复合控制。
3、控制的应用
控制的应用自古就有,并在近代得到迅速发展,在社会生产生活的各个领域都有极其广泛的应用。
通过事例说明控制在社会生产生活的各个领域的应用。
案例1:汽车自动化生产线。
案例2:农业现代化设施。
案例3:现代网络家电。
小结与练习:
1、控制是普遍存在。要求学生能列举事例。
2、控制的涵义。要求学生在理解的基础上掌握好其控制的涵义。
3、控制的应用。
《比的应用》教学设计[精品]
作为一位兢兢业业的人民教师,就有可能用到教学设计,编写教学设计有利于我们科学、合理地支配课堂时间。那么写教学设计需要注意哪些问题呢?下面是小编帮大家整理的《比的应用》教学设计,仅供参考,希望能够帮助到大家。
《比的应用》教学设计 篇29
教材分析:
《用数学——简单的乘法应用题》的是人教版二年级上册第四单元的内容。本课是在学生学习乘法的初步认识和1—5的乘法口诀的基础上来学习的。让学生根据乘法意义和所学的乘法口诀解决生活中简单的求几个相同加数的和实际问题。培养学生的思维能力、语言表达能力和合作精神。让学生在思考中,在师生交流中,明白题中的数量关系,明白为什么用乘法计算。
教学目标:
1、学会用乘法解决生活中的简单实际问题。
2、进一步提高学生收集数学信息,发现数学问题的能力。
3、通过解决问题,树立学生的自信心,增强对数学学习的兴趣。
教学重点:
依据教材特点,以及本班学生的实际情况,并结合我校数学科得培养学生能力这一教研主题,我确立了本节课的教学重点是使学生通过学习,学会用乘法解决数学问题的,提高解题能力。教学难点是把自己的解题思路讲诉清楚明白。
教学学情:
《课程标准》中指出:无论从数学的产生还是从数学的发展来看,数学与现实生活都有着密不可分的联系。通过以前的学习经验,学生可以在教材或老师为他们提供的.适合他们的年龄特点的童话情境中、生活实际中学会从数学角度去观察事物、思考问题,从而学生学习数学的兴趣得到激发,达到学好数学的愿望。
教法学法:
在本课的教学中我主要引导学生仔细观察,善于表达,自己动脑的学习方式来教会他们学习《课程标准》倡导“教师要向学生提供充分从事数学活动的机会,帮助他们在自主探究合作交流的过程中真正理解和掌握数学知识与技能、数学思想和方法,获得的数学活动经验。”
教学过程:
本课的教学,我按照:“复习旧知,知识迁移;创设情景,寻找方法;拓展延伸,发展能力”三个环节进行的。
一、复习旧知知识迁移。
这一环节我首先让学生完成建房子的口算练习每一块砖上有一道乘法算式,使学生明白要想把房子建的又结实又漂亮,就得算对得数还要说出用的那一句。其次进行了看图写算式的练习在汇报过程中对乘法的意义起到巩固复习的作用。(学生很认真的去完成每一道口算题,在汇报中口语表达能力得到了提高。)
二、创设情景,寻找方法。
在这一环节中,我根据学生的年龄特点,创设森林里的小动物为了度过寒冷的冬天正准备盖房子,请来小象帮他们运送木头这一情景,引导学生看图找数学信息提出问题,说明白自己思考的过程,再列式计算,最后组织学生小组讨论这几种算法那一种比较简便,从而找到更便捷的方式来解决问题。再通过“小猴摘桃”,“小兔采蘑菇”以及“河边休息”一系列图文应用题的完成,进一步掌握方法。
这一过程问题之间有连续性,而且就有童话意境,整个教学过程中,学生是活动的主体,自己获得信息,提出问题并解决问题,教师在活动中起指导作用,并且这个指导处是在关键处、难点处、学困处。这个过程学生学习兴趣盎然,解决问题效果好。
三、拓展延伸,发展能力。
其实我们所学习的数学知识不但可以帮助小动物解决一些数学问题,在我们的现实生活中也运用的,出示图文应用题放手让学生去解决,并依据相关的数学信息提出问题,解决问题。学生的思维得到扩展,能力得到提高。
四、教学效果
本节课创设童话情景,让学生兴趣盎然的投入学习中来,揭开数学的神秘面纱,创造了与学生生活环境、知识背景密切相关的。在探究过程中,学生运用所学知识来解决生活中的实际问题,并且敢于探索,敢于创新。在实际的教学活动中,学生能在情境中提出问题,解决问题。并能把自己的想法清楚完整的表述出来。无论是收集数学信息,发现数学问题的能力,还是树立学生的自信心,增强对数学学习的兴趣,都得以提高。但是自己也有许多地方处理的还不够妥当,尤其要注意每个环节要做到扎实有效,不光是要传授知识,更主要的是知识的落实,尤其要注意细节的处理,这些都是我今后要注意的。
通过这节课的教学,让我意识到自己和优秀教师之间存在着不足,所以在以后的教学中,我会更加努力,多观察,多学习,遇到问题多请教,多研讨,把课堂当做锻炼自己的一个平台,争取在以后的教学中再上一个新的台阶。
《比的应用》教学设计 篇30
教学目标
(一)使学生学会分析解答有关倍数的三步应用题、
(二)使学生进一步学会用线段图表示已知条件和问题、
(三)提高学生分析能力、
教学重点和难点
用线段图帮助理解题意,分析数量关系,掌握解题思路既是重点,又是难点、
教学过程 设计
(一)复习准备
1、板演:
华山小学三年级栽树56棵,四年级栽的树是三年级的2倍、三、四年级一共栽树多少棵?
2、全班同学根据线段图提问题、
先编题,再列式、
(1)一步计算的应用题、
有篮球20个,排球是篮球的3倍、有排球多少个?
20x3=60(个)
(2)两步计算的应用题、
有篮球20个,排球是篮球的3倍、篮球比排球多多少个?
20x3—20=40(个)
有篮球20个,排球是篮球的3倍,篮球、排球共有多少个?
20x3+20=80(个)
编题后把问题在线段图上表示出来、
订正板演题时要说出解题思路、
(二)学习新课
1、新课引入
把复习题增加一个条件,即“五年级栽的比三、四年级栽的总数少10棵”,把问题改成“五年级栽树多少棵”,像这样的问题这就是我们今天要研究的(板书:应用题)
2、出示例5
华山小学三年级栽树56棵,四年级栽树是三年级的2倍,五年级栽的比三、四年级栽的总数少10棵、五年级栽树多少棵?
(1)读题,理解题意、读出已知条件和问题,并和复习题比较有什么地方不同
(2)引导学生用线段图表示题中的条件和问题、
三年级栽56棵四年级栽的是三年级的2倍
五年级栽棵10棵
(3)学生独立思考,试算、
(4)集体讨论、互相交流,说思路、
教师提出要求五年级栽树多少棵,根据题里给的条件能直接算出来吗?要先算什么?再算什么?引导学生分析、叙述自己的思路、
(求五年级栽树多少棵,必须知道三、四年级栽多少棵、三年级栽树的棵数已经知道,四年级栽树棵数没直接告诉,所以先求四年级栽多少棵,算式为56x2=112(棵),再求三、四年级的总数,算式为56+112=168(棵)、因为五年级栽的棵数比三、四年级栽的总数少10棵,所以最后用总数减去10棵:168—10=158(棵)
随着学生的回答,板书:
(1)四年级栽多少棵?
56x2=112(棵)
(2)三、四年级共栽多少棵?
56+112=168(棵)
(3)五年级栽多少棵?
168—10=158(棵)
答:五年级栽158棵、
还有不同的想法吗?
如果题中五年级栽树的条件改为“五年级栽树的'棵数比三、四年级栽的总数多10棵”,怎样求五年级栽的棵数?
(用三、四年级栽的总数加10棵,168+10=178(棵)、)
(5)求三、四年级栽树的总数还有别的比较简便的方法吗?
提示:从倍数关系上考虑,谁是1倍数?三、四年级的总数是几倍数?怎样求三、四年级的总数?
(四年级栽的是三年级栽的2倍,三年级栽的是1倍数,四年级栽的是2倍数,三、四年级栽的总数是 2+1=3倍数:56x(2+1)=168(棵),然后再加上10棵,就是五年级栽的棵数:168+10=178(棵)、)
小结
解答应用题要认真审题,理解题意是基础,分析数量关系是解题的关键、采用什么方法分析要因题而异,由于解题思路的不同,解题方法也不一样,解题步骤也不一样,因此要灵活运用、
(三)巩固反馈
1先画图,再解答、
学校举行运动会、三年级有35人参加比赛,四年级参加的人数是三年级的3倍,五年级参加的人数比三、四年级参加的总人数多12人,五年级参加比赛的有多少人?
2、看图解答、
3、条件有变化、先讨论、独立解答,再集体交流、
学校里有柳树36棵,松树比柳树少12棵,杨树的棵数等于松树和柳树总数的4倍、有杨树多少棵?
订正时可以明确,题目要求“杨树有多少棵?”这句问话本身数量关系不明显,因此可以根据已知条件的关系找出新的数量,直到所求的问题、
(四)全课总结
引导学生说出怎样分析应用题的数量关系、
(五)作业
练习五第1~3题、
课堂教学设计说明
本节课三步应用题是在学生学过的有关倍数的两步应用题的基础上发展的,两步应用题增加一个条件,改变其问题,就是三步应用题、本节课仍以思路教学为重点,通过画线段图,学会分析数量关系,以掌握解题思路,提高分析问题的能力、本节课着重体现以下几个方面:
1、培养学生画线段图分析数量关系的能力、画线段图虽不作教学要求,但它比文字叙述的题要具体的多,在分析数量关系中,恰当地运用线段图是帮助学生由形象思维过渡到抽象思维的桥梁,因此无论是复习、新课、练习都十分重视画图、看图分析的训练、
2、重视学生叙述思维过程的练习、应用题不但要注重结果的正确性,还要重视思维过程的逻辑性,因此解答应用题要让学生说出自己是怎么想的,口述出思维过程,这也是培养学生逻辑思维能力的手段、
3、注重知识间的联系、发展和变化、把复习题改变条件可使两步题变成三步题,条件变化了,解题方法也变了,让学生在分析不同的数量关系中,掌握解题思路,达到举一返三的目的
4、设计不同层次的练习、先基本、后变化、先易后难,把说思路、画线段图贯穿于全课中、让学生通过不同的练习,达到熟悉数量关系,掌握不同的思路,提高分析、解答应用题的能力、
板书设计
例5 华山小学三年级栽树56棵,四年级栽的棵数是三年级的2倍,五年级栽的比三、四年级栽的总数少10棵、五年级栽树多少棵?
(1)四年级栽多少棵?
56x2=112(棵)
(2)三、四年级共栽多少棵?
56+112=168(棵)
(3)五年级栽多少棵?
168—10=158(棵)
答:五年级栽158棵、
简便算法:
56x(2+1)=168(棵)
168—10=158(棵)
练习、看图解答
(1)小强集邮多少张?
45x5—20
=225—20
=205(张)
(2)两人共集邮多少张?
45+205=250(张)
答:两人共集邮250张、
《比的应用》教学设计 篇31
教学目标:
1、知识与技能:在解决实际问题时,能根据实际情况采用“进一法”或“去尾法”取商的近似值。
2、过程与方法:根据实际情况,独立完成学习任务。
3、情感、态度与价值观:让学生通过采用“进一法”或“去尾法”取商的近似值,感受这些方法的现实意义。
教学重、难点:能根据实际情况选择合适的方法取商的近似值解决生活问题。
教具准备:多媒体课件、计算器。
教学过程:
一、复习铺垫。
1、体育室花19.4元买来一筒羽毛球,每筒12个,平均每个多少元?
(1)学生独立解答。
(2)汇报讲评:根据你的生活经验,算钱时可以保留几位小数,为什么?
2、引入:我们在解决实际问题时,要根据实际情况取商的近似值。(板书课题)
二、探索新知。
1、学习例12(1)
(1)出示题目:小强的妈妈要将2.5千克香油分装在一些玻璃瓶里,每个瓶最多可盛0.4千克,需要准备几个瓶?
(2)学生读题理解题意,独立列式计算。
(3)汇报:2.5÷0.4=6.25(个)
(4)设疑:我们算到的结果是6.25个瓶,那在我们的生活中能找到6.25个瓶子吗?根据你的生活经验,这里求“需要准备几个瓶?”得数应该保留什么数?
(5)小组讨论:根据实际情况,这里需要准备几个瓶?为什么?
(6)学生汇报讨论情况。
(7)演示多媒体课件,验证结果。
边演示课件,边提问:如果是用我们以前的“四舍五入法”取近似数,就需要准备几个瓶子?能装得下2.5千克的香油吗?6个瓶子只能装多少千克香油?所以要准备几个瓶子?
(8)小结:在这道题里,应用我们以前学习的用“四舍五入法”取近似值,能解决问题吗?在这种情况下,出现了不满5也需要向前一位进1,这种方法我们把它叫做“进一法”。
(9)在我们的日常生活中,有像这样的情况吗?请你说一说。
2、填一填
(1)五年级有210个同学,需租车到东莞参观学习,每辆车最多可坐40人,需要租几辆车?
列式为:210÷40=5.25≈( )辆应用( )法取近似值。
(2)把一包150千克的大米平均分成每袋40千克,需要准备几个袋子?
列式为:150÷40=3.75≈( )个应用( )法取近似值。
3、学习例12(2)
(1)出示题目:王阿姨用一根25米长的红丝带包装礼盒。每个礼盒要用1.5米长的丝带,这些红丝带可以包装几个礼盒?
(2)要求这个问题,要用什么方法列式?怎样列?
(3)思考:①根据你的生活经验,要求“这些红丝带可以包装几个礼盒?”,得数应保留什么数?
②如果用“四舍五入法”或“进一法”取近似值,结果是多少?这些丝带够吗?那么这些丝带可以包装几个礼盒?
(4)小结:在这道题里,出现了满5也要把尾数舍去的情况,我们把这种取近似值的方法叫做“去尾法”。
(5)在我们的'生活中,有像这样的情况吗?请你说一说。
4、选一选
(1)做一套衣服要用布2.5m,现有30.5m的布,可以做多少套这样的衣服?列式为:()
A、30.5÷2.5=12.2≈12(套)B、30.5÷2.5=12.2≈13(套)
(2)同学们把75.5厘米的纸条按每6厘米裁成一段做圆环,这个纸条最多能做成几个圆环?列式为:()
A、75.5÷6=12.58≈13(个)B、75.5÷6=12.58≈12(个)
5、学生看书本P33的内容,质疑。
6、小结:在解决实际问题时,我们有的时候用“四舍五入法”取近似值,也有的时候用“进一法”或“去尾法”取近似值,总之我们要根据实际情况选择合适的方法取商的近似值。
三、练习提高。
1、P33“做一做”的题目。
2、P35第7题。
3、大家今天的表现真不错,现在老师给大家介绍个漂亮的地方。(出示漂亮的桂林山水的风景)这么美的地方,你想去游览吗?这里有一种既开心刺激又经济实惠的游览方式——“乘坐竹筏游漓江”。请看:(1)一个竹筏一天租金220元,可乘6人。根据这些信息,你能提出什么数学问题?(提出问题后,学生列式解答,讲评时让学生说说这里用了什么方法取近似值,为什么。)
(2)我们班有47人,准备乘坐竹筏游漓江,已知每个竹筏可乘6人,得租几个竹筏?(学生列式解答,讲评时让学生说说这里用了什么方法取近似值,为什么。)
(3)同学们,朴实的桂林人民用自己勤劳的双手建造出一个个精美的竹筏,为桂林的旅游事业争光添彩。我还了解到了一个信息:做一个竹筏需要10根竹子,请问96根符合要求的竹子能做几个这样的竹筏?(学生列式解答,讲评时让学生说说这里用了什么方法取近似值,为什么。)
(4)对学生进行环保教育。
四、全课总结。
同学们,没想到吧,在愉快的旅游之中随处都可以见到数学,由此可见,数学就在我们身边。通过今天的学习,你学到了什么知识?
五、布置作业。
课本P35第6、8、9题。
《比的应用》教学设计 篇32
(1)教学设计
一.教学目标
1.使学生理解直角三角形中五个元素的关系,会运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形.
2.通过综合运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形,逐步培养学生分析问题、解决问题的能力.
3.渗透数形结合的数学思想,培养学生良好的学习习惯.
二、教学重点、难点
1.重点:直角三角形的解法.
2.难点:三角函数在解直角三角形中的灵活运用.
三、教学过程:
(一)复习引入
1.直角三角形ABC中,∠C=90°,a、b、c、∠A、∠B这五个元素间有哪些等量关系呢?
(1)边角之间关系:sinA=cosB= sinB=cosA= tanA= tanB=
(2)三边之间关系 (勾股定理)
例 1在△ABC中,∠C为直角,∠A、∠B、∠C所对的边分别(3)锐角之间关系∠A+∠B=90°.
以上三点正是解直角三角形的依据,通过复习,使学生便于应用.
(二)教学过程
1.我们已掌握Rt△ABC的边角关系、三边关系、角角关系,利用这些关系,在知道其中的两个元素(至少有一个是边)后,就可求出其余的元素.这样的导语既可以使学生大概了解解直角三角形的概念,同时又陷入思考,为什么两个已知元素中必有一条边呢?激发了学生的学习热情.
2.教师在学生思考后,继续引导"为什么两个已知元素中至少有一条边?"让全体学生的思维目标一致,在作出准确回答后,教师请学生概括什么是解直角三角形?(由直角三角形中除直角外的两个已知元素,求出所有未知元素的过程,叫做解直角三角形).
3.例题
例1:已知a、b、c为Rt△ABC的三边,且斜边c=30
a=15,解这个三角形.
解直角三角形的方法很多,灵活多样,学生完全可以自己解决,但例题具有示范作用.因此,此题在处理时,首先,应让学生独立完成,培养其分析问题、解决问题能力,同时渗透数形结合的思想.其次,教师组织学生比较各种方法中哪些较好,选一种板演.
解 ∵sinA=a/c= 1/2
∴ ∠a=30° ∴ ∠B=60°
∴根据勾股定理求出b=
例 2:在Rt△ABC中, ∠B =30°,b=20,解这个三角形.
引导学生思考分析完成后,让学生独立完成
在学生独立完成之后,选出最好方法,教师板书
完成之后引导学生小结"已知一边一角,如何解直角三角形?"
答:先求另外一角,然后选取恰当的函数关系式求另两边.计算时,利用所求的量如不比原始数据简便的话,最好用题中原始数据计算,这样误差小些,也比较可靠,防止第一步错导致一错到底
注意:例1中的b和例2中的`c都可以利用勾股定理或其它三角函数来计算,但计算出的值可能有些少差异,这都是正常的。
4.巩固练习
(1)P74 练习(单班)
(2) P77习题1(双班)
说明:解直角三角形计算上比较繁锁,条件好的学校允许用计算器.但无论是否使用计算器,都必须写出解直角三角形的整个过程.要求学生认真对待这些题目,不要马马虎虎,努力防止出错,培养其良好的学习习惯.
(三)总结与扩展
1.请学生小结:在直角三角形中,除直角外还有五个元素,知道两个元素(至少有一个是边),就可以求出另三个元素.
2.教师点评.
四、布置作业
1 、P84习题1 、2.(单班)
2 、P78习题6(双班)
《比的应用》教学设计 篇33
教学目的
1.通过复习,使学生能够正确判断出应用题中所涉及的相关联的量成什么比例关系。
2.通过复习,能够使学生利用正反比例的意义正确、熟练的解答应用题。
3.通过复习,培养学生的分析能力、综合能力以及判断推理能力。
教学重点
通过复习,使学生能够利用正反比例的意义正确、熟练的解答应用题。
教学难点
通过复习,使学生能够利用正反比例的意义正确、熟练的解答应用题。
教学过程
一、复习准备。
下面每题中的两种量成什么比例关系?
(1)速度一定,路程和时间。
(2)总价一定,每件物品的价格和所买的数量。
(3)小朋友的年龄与身高。
(4)正方体每一个面的面积和正方体的表面积。
(5)被减数一定,减数和差。
谈话引入:我们今天运用正反比例的知识来解决实际问题。
(板书:用比例知识解应用题)
二、探讨新知。
(一)教学例5(用比例解答下题)
修一条公路,总长12千米,开工3天修了1.5千米。照这样计算,修完这条路还要多少天?
1.学生读题,独立解答。
2.学生反馈:
3.分析:
(1)为什么需要用正比例解答?
(2)12和要求的天数之间有什么关系?
4.小结:我们在做题时,根据注意题目中的数量关系,不仅需要判定运用什么比例方法,而且还要注意找准题目中的对应关系。
(二)反馈。
1.某车队运送一批救灾物品,原计划每小时行60千米,6.5小时到达灾区,实际每小时行了78千米。照这样计算,行完全程需要多少小时?
2.大齿轮与小齿轮的齿数比为4∶3.大齿轮有36个齿,小齿轮有多少个齿?
三、巩固反馈。
1.一张大纸,如果裁成长36厘米,宽26厘米的小纸张,可以裁成28张;如果裁成长18厘米,宽13厘米的小纸张,可以裁成多少张?
2.某车间有男工25人,女工20人。如果男工增加15人,要想使男工和女工人数的比不发生变化,女工应该增加多少人?
3.一项工程,10人去做24天可以完成;如果每人的工作效率不变,现在需要提前4天完成,需要多少人?
4.两个底面半径相等的圆柱体,第一个圆柱的'高是第二个圆柱高的。第二个圆柱的体积是60立方米,第一个圆柱体的体积是多少立方米?
四、课堂总结。
通过这堂课的学习,你有什么收获?
五、课后作业。
1.生产小组加工一批零件,原计划用14天,平均每天加工1500个零件。实际每天加工2100个零件。实际用了多少天就完成了任务?
2.一个编织组,原来30人10天生产1500只花篮,现在增加到80人,按原来的工效,生产6000只花篮需要多少天?
六、板书设计
《比的应用》教学设计 篇34
教学目标
知识目标
1.能用密度公式进行有关的计算.
2.能用密度知识解决简单的实际问题.
能力目标
1.培养学生运用所学物理知识解决实际问题的能力,运用数学知识解决物理问题的能力.
2.通过解题培养学生的抽象思维能力.
德育目标
1.培养学生规范解题,认真细致的良好行为习惯.
2.培养学生克服困难,解决疑难问题的良好品质.
3.通过公式变形及计算题规范格式的学习,培养学生认真做作业,以形成整洁、规范的作业习惯,以美的作业给人以享受.
教学建议
教材分析
这一节主要是运用密度知识解决实际问题,使学生学会灵活运用知识,教材首先提出了三个实际问题,让学生思考,激发学习的积极性,并把学生引向运用密度知识去解决实际问题,使学生初步感觉到密度知识很有用处,能解决很多问题.然后说明运用密度知识解决实际问题需要用到各种物质的密度,给出了一些物质的密度表.再以提出的三个问题为线索,讲述运用密度知识解决这些问题的思路和方法.教材注意启发学生自己去解决问题,而不是—一给出解答,以利于学生动脑思考,独立地解决问题,培养能力.最后用一个例题作示范进一步教给学生灵活运用知识分析解决问题的方法.
教法建议
本节课可用正迁移的方法由速度公式类比而导出密度的推导公式,可采用自学、讨论、示范的方法.
教学设计示例
一.教材重点与难点分析
1.通过公式,培养学生运用数学知识解决物理问题的能力.
在物理学习中,经常要运用数学方法对物理问题进行计算、分析、推理、论证,但是应注意,用数学方法来解决物理问题必须要受到物理概念与物理规律的制约.分析问题的物理过程、物理意义,弄清各物理量间的关系,明确公式的物理意义及其适用范围,是运用数学知识解决物理问题的基础,而且在运用数学知识解决物理问题时,一定不要把物理问题数学化,不能生搬硬套用数学规律,如,不能认为密度与质量成正比,与体积成反比.因此在解题过程中要重视对相关内容物理意义的理解.
2.对进行公式变形
对密度公式进行变形,可以参照速度公式的变形进行讲解,并通过数学运算规律,使学生掌握公式变形的基本方法.然后再引导学生弄清每一个公式的物理意义.
二.课时安排
1课时
三.教具学具
准备投影仪、投影片
四.师生互动
活动设计
1.根据公式,引导学生通过讨论分析得出和.
2.组织学生练习读密度表,通过读表进一步熟悉某种物质密度的读法.
3.练习求解有关密度的综合题.
五.教学过程设计
(一).引入新课
首先提出几个有趣的实际问题,让学生思考解决的办法,调动学习的积极性.
如:1.怎样鉴别戒指是不是纯金的?怎样知道矿石可能是什么物质组成的?
2.怎样知道一块很大的长方形碑石的质量?怎样知道教室内空气的质量?
3.怎样知道一个不规则的钢零件的体积?怎样知道一大卷细铜丝的长度?等等.然后告诉学生运用密度的知识就可以解决这些问题.把学生引入应用密度知识解决问题的新课教学中.
(二).新课教学
1.可以用来鉴别物质
要鉴别某一物体是什么物质组成的,我们需要知道各种物质的密度是多少,教材中给出了一些物质的密度,请同学们打开书,看一下三个表有什么不同?各有什么特点?
学生看书,然后请同学回答老师的问题,在教师引导下对密度表应主要认识以下几个问题
a.气体的密度表上边标明了“0℃,在标准大气压下”的.条件,应请同学作出说明.
b.在液体中水银的密度比较大,它大于一般金属的密度.
c.气体的密度都比较小.
在看书的基础上,应请学生读几种物质的密度,说出它所表示的物理意义.
在密度表的教学中要说明这是科学家经过严格准确的测量得出来的,而且随着测量技术的不断改进和提高而不断准确.
2.求质量
体积很大的长方形花岗岩石碑,质量很大,无法直接用秤称量,怎样才能知道它的质量呢?让学生说出他们想出的办法.然后引导学生讨论能不能应用密度的公式来求.如何求?需要先知道哪些量?如何才能得到这些量?
前几章我们学习了速度问题,请同学们回忆一下速度的计算公式是什么.
如果我们要求路程和时间怎么办?
可以进行公式变形,得出
和速度公式变形一样,对密度公式也可以用同样的数学方法进行变形,下面请同学们将密度公式进行变形,然后考虑变形后的式子,有什么实际意义?并举出一些实例来.同学之间可以讨论一下.
对于学习基础差的学生,可以通过简单的教学认识公式变形的方法,例如,,对比可解决的公式变形问题.
学生练习公式变形,并讨论变形后的公式在实际中的意义.教师在学生中间巡视,进行指导,学生活动结束后请学生回答前边的问题.
由密度公式,可以得出,从式子中可以知道,用物体的体积乘以它的密度可以求出它的质量.这样对一些体积庞大的物体,质量不便测量.可以测量出它的体积,从密度表中查出它的密度,最后计算出它的质量.
也就是说用密度知识可以求质量.
3.求体积
密度公式还可以变形为,如果我们知道了物体的质量、密度,可以求体积,比如有的物体、体积不规则,不便于直接测量,可以测出它的质量,从密度表中查出它的密度,最后计算出它的体积.
4.讲解例题
例题:有一个体积是的钢球,它的质量是316g,这个铜球是空心的还是实心的?
请同学们用三种方法进行鉴别.
学生练习,教师在同学中巡视,进行指导,学生练习结束后,教师请学生回答,并分析解题思路.
请几个同学分别说出他们的判断方法.
可以求出这个球的密度,把它与铜的密度进行比较,如果相等是实心的,但是我们的计算结果是小于铜的密度,所以是空心的.
我们先假设它是实心的,计算一下它的质量应当是多大,把计算出的值与球的实际质量进行比较,结果大于球的实际质量,所以原球是空心的.
根据给出的铜球的质量,计算一下它的体积是多少,结果小于已知球的体积,所以是空心的.
那么我们计算出的体积值是谁的体积.
是球壳的体积.
由学生们的分析归纳出:判断这个球是空心还是实心有密度比较法、质量比较法、体积比较法三种.
用投影打出如下标准解题过程,教师讲解巡视中发现的问题,要求学生予以改正.
3.总结、扩展
本节课的教学实际上是应用密度公式及其变形公式,研究求解物体质量、体积、密度的问题,在实际运用中提醒学生注意不要死记硬背公式,要了解公式中三个物理量之间的关系并灵活运用,尤其是比例问题,(以下内容可采取边讲边讨论的方式进行)
(1)同种物质组成的甲、乙两物体,其质量与体积的关系(两物体均应为实心).
由于同种物质组成的甲、乙两物体其密度相同,所以 由此得出.说明同种物质组成的甲、乙两物体其质量也与它们的体积成正比,体积大的物体其质量也大.
(2)不同物质组成的甲、乙两物体,如果它们的质量相同,其体积与密度的关系.
由于,所以,也就是,说明相同质量的不同物体,密度大的体积小,它们的体积与它们的密度成反比.
(3)不同物质组成的甲、乙两物体,它们的体积相同,它们的质量与它们的密度之间的关系.
由于所以也就是,它告诉我们相同体积的不同物体,密度大的物体质量也大,它们的质量与它们的密度成正比.
探究活动
【课题】鉴别铅球
【组织形式】学生活动小组
【活动流程】
提出问题;猜想与假设;制订计划与设计实验;进行实验与收集证据;分析与论证;评估;交流与合作.
【参考方案】用密度知识鉴别体育课用的铅球是否是纯铅的.
【备注】
1、写出探究过程报告.
2、发现新问题.
《比的应用》教学设计 篇35
教学目标:
1、使学生能正确判断应用题中涉及的量成什么比例关系。
2、使学生运用正、反比例的意义正确解答应用题。
3、渗透函数的初步思想,建立事物是相互联系的这一辨证观点,培养学生的判断推理能力和分析能力。
教学重点:让学生能正确判断应用题中的数量之间存在何种比例关系,并能利用正反比例的意义列出含有未知数的等式。
教学难点:利用正反比例意义正确列出等式,掌握用比例知识解答应用题的解题思路
教学准备:课件
教学步骤:(铺垫孕伏,建立表象;创设情境,探究新知;归纳总结,揭示意义;巩固练习,考考自己;分层练习,深化新知)
一、铺垫孕伏,建立表象
1、判断下面每题中的两种量成什么比例关系?
○1速度一定,路程和时间( ) ○2路程一定,速度和时间( )
○3单价一定,总价和数量( ) ○4每小时耕地公顷数一定,耕地的总公顷数和时间
○5全校学生做操,每行站的人数和站的行数
2、根据条件说出数学关系式,再说出两种相关联的量成什么比例,并列出相应的等式。
(1)一台机床5小时加工40个零件,照这样计算,8小时加工64个。
(2)一列火车行驶360千米,每小时行90千米,要行4小时;每小时行80千米,要行经X小时。
指名学生口答,老师板书。
二、创设情境,探究新知
从上面可以看出,日常生活生产的一些实际问题,应用比例的知识,也可根据题意列一个等式。我们以前学过的一些应用题,还可以应用比例的知识来解答,这节课我们学习比例的应用(板题)
1、教学例1
(1)出示例1(课件演示)让学生读题
一辆汽车2小时行140千米,照这样的速度,从甲地到乙地共行驶5小时,甲乙两地之间的公路长多少千米?
师:你用什么方法解答,给大家介绍一下如何?(自由回答)
(提问:我们怎样解答的?(板式)先求什么,是按怎样的数量关系式来求的?这道题里哪个数量是不变的量)
学生解答如下几种:
解法一:140÷2×5=70×5=350千米
解法二:140×(5÷2)=140×2.5=350千米
如果有学生用比例方法解,老师及时给以肯定,如果没有,老师给以引导性的问题:
A题中涉及哪三种量?(路程、时间和速度三种量),其中哪两种是相关联的量?
B哪一种量是一定的?(固定不变),你是怎么知道的?(照这样的速度,就是说速度是一定的)
C它们有什么关系?(行驶的路程和时间成正比例关系)
D题中“照这样的速度”就是说 一定,那么 和 成 比例关系?因此 和 的 是相等的。
教师板书:速度一定,路程和时间成正比例。
师追问:两次行驶的路程和时间的什么相等(比值相等)
解法三:(用比例方法,怎样列式)
解:设甲乙两地间的总路长X千米
140 X 或 140:2=X:5
2 5 2X=140×5
X=350
答:甲乙两地之间公路长350千米。
小结:这一类型题,我们不仅可用过去的归一法、倍比法来解,还可用比例方法来解。
2、怎样检验这道题做得是否正确呢?
3、变式练习改编题
出示改编的问题,让学生说一说题意,请同学们按照例1的方法自己在练习本上解答,指名一人板演,然后集体订证,指名说一说是怎样想的,列等式的依据是什么?
4、教学例2(课件演示)
(1)出示例2,学生读题
例2:一辆汽车从甲地开往乙地,每小时行70千米,5小时到达,如果4小时到达,每小时要行多少千米?
提问:
(1)以前我们怎样解答的?(板书算式)这样解答先求什么?是按怎样的数量关系式来求的'?(板书:速度×时间=路程)这道题里哪个数量是不变的量?
(2)谁能仿照例1的解题过程,用比例的知识解答例2来试试,指名板演,其余学生做在练习本上,练习后提问怎样想的?速度和时间的对应关系怎样?检查列式解答过程,结合提问弄清为什么列成积相等的等式解答。
学生利用以前的方法解答。
70×5÷4=350÷4=87.5(千米)
(3)提问:按过去的方法先求什么再解答的?先求总路程的应用题现在用什么比例关系解答的?谁来说说,用反比例关系解答这道应用题怎样想,怎样做的?(课件演示)
这道题里的路程是一定的, 和 成 比例,所以两次行驶的 和 的 是相等的。
指出:解答例2要先按题意列出关系式,判断成反比例,再找出两种关联量里相对应的数值,然后根据反比例关系里积一定,也就是两次行驶相对应数值的乘积相等,列式。
(4)设每小时行驶X千米(根据反比例的意义,谁能列出方程
4X=70×5 X=70×5/4 X=87.5
答:每小时行驶87.5千米。
师:A)该题中三个量有什么关系?其中哪两种量是相关联的量?
B)题中哪一种是固定不变的?从哪里看出来?
C)它们有什么关系?
D)这道题的 一定, 和 成 比例关系,所以两次行驶的和是相等的。
(5)变式练习(改编题)
出示改变的条件和问题,让学生说一说题意,指名一人板演,其余在练习本上独立解答,集体订证,说说怎样想,根据什么列式。
一辆汽车从甲地开往乙地,每小时行70千米,5小时到达,如果每小时行87.5千米,需要几小时到达?
解:设需要x小时到达
87.5x=70×5 x=4
答:需要4小时到达。
三、归纳总结,揭示意义
想一想,应用比例知识解答应用题,是怎样想怎样做的?同学们可互相讨论一下,然后告诉大家,指名说解题思路。
指出:用比例解答应用题的关键,正确找出题中的两种相关联的量,判断它们成哪种比例关系,然后根据正反比例的意义列出方程。(正确判断成什么比例,正比例比值相等,反比例乘积相等)
四、巩固练习,考考自己(课件演示)
请你们按照刚才学习例题的方法去分析,只要列出式子就行。
1、食堂买3桶油用780元,照这样计算,买8桶油要用多少元?(用比例知识解答)
2、同学们做广播操,每行站20人,正好站18行,如果每行站24人,可以站多少行?
以上1、2两题,学生做完将鼠标移到“看看做对了没有”进行自我判断。
3、先想想下面各题中存在什么比例关系?再填上条件和问题,并用比例知识解答。
(1)王师傅要生产一批零件,每小时生产50个,需要4小时完成 , ?
(2)王师傅4小时生产了200个零件,照这样计算 ?
4、四选一,每题只能选一次
(1)体积是30立方分米的钢体重150千克,重1200千克的这种钢材,体积是多少立方分米?(d)
a.150×30=1200x b.30:150=1200:x
c.150x=30×1200 d.150:30=1200:x
(2)机器厂制造一个零件所用的时间由原来8分钟减少到3分钟,过去每天生产零件60个,现在每天生产多少个?(a)
a.60×8=3x b.60:8=3:x
c.60×8=(8-3)x d.3:x=8:60
(3)机器厂生产一种零件,每制造5个零件需要40分钟,一天工作480分钟,能制造多少个零件?(b)
a.5×40=480x b.5:40=x:480
c.40x=5×480 d.40:5=x:480
(4)托儿所给小朋友分糖,原来中班24人每人可分5块,最近又调进6人,每人可分多少块糖?(c)
a.24×5=6x b.24:5=6:x
c.(24+6)x=24×5 d.(24+6):x=24:5
(5)小红从甲地到乙地,3小时行了全程的75%,几小时可以走一个来回?(b)
a.3×75%=2x b.75%:3=2:x
c.75%x=2×3 d.3:75%=2:x
五、分层练习,深化新知
○1修一条长6400米的公路,修了20天后,还剩下4800米,照这样计算,剩下的路要修多少天?(6400-4800):20=4800:x
○2工人装一批电杆,每天装12根,30天可以完成,如果每天多装6根,几天能够完成?
12×30=(12+6)×X
○3农具厂生产一批小农具,原计划每天生产120件,28天可完成任务,实际每天多生产了20件,可以提前几天完成任务?
120×28=(120+20)×X
六、全课总结,温故知新
解比例应用题的一般步骤是什么?(学生自己用语言叙述)
一般方法和步骤:
1、判断题目中两种相关联的量是成正比例还是反比例;
2、设未知量为x,注意写明计量单位;
3、列出比例式,并解比例式;
4、检查后写出答案;
5、特别注意所得答案是否符合实际。
七、课后反馈,挑战难题
小明受老师委托,编一些比例应用题,于是他前往“数学超市”选购了一些条件:
“计划每天生产30辆”、“实际每天生产40辆”、“计划25天完成”、“实际20天完成”、“计划一共生产了900辆”、“实际一共生产了1000辆”
小明需要你的帮助,你会怎样编题?
《比的应用》教学设计 篇36
小学比和比例应用题的教学设计
教学要求:
1。使学生加深理解比与除法、分数的关系,能用不同的表述方法说明比、分数和倍数关系的含义。
2。使学生进一步学会应用不同的知识解答比和比例的应用题,培养学生灵活、合理地解答应用题的能力。
教学过程:
一、揭示课题
1、口算。
让学生口算练习二十二第3题。
2、引入课题。
我们已经复习了比和比例的知识,知道了比和除法、分数之间的联系,根据这样的联系,对于比和比例应用题,可以用不同的方法来解答。这节课,我们来复习用不同的方法解答比和比例应用题。(板书课题)通过复习,要学会用不同的知识解答同一道应用题,提高灵活、合理地解答应用题的能力。
二、复习比与除法、分数的关系
1、提问:比与除法、分数有什么关系?
2、出示:甲数与乙数的比是1 :4。提问:根据甲数与乙数的比是1 :4,你能用分数、倍数关系表示甲数与乙数的关系吗?
3、做练习二十二第4题。
小黑板出示。指名一人板演,其余学生做在课本上。集体订正,选择两题让学生说说是怎样想的。
三、用不同方法解答应用题
l,说明:对于一个比或一个分数、倍数,我们都可以从不同的角度来理解数量之间的关系。这样,就可以用不同的知识来解答关于比和比例方面的.应用题。
2、做“练一练”第1题。
让学生读题,再说一说80克盐这个数量与比的哪一部分是对应的。提问:盐和水的重量比1 :15可以怎样理解?提问:按照1 :15这三种角度的理解,题里已知盐重80克,你能用三种不同的方法解答吗?请同学们做在练习本上,如果有困难,再看看书上是怎样想的。(老师巡视辅导)指名学生口答算式,老师板书三种解法。提问:第一种解法为什么用80×15可以求出加水的重量?这样做的数量关系是怎样的?第二种解法按怎样的数量关系列等式的?为什么用方程解答?第三种解法是按怎样的方法解答的?列比例的依据是什么?提问:这三种不同的解法,都是根据哪个条件来找数量之间的关系的?指出:这三种解法虽然不同,但都是根据盐和水的重量比1 :15这个条件,从倍数、分数和比的意义这三个不同的角度来找出盐和水的重量之间的关系,得出相应的三种解法,求出了问题的结果。
3、做“练—练”第2题。
学生读题。指名板演,其余学生做在练习本上。集体订正,让学生说说各是怎样想的。注意学生中的不同解法。
4、做练习二十二第5题。
让学生默读题目,找一找三道题的相同点和不同点。谁来说一说,每题里元数与份数是怎样对应的?指名三人板演,其余学生做在练习本上,要求学生每道题用两种方法列出算式,不要计算结果。集体订正,让学生说说每种解法是怎样想的。追问:这里都是把哪个条件经过转化后找出不同解法的?
5、讨论练习二十二第6题。
请大家比较一下,这两题有什么相同和不同的地方?合唱组人数是舞蹈组的2倍可以怎样理解?两题里的人数对应的份数各是怎样的?
6、做练习二十二第7题。
让学生比较相同点和不同点。提问:第(1)题男衬衫和女衬衫件数的比是几比几?第(2)题男衬衫和女衬衫件数的比是几比几?这里两道题请同学们都用两种方法解答。指名两人板演,其余学生在练习本上列出算式。集体订正。提问:用分数知识解答这两道题列出的方程为什么不一样?各是按怎样的数量关系列方程的?用比的知识解答这两道题时列出的式子有什么不一样?为什么会不一样?还有没有不同的解法?指出:解答应用题要根据题意,弄清题里的数量关系,根据数量关系列式解答。
四、课堂小结
提问:比和比例应用题,或者倍数、分数应用题,用不同知识解答时,主要把哪个条件从不同角度理解的?(用比、分数或倍数表示两种量关系的条件)指出:由于表示两个数量关系的条件可以从不同角度理解,所以,解题时就可以根据每次理解这个条件的知识,用相应的方法灵活、合理地解答。
五、布置作业
课堂作业:练习二十二第6、8题。
家庭作业:“练一练”第3题。
《比的应用》教学设计 篇37
【教学目标】
一、知识与技能
1。知道物体的浮沉现象,能从受力分析的角度判断物体的浮沉状况。
2。知道物体的浮沉条件,能运用它解释浮沉现象。
二、过程与方法
1。经历探究物体浮沉条件的实验,体会物体漂浮、上浮、下沉、悬浮的原因。
2。提高实验动手能力和探究能力,能把所学知识与生活、生产实践相结合。
三、情感、态度与价值观
1。认识浮力对人类生活、生产的影响。
2。重视理论联系实际,学以致用,初步认识科学技术对人类社会发展的作用。
【教学重点】
上浮、下沉、漂浮、悬浮的分析与判断。知道轮船、潜水艇、气球、飞艇的工作原理。
【教学难点】
物体处在上浮、漂浮、悬浮、下沉的不同状态下,浮力、重力、密度的比较。 【教学仪器】:
烧杯、水、体积相同的蜡块和铁块、两个铁罐子、沙子、潜水艇模型、热气球模型。 【教学流程】:
(一)新课引入
[演示]:1.出示铁块和蜡块让学生观察发现它们体积相等。2.将体积相同的铁块和蜡块同时浸没在水中后松手。
[现象]:铁块沉入杯底而蜡块上浮最终浮在水面。
[提问]:1.浸没在水中的铁块、蜡块(松手后)各受到什么力?
(浮力、重力)
2.铁块和蜡块受到的浮力相等吗? (相等。因为V排相等,根据阿基米德原理可知浮力相等。)
3.既然铁块和蜡块受到的F浮相同,为什么松手后铁块沉底而蜡块上浮?液体中,物体的浮沉取决于什么呢?
[讲解]:物体的浮沉条件:
分析蜡块:松手后,浸没在水中的蜡块所受到的F浮>G蜡,所以蜡块上浮。当蜡块逐渐露出水面,V排减小,浮力减小,当F浮= G物时,蜡块最终漂浮在水面。即:F浮>G物上浮,最终漂浮。
分析铁块:松手后,浸没在水中的铁块所受到的F浮<G铁,铁块下沉。到达容器底部后,铁块受到F浮、G铁和F支,三力平衡,静止在容器底,我们说铁块沉底。即:F浮<G物下沉,最终沉底。
若一个物体浸没在水中,松手后F浮=G物,受力平衡,物体的运动状态不变,我们说物体悬浮在液体中。即:F浮=G物,最终悬浮。
总结:通过上述分析,我们知道浸在液体中物体的浮沉取决于物体所受F浮与G物的关系。
(二)进行新课
1.讨论:
(1)木材能漂浮在水面,其原因是什么?
(2)把一根木头挖成空心,做成独木舟后,其重力怎么变化?它可载货物的多少怎么变化?重力变小,可以装载的货物变多。
[指出]:从浮力的角度看,把物体做成空心的办法,增大了可利用的浮力,而且这种古老的“空心”办法,可以增大漂浮物体可利用的浮力。
[质疑]:密度比水大的下沉的物体有没有办法让它上浮或漂浮呢?
2.实验:
两个外形相同的铁罐子,一个空心,一个装满沙;同时按入水中,松手后实心的下沉,空心的上浮最终漂浮。
[质疑]:(1)铁的密度大于水的密度,空心的铁罐子为什么能漂浮呢?可能是 因为什么呢?
(因为它是空心的,F浮>G物,所以能上浮,最终能漂浮。)
(2)要想让实心的铁罐子也漂浮,可以怎么办呢? (把沙取出来,变成空心的。)
(3)大家的想法是如何调节的铁罐子的浮沉的呢?(F浮不变,挖空使G物变小,当F浮>G物,铁罐子自然就浮起来了。)
[指出]:上述实验告诉我们采用“空心”的办法,不仅可以增大漂浮物体可利用的浮力,还可以使下沉的物体变得上浮或漂浮。
3.应用
·轮船
(1)原理:采用把物体做成“空心”的办法来增大浮力,使浮力等于船和货物的总重来实现漂浮。
(2)排水量:满载时,船排开的水的质量。 即:排水量=m船+m货
[质疑]:1.轮船从河水驶入海里,它的重力变不变?它受到的浮力变大、变小还是不变?(不变,始终漂浮)
2.它排开的液体的质量变不变?(不变)
3.它排开的液体的体积变不变? (变,ρ海水>ρ水,所以V排海水<V排水)
4.它是沉下一些,还是浮起一些?(V排变小了,所以上浮一些)
[强调]:同一条船在河里和海里时,所受浮力相同,但它排开的河水和海水的体积不同。因此,它的吃水深度不同。
·潜水艇
[演示]:
潜水艇能潜入水下航行,进行侦查和袭击,是一种很重要的军事舰艇。它是怎么工作的呢?我们用打吊瓶用的小塑料管来模拟潜水艇。请同学们利用和塑料管连接的细管给塑料管吹气或吸气。
现象:吸气时,水逐渐进入管中,管子下沉;吹气时,管中的'水被排出,管子上浮;
[质疑]:(1)小塑料管浸没在水中所受F浮是否变化?(塑料管形变很小,V排基本不变,所以可以认为F浮不变)。
(2)那它是怎样上浮或下沉的呢?
(吹气时,水从管子中排出,重力变小,F浮>G物,所以上浮;吸气时,水进入管子,重力变大,F浮<G物,所以下沉)
[讲解]:潜水艇两侧有水舱,当水舱中充水时,潜水艇加重,就逐渐潜入水中;当水舱充水使艇重等于同体积水重时,潜水艇就可悬浮在水中;当压缩空气使水舱中的水排出一部分时,潜水艇变轻,就可上浮了。
潜水艇:
原理:靠改变自身重力来实现在水中的浮沉。
[强调]:潜水艇在浸没在水下不同深度所受浮力相同。
·气球和飞艇
[演示]:“热气球”的实验。
[质疑]:酒精燃烧后袋内空气密度怎样变化?
原理:ρ气<ρ空气,(即利用密度小于空气的气体,通过改变气囊里气体的质量来改变自身体积从而改变所受浮力的大小来实现升降的。)使它受到的F浮>G物而升空。
[讨论]:要使充了氦气、升到空中的气球落回地面,你们能想出什么办法?要使热气球落回地面,有什么办法?(放气或停止加热)
其他应用
密度计、盐水选种等。
附:板书设计
(一)物体的浮沉条件:
F浮>G物 上浮 最终漂浮 ρ液>ρ物
F浮=G物 悬浮 ρ液=ρ物
F浮<G物 下沉 最终沉底 ρ液<ρ物
(二)通过调节物体受到的F浮或G物,可以调节物体的浮沉。
(三)应用
1.轮船:把物体作为“空心”的办法来增大浮力,使浮力等于船和货物的总重来实现漂浮。
2.潜水艇:依靠改变自身重力来实现在水中的浮沉。
3.气球和飞艇:ρ气<ρ空气,使它受到的F浮>G物而升空。
三.小结:
四.布置作业:动手动脑学物理:3、4。
五.教学后记:
《比的应用》教学设计 篇38
设计思路:
本节课在谈话中创设情境,引导学生在现实背景中让学生亲身感受按比例分配的意义,并对例题进行探索,感悟数学思想方法。在解释应用中让学生亲身经历知识的建构过程,体验解题的多样化,初步形成验证与反思的意识,从而提高自身的学科素养。
教学内容:
六年级上册比的应用
教学目标:
1、在自主探索中理解按比例分配的意义,掌握按比例分配问题的结构特点。
2、能正确解答按比例分配问题。
3、培养解决问题的能力,促进探索精神的养成。
教学重点:
掌握解答按比例分配应用题的步骤。
教学难点:
掌握解题的关键。
教学过程:
一、创设情境,感受价值
1、师:同学们,大家平时放过东西吗?
2、请大家分一分彩旗吧。(课件:植树节到了,学校准备了60棵树苗,要把它发给六一班和六二班栽植,已知两个班人数相等,如何分比较合理?)
注:学生一般会按平均分的方法解答,教师就可追问:这样分配的方法,我们以前学过,叫什么分法呢?
3、在实际生活中,有时并不是把一个数量平均分配的,而是按不同量来进行分配的。
注:教师用谈话的方式,以两班分配植树任务的事情为事例,分步呈现问题情境,让学生根据有关信息发表见解,体会平均分只是一种分配方法,在现实生活中还需要更为合理的分配方式。这样结合旧知体会按比例分配的实际意义。
二、探究教学
1、探究例题
(1)呈现例题,根据学生的建议,共同完成例1
师:植树节到了,学校准备了60棵树苗,按3:2的比例分给六一班和六二班栽植,两个班各应栽多少棵?
(2)分析题意:按3:2的比例分给两个班栽植告诉我们那些数学信息?
师:请同学们独立思考,独立完成(教师巡视、指导)
(3)展示结果
根据学生的回答板书解题方法
第一种:60÷(2+3)=12(棵) 12×3=36(棵) 12×2=24(棵)
第二种:2+3=5
60×3/5=36(棵) 60×2/5=24(棵)
注:学生可能会出现以上两种解法,对于学生以前学过的归一问题的解法,老师应给予肯定。而重点放在分数乘法的意义来解答的方法上,让学生充分表达自己的想法。
2、揭示课题
师:像这样把一个数量按照一定的比进行分配,我们通常把这种分配方式叫做按比例分配。
3、思考:如何检验答案是否正确呢?
讨论:按比例分配问题有什么特点?用按比例分配方法解决实际是要注意什么呢?
指导学生检验不但有助于学生养成良好的解题习惯,也有利于培养学生的反思意识。小结按比例分配问题的一般方法与步骤,将感性的解题经验归纳,深入理解按比例分配的关键是被分的总数和分配的比,从而突出重点,突破难点。
三、巩固练习教材做一做。
四、总结
通过这节课的`学习,你有什么收获?
教学反思:
1、教材的编排遵循由易到难的原则。新旧知识之间的联系点,既是数学知识的生长点,又是学生认识过程中的发展点,它们用承上启下的作用。按比例分配问题是平均分问题的发展,又有它独特的价值。在谈话导入环节中,设问如何分配植树任务才合理?引发学习的思维,发现平均分之外的另一种分配方法(按比例分配),激发了学生的探究兴趣。
2、为了使学生通过解决具体问题抽象概括,形成普遍方法,指导他们及时反思十分必要。教学中先是观察分析这类题型的结构,并讨论解答此类问题的一般解题方法和步骤。接着引导学生归纳按比例分配问题的解题规律,并反思遇到不同的问题,应选择哪种方法比较合适。这样在回顾反思中理清思路,不断提升思维的层次。
《比的应用》教学设计 篇39
教学内容:
人教版六年级数学上册第54页例2和练习十二第1~4题。
教学目标:
1、知识目标:掌握按比例分配应用题的结构特征以及解题方法,能正确运用按比例分配来解决生活中的实际问题。
2、能力目标:培养学生自主探究知识、解决实际问题的能力,提高学生学数学、用数学的意识。并能提高分析问题与解决问题的能力。
3、情感目标:让学生感悟数学与日常生活的联系,激发学生学习数学的兴趣,渗透转化的数学思想。
教学重点:
运用按比分配的知识解决生活中的实际问题。
教学难点:
提高分析问题与解决问题的能力。
教学过程:
一、情景导入。
如果妈妈的菜地里的白菜长虫子了,妈妈会怎么办呢?肯定要买杀虫剂(浓缩剂)进行杀虫。那浓缩剂能不能用来杀虫呢?你们想不想解决这类有关的问题呢?根据学生的回答,那好,我们今天就一起来学习这方面的知识比的应用。
板书:比的应用。
二、探索新知。
请同学们打开教科书的54页。
出示教材54页例2
阅读与理解:
(1)、了解情境中的生活信息。
(2)、已知条件:500mL是配好后的稀释液的体积,1: 4表示的是浓缩液与水的体积的比。
分析与解答:
(1)、稀释液:500ml 总分数:1+ 4=5
1 : 4表示什么意思呢?
浓缩液 : 水
(2)、浓缩液和水的体积比是1: 4 。
浓缩液的体积是稀释液的1/5。
水的体积是稀释液的4/5。
方法一:
总体积平均分成5份。先算出总分数,再求每份是多少,最后分别求出浓缩液和水的体积。
把每份是:500(1+4)=100(mL)
浓缩液:1001=100(mL)
水:1004=400(mL)
方法二:
先求总份数,再求各部分占总量的几分之几(浓缩液占总体积的1/5;水占总体积的4/5。),最后用总量乘各部分占总数的几分之几,求出各部分量。
浓缩液有:5001/5=100(mL)
水有:5004/5=400(mL)
回顾与反思:
浓缩液体积:水的体积
=( ):( )
=( ):( )
答:浓缩液有100mL,水的体积有400mL。
三、巩固练习
练习十二第1、2题。
四、小结:
1、今天我们应用比解决了一些实际问题。你有什么收获?
2、按比的配制应用题的解题方法是: a、先算出总分数,再求每份是多少,最后分别求出浓缩液和水的体积。b、先求总份数,再求各部分占总量的几分之几,最后用总量乘各部分占总数的几分之几,求出各部分量。
五、作业:
练习十二第3、4题。
六、板书设计:
比的应用
方法一 方法二
总分数1+4=5
每份数: 500(1+4)=100(mL) 浓缩液占总体积的1/5
水占总体积的4/5
浓缩液:1100=100(mL) 浓缩液有:5001/5=100(mL) 水:4100=400(mL ) 水有:1004/5=400(mL)
答:浓缩液有100mL,水的体积有400mL。
课后反思:
按比的配制稀释液解决生产生活中的实际问题。在这一节课中我的做法是:首先让学生在现实情境中体会按比的配制的合理性,理解什么是按比配制。按比的.配制是一种分配思想,在生活、生产中是很常见的已学过的平均分,其实是按比的配制是比例的一种特例。教学中要通过解决实际生活的问题。让学生了解在生活、生产中常常要把一个数量按照数量的多少来进行配制,去感悟按比的配制存在的价值。以生活实际例子入手,让学生思考实际生活中所面临的问题,是自己生活中的问题。由此激发学生产生解决问题的兴趣,让学生主动地参与到学习中去。并在解决问题的过程中让每学生都能体会到数学的存在,其实就在他们的身边,因为数学源自于生活。其次充分展示学生的思考过程,在解决问题的过程中,让学生体会到同一问题可以从不同角度去思考,同时能得到不同的解决问题的方法,有利于学生多向思维的发展,也凸现出学生个性化的学习。
《比的应用》教学设计15篇(实用)
作为一名无私奉献的老师,总归要编写教学设计,借助教学设计可以提高教学效率和教学质量。那么什么样的教学设计才是好的呢?以下是小编整理的《比的应用》教学设计,供大家参考借鉴,希望可以帮助到有需要的朋友。
《比的应用》教学设计 篇40
【教学内容】苏教版五年级数学下册第119至120页内容。
【教学目标】
1.使学生在学习数学中,进一步体会数学知识与实际生活的联系,能综合运用学过的数学知识和方法解决生活当中的各种实际问题。提高解决问题的能力
2.使学生在自觉整理复习知识中,进一步评价和反思自己在本学期的整体学习情况,体会与同学交流和学习成功的乐趣,感受数学的意义和价值,发展对数学的积极情感。
【课前要求】
1.每名学生收集统计图或一些分数表示的信息;
2.每名学生制作一张日历卡。
3.收集本学期与生活应用有关的题型。
【教学过程】
一、谈话引
入学是为了用,本学期同学们学习了很多数学知识,请同学们说说这些数学知识都帮你解决了哪些生活中出现的问题。
1.拿出收集到的与生活应用有关的题型,四人小组人单位,互相交流;
2.个别上台汇报结果。
【设计意图:数学源于生活,用于生活。让学生将各自的体会进行交流,增加了认识的宽度,同时激发了学生的积极性。】
二、教学第25题。
让学生拿出收集到的统计图或分数表示的.信息,在小组当中交流。请个别学生上来汇报自己的成果与心得(你收集到的是什么数据,从这些数据当中你看出了什么?)。
【设计意图:学生有可能对同一统计图会有自己不一样的理解,互相交流,分享心得与意见,能进一步加深学生对统计图的认识。】
二、 教学第26题。
拿出日历卡。理解题意,明确要求,只能横着框。尝试完成。 用投影配合展示结果。
【设计意图:培养学生综合运用知识解决实际问题的能力。】
三、教学第27题。
1.说出分母是8的最简真分数有哪几个?它们的和是多少?(让学生迅速动笔,在规定的时间内完成,汇报)
2.再任选几个整数,分别写出用这几个数作分母的所有最简真分数,并求出每组真分数的和。(每人选两个整数,并写出用这个整数作分母的所有最简真分数,再求出和。)
3.你发现了什么规律?
(任何一个比2大的整数,用它作分母的所有最简真分数的和一定是整数。)
【设计意图:通过自己的实际操作,培养学生学会发现规律、总结规律。】
四、教学第28题。
学生独立完成,用投影展示结果。
【设计意图:培养学生位置感与方向感。】
五、教学第31题。
读题,理解题意。学生尝试做游戏。
要想取胜,可以倒过来推想(自己最后一次取之前,应该留几根给对手)。
指出:每次取完后,留下的火柴根数必须是4的倍数。再次尝试游戏。
说说取胜的策略。
【设计意图:游戏中学,游戏中发现规律,远比在枯燥的笔算中要有效果。】
六、教学第29题。
小组交流。
汇报结论,注意表述的正确性。
七、课后延伸第30题。
分组课后完成测量、计算。
【设计意图:课后作业,紧密地与生活联系在一起,进一步体现小组合作的重要性,加强小组合作意识。】
八、总结。
说说本节课的收获与自己的不足。
《比的应用》教学设计 篇41
教学内容:教科书第5页的例3,试一试、练一练,练习二的5~8题。
教学目标:
1.通过多种途径查找资料,经历走进生活、收集整理、交流表达等过程,让学生了解有关储蓄的知识的同时培养学生搜集处理信息的能力。
2.结合百分率的知识,运用调查、观察、讨论、分析数量关系等方式,学习利息的计算方法,并运用所学的数学知识、技能和思想来解决实际问题。
3.通过策划理财活动,让学生感受数学知识服务于生活的价值,培养科学理财的意识。
教学重点:利息的计算方法
教学难点:税后利息的计算。
设计理念:本课除了要让学生掌握利息的计算方法,更重要的是要让学生结合百分率的知识,通过策划理财活动,让学生感受数学知识服务于生活的价值,从小培养科学理财的意识。
教学步骤教师活动学生活动
一、情境导入
1.提问:你家中暂时用不到的钱怎么处理的?
你们知道为什么要把积余下来的钱存到银行里吗?(明确:人们把钱存入银行或信用社,这叫做存款或者储蓄。这样不仅可以支援国家建设,也使得个人用钱更加安全和有计划,还可以增加一些收入。)
2.关于储蓄方面地知识你还了解多少?
根据学生交流地情况摘其要点板书:
利息本金利率
多媒体出示“告诉你”:存入银行的钱叫做本金,取款时银行除了还给本金外,另外付给的钱叫做利息。利息占本金的百分率叫做利率。按年计算的叫做年利率,按月计算的叫做月利率。
出示利率表。(略,同书上第5页利率表)
问:你从这张利率表上能获得哪些信息?
说说年利率2.52%的含义
师:你认为利息与什么有关?
怎样求利息?
根据学生的回答板书:
利息=本金×利率×时间(课前布置同学们向自己的爸爸妈妈了解家中暂时用不到的钱怎么处理的)
全班交流自己收集到地信息。
学生自学。
学生讨论。
二、教学例3
1.出示例3。
读题后明确,二年期的利率应该就是表格中对应的二年存期的利率,不是一年期的利率×2。
要求利息,需要知道哪些条件?
你会列式求利息吗?
2.教学试一试
(1)亮亮实际能拿到这么多利息吗?为什么?
教师再说明:这里求得的利息是税前利息,也叫应得利息。但是根据国家税法规定,从1999年11月开始,储蓄所得的利息应缴纳20%的.利息税,由储蓄机构代扣。税前利息中扣掉利息税后余下的部分即是自己实际得到的利息,即税后利息,也叫实得利息。购买国家债券、教育储蓄不缴纳利息税。
这里的20%是什么?
你觉得应该怎样计算税后利息呢?可以先算什么?用计算器计算亮亮实得利息是多少元?
(2)小结:一般我们从银行取出来的都是税后利息,所以在多数计算中最后要将利息税减掉。
(3)引申:如果问题问亮亮到期一共可取出多少元?这里的“一共”是什么意思,包含哪些内容。(明确可取出多少元:本金+税后利息)这个问题由你来解答。
学生读题。
试着做一做,集体订正。
请了解利息税的同学解释。
学生用计算器计算。
学生讨论。
学生解答。
三、巩固练习
1.完成练一练。
应得利息怎样求?
实得利息怎样求?
二者的区别是什么?
实得利息是应得利息的百分之几?
2.做练习二的第5题。
提醒学生教育储蓄不需缴纳营业税。
这里的本金和利息一共多少元是什么意思?
3.理财——我能行
谈话:你们对家中的存款情况了解多少?能说给大家听听吗?当然该保密的就不要说了。
学生交流后出示下面题目(同时出示利率表)
(1)张明家有5000元计划存入银行三年,张明的妈妈想请我们班的同学帮助算一算,是存定期三年合算?还是存定期一年,然后连本带息再转存合算呢?
(2)如果你有1000元,根据你家的实际情况,你打算怎样投资?请你设计一个理财方案。
学生列式解答。
学生列式解答。
组织学生讨论。
指名学生回答,集体订正。
学生交流
学生说出自己的想法。
四、全课小结这节课我们学习了什么知识?通过本节课的学习,你学会了什么?
师:通过今天的学习,希望同学们有意识地养成勤俭节约,计划消费的习惯,并能把所学知识应用到实际生活中,发挥其价值。
五、布置作业1.到银行存压岁钱;
2.找一份存折或存单,看懂上面的每一栏,并从上面找到本金、利率、时间,能计算到期后这份存折(存单)一共可取出多少元?两道实践题让学生在家长的陪同下到银行去储蓄,从实践中认识储蓄。
《比的应用》教学设计 篇42
教学目的:
1、使学生学会用方程解答“已知比一个数的几倍多(少)几是多少,求这个数”的应用题。
2、使学生能根据应用题的具体情况灵活选择解题方法,培养学生主动获取知识的能力和习惯。
3、通过解决问题激发学生热爱新校的情感。
教学重点:
分析题中数量间的相等关系,并列方程,提高用方程解应用题的能力。
教学难点:
根据不同的数量间的相等关系,列出多种不同的方程,体会列方程解应用题的优越性。
教学准备:课前调查老校与新校各方面的变化的数据;多媒体课件。
教学过程:
一、课前谈话 激发兴趣
师:同学们,这个学期我们搬进了新的学校,你的心情怎样?
通过调查你发现新校与老校相比有什么不同?(学生自由说)
(评析:学生刚刚搬进漂亮的新校,充满了好奇,让他们课前调查, 他们当然是乐开花,调查中,学生进一步地认识、了解了自己的新学校,而且用他们调查的数据作为下面的学习的材料,使学生感受到我们生活的每一个角落都有数学,我们学的是有用的数学。)
二、展示信息 提出问题
师:的确,就象同学们所说的`,新校与老校相比发生了非常大的变化。
根据学生的交流选择信息出示下表:
信息1
信息2
问题
老校有电脑40台
新校的电脑比老校的6倍多35台
新校有1550人在校就餐
比老校的3倍多200人
新校有图书49500册
比老校的4倍多1500册
新校的人均绿化面积是13.5平方米
比老校的4倍少2.5平方米
师:你能根据上面的信息,提出数学问题吗?
根据学生的回答逐步出示问题。
(1)新校有多少台电脑?
(2)老校有多少人在校就餐?
(3)老校的人均绿化面积多少平方米?
(4)老校有多少万册?
师:刚才同学们给每一组信息提出了一个问题,组成了四道应用题。
第一个应用题应该怎样解答?(学生口答)
(评析:突破传统的应用题的呈现方式,通过选择学生调查的信息,请学生提出问题的方式使复习题、例题和练习题整体呈现,促使学习内容在动态中生成,激活了学生的认知需求与思维热情,使其积极主动地参与到下面的学习活动中。)
三、体验交流 探索新知
1、师:下面我们看第二个题目,谁来把这个题目读一读。这道题目老师想请同学们在试着做做看。(只需列出式子)
汇报交流。
估计学生有以下几种方法(根据学生的回答板书):
3X=1550-200 3X+200=1550 (1550-200)÷3
1550-3 x =200 (1550+200)÷3
(1)先让学生说说左面三种方法分别是怎样想的?
师:其实这三种方法之间也有一定的联系。有什么联系?(同桌讨论)
(2)再让学生讨论右面两种方法,根据这两个算式的计算结果,学生很容易发现其中一种肯定是错误的。
让学生充分地发表自己的意见,并随机出示线段图帮助学生进一步地理解。
师:请同学们任意选择一种方法把它计算出来。指名板书。
2、师:解答好了,接下去还要做什么?(学生检验并交流)
3、比较
(1)比较第2题的算术解和方程解。
师:这道题用算术方法和方程都可以解。谁来说说你喜欢用哪一种方法?为什么?
(2)比较第2题和第1题。
师:第1题为什么用算术方法解?(学生充分交流)
师小结:通常我们用方程来解象第2题这样的应用题。
揭示课题:列方程解应用题。
4、练习
(1)学生列方程解第3题。
学生练习,指名板演。
师:谁来评一评他做得怎么样?
(2)学生列方程解第4题
师:谁来说说第4题和第2、第3题有什么不同?
(评析:力求让学生去发现和概括出规律性的知识,无论在体会列方程解应用题的优越性,还是在多种方法的择优上,等等,都尽量让学生充分地体验,使学生在分析、对比中,探索规律,不仅拓宽了学生的思维空间,更体现了学生的数学学习活动是一个生动活泼、主动的和富有个性的过程。)
四、畅谈感受 深化体验
师:通过同学们的计算,我们又获得了一些有关老校与新校的信息,请同学们再把我们新校与老校的有关数据比较一下,你有什么感受?或者想说些什么?
8、通过刚才的练习,你觉得解答我们今天学习的这类应用题的关键是什么?
(评析:通过总结,学生进一步明确了找关键句中的等量关系是解题的关键;通过比较,学生进一步地感受到新校和老校相比发生了巨大的变化,激发了学生发自内心的爱校之情,激励学生珍惜优越的学习环境,努力学习。)
五、分层练习 讲究实效
过渡:老师这里有这样的一些关键句,请你根据这些句子说出等量关系式。
1、找等量关系(课件出示)
(1) 今年养兔的只数比去年的3倍少8只
(2) 红毛衣的件数比蓝毛衣的2倍还多13件
(3) 买3个篮球比4个排球多用去5元
(4) 比小孩服装的5倍少3套是大人服装。
2、任意地选择两个条件,提出一个问题,组成一道应用题,然后把它解答出来,看谁做得又快又多。
3、游戏(机动)
师:指名问学生几岁?×××同学的年龄是我女儿的3倍少1岁,猜猜我的女儿几岁?
请同桌两人做这个游戏,利用你爸爸、妈妈或其他人的年龄编题,让你的同桌猜一猜。
(评析:采用分层练习,力求在练习过程中,既巩固新知,又发展学生的数学思维,使学生在发散性、多维度的思维活动中提高解决实际问题的能力,培养学生的创新意识。)
《比的应用》教学设计 篇43
教学目标:
1、会分别进行简单的小数及分数的加减乘除预算及混合运算。
2、能结合现实素材理解运算顺序,并进行简单的整数四则混合运算。
3、经历与他人交流各自算法的过程。
4、能灵活运用不同的方法解决生活重的简单问题,并能对结果合理性进行判断。
5、借助计算器进行复杂的运算,解决简单的实际问题,探索数学规律。
6、了解比例尺,在具体情境中,会按给定的比例进行图上距离与实际距离的换算。
7、在实际情境中理解什么是按比例分配,并能解决简单的问题。
教学重点和难点:
在交流和反思中改掉计算毛病、养成良好的计算习惯。
教具准备:小黑板、课件
教学过程:
一、创设情境、导入复习
出示小黑板:一部分加减乘除计算题。鼓励学生结合具体的计算过程说一说整数、小数、分数的加、减、乘、除法是怎样算的,交流各种运算的计算方法和四则运算的顺序。这部分是学生进行计算的基础,结合具体的例子鼓励学生说说为什么这样算?
二、回顾整理、构建网络
1、引导学生对自己以往学习中经常出错的题目进行整理和回顾,说说计算中应注意的问题。教学时,可以先让学生课前整理,课上独立思考,然后在小组交流各自错误,并整理出错误类型,最后在全班交流,教师应鼓励学生说出自己出错的原因和计算中需要注意的地方。
2、补充练习:
31.50+160÷40(58+370)÷(64-45)
32.120-144÷18+35
33.347+45×2-4160÷52
34(58+37)÷(64-9×5)
35.95÷(64-45)
36.178-145÷5×6+42420+580-64×21÷28
3、出示课本第4题:鼓励学生运用计算解决实际问题,并回顾总结解决实际问题的过程。对于可以直接利用运算意义加以解决的实际问题。(本题可以让学生自由说一说计算的方法,如:可以借助线段图分析,可以用找单位“1”的方法来分析)
4、出示第6题:鼓励学生回顾有关比例尺的应用题和比的问题。这部分内容包括计算比例尺、求实际距离、求图上距离、比的应用。教材只回顾了一部分内容,教师可以根据学生情况进行适当补充。需要注意的.是,学生完全能够根据比的意义和比例尺的意义解决问题,不需要背诵所谓的解体过程。
三、重点复习、强化提高
1、计算
236+641-0.25312÷35.01-1.81.63+2.31.25×8
38÷43.75÷0.250.72÷0.61/6+3/818×2/316/9÷2/3
师:由于在计算中遇到各种各样的问题,下面以小组为单位,把你们认为易错的一道题,在练习本上完成,并相互交流。明确整数、小数、分数的加法意义相同,减法意义相同,除法意义也相同,只有乘法意义在分数和小数中有扩展。
2、做54页2题本题让生先说运算顺序在计算,集体订正。
四、自主检评、完善提高
1、一批货物,驾车单独运4小时运完,一车单独运5小时运完。两车合运,2小时后,余下的由乙车运,还需多少时间可以运完?
2、两列火车从甲、乙两地同时相对开出,甲车每小时行驶54千米,比乙车速度慢10%。经过3时,两车行了全程的75%。甲、乙两地相距多少千米?
3、有一种衣服现售价是34元,比原来定价便宜15%。现在比原来定价少多少元?
4、粮店运进一批豆油。第一天卖出240千克,第二天卖出320千克,还剩总数的4/9。这批豆油有多少千克?
5、某服装厂上半月完成全月计划的40%,下半月生产服装1800套,正好完成全月计划。下半月比上半月多生产多少套?
6、做55页3、4、5、6、题:要求:(1)读懂题意(2)找到题中的数量关系(3)选择解决问题的方法,列式计算(4)对答案进行检验
7、做56页7—10题,小组讨论方法并交流
8、做57页11、13、15题学生独立完成集体订正,出示小黑板。
9、板书设计:
计算与应用
1、展示自己的错误及改正措施
学生1学生2……
2、交流解决实际问题的步骤
五、教学反思:
培养小学生的计算能力和解决问题的能力也一直是小学数学教学的主要目标之一。教材在引领学生回顾这部分内容时,注重让学生体验计算在日常生活中的广泛应用,注重培养学生基本的计算技能,注重在计算中发展学生的思维能力,注重解决简单实际问题能力的培养,更注重学生回顾和反思能力的提高。=
《比的应用》教学设计 篇44
【教材分析】
《比的应用》小学数学六年级上册的内容,是在学生理解了比的意义、比的化简、比与分数的联系、以及掌握用分数乘、除法解决简单问题的基础上,把比的知识应用于解决相关的实际问题的一个课例。比的应用又称按比例分配,按比例分配有按正比例分配和反比例分配两种,由于按反比例分配的实际应用并不广泛,而且可以转化为按正比例分配来解答,因此教材只教学按正比例分配。按比分配是“平均分”问题的发展,平均分是按比分配的特例。研究比的应用,也为以后学习“比例”、 “比例尺”的知识奠定基础。
教材有两部分内容:分一分和算一算。分一分:创设一个给两个班的小朋友分橘子的情境,鼓励学生通过实际操作,在交流不同分法的过程中体会到1:1分配的不合理性,产生按比分配的需要,同时体会按比分配在生活当中的实际应用;算一算:在有了实际操作的基础上,解决把140个橘子按3:2分给两个班,引导学生自主探索出不同的解决问题的策略,鼓励学生运用合理的解题策略解决实际问题。
【学生分析】
学生在二年级上册学习了除法的意义,了解了“平均分”,即按1:1分,学生在五年级上册学过分数的意义、分数与除法的关系,本单元学习了比的意义和比的化简。由于比与除法、分数有着密切的联系,所以,比的很多基础知识与除法、分数的相关知识具有明显的、可供利用的内在联系,这些对于学生学习比的应用奠定了良好的知识基础。
比的知识在生活中有着很广泛的应用,因此,学生也有一定的经验基础。因此,教学这部分内容时,应当充分利用原有的学习基础,引导学生联系相关的已学知识,进行类比和推理,尽可能让学生自主学习,通过自己的思考,推出新结论,解决新问题。
【教学目标】
1、能运用比的意义解决按照一定的比进行分配的实际问题,进一步体会比的实际意义;
让学生通过观察、操作,经历与他人交流各自解题策略的过程,体验策略的多样性,并选择合适的方法;
3、使学生在探索未知、寻求成果的过程中品味学习的乐趣,并养成积极、主动的探究精神。
【教具准备】
课前准备:学生查找有关事物各组成部分比的资料。
课上准备:小红旗。
【教学重点】理解按比分配的实际意义,并能运用比的意义解决按照一定的比进行分配的实际问题。
【教学难点】理解按比分配的实际意义,沟通比与分数之间的联系。
【教学过程】
一.情境引入
老师有140个橘子,要分给幼儿园两个班的小朋友,你觉得怎样分才算合理呢?(平均分,这样才公平。)
经调查,大班有30人,小班有20人,这回如果我们还把这些小旗平均分给这两个班,你觉得还合理吗?为什么?(不合理,因为每个人分到的就不一样多了。)
怎么分合理呢?请你静静地想一想,先和同桌说一说,再和全班同学说说你的想法。(按人数比30 :20 = 3 :2进行分配。)
3、3 :2表示什么意思?
[设计意图]使学生体会按比分的必要性以及初步沟通按比分与平均分的关系。
二、问题解决活动1:合作研究怎样按3 :2 这个“比”来分配
为了研究方便,老师给大家提供了一些小旗代替橘子。
(一)合作研究
1.合作要求:两个同学一组分工合作,每分一次,就详细记录下当次分给大班和小班小旗的面数,直到分完为止。(提示:记录时,不累计上次分得的小旗面数)
大班 小班
第一次
第二次
第三次
第四次
第五次
大班分得()面小旗
小班分得()面小旗
2.学生合作研究
3.教师组织反馈交流
老师在巡视的过程中,收集约三种不同的分法,分步展示在黑板上。
四人一组交流讨论要求
(1)在组长带领下逐一分析每种分法,你们能理解这些分法吗?你有什么想法?你还想提出什么问题?
(2)观察、比较这几种分法,你能发现什么?
插问:你觉得分一次至少需要多少面小旗?为什么?
也就是可以把5面小旗按3:2进行分配,那这一次是把几面小旗按3:2进行分配的呢?
学生可能出现的方法预设:
分法1:每次分给大班3面,分给小班2面。
表扬:认真有耐心,十二次。
分法2:根据比的基本性质分,分的次数明显减少。
表扬:很会动脑筋,在分的过程中及时进行了调整。
分法3:先按人数分给大班30面,分给小班20面,余下的'再按比分。
表扬:很会联系实际情况,这种分法在实际生活中非常实用。
[设计意图]本环节的设计意图有五个,其一,虽然是六年级的学生,但是动手操作的过程是必不可少的,因为逐次分配具有一定的实用价值。记录单能够恰好的保留学生最初的思维轨迹。其二,培养学生的动手操作能力、合作能力、问题解决能力。其三,让经历问题解决的过程,探索按比分的不同策略。其四,培养学生的语言表达能力、反思能力,倾听习惯,使学生在交流中获得方法的丰富和能力的提高。其五,培养学生的观察、比较、分析、综合能力
(二)验证
1.问题:大班和小班分得面数的比是不是3:2?你是怎么知道的?
大班 小班
分得小旗的总面数
人数
平均每人分到小旗的面数
30 :20 = 3 :2 = 36 :24
2.师生一起小结:
(1)平均每人分到的小旗同样多吗?
(2)把这些小旗按大班和小班的人数比来分配是合理的分法吗?
(3)虽然不知道小旗的总面数,但是大家动手分一分,是否就能成功的把这些小旗按3:2进行分配?
[设计意图]正式打通人数比与小旗面数比之间的关系,深化比的意义。使学生初步体会按比分的本质:即每个“单位”分到同样多。
(三)当我们知道总数的情况下的按比分配
1.问题:如果有180面小旗,你打算怎样按3:2进行分配?你能想到几种方法?
2.四人一组交流,说说你想到的方法:
方法1:按比逐次分配。
方法2:先求出一份是多少面小旗,再根据大、小班分别所占的份数,求出各应分得多少面小旗。
方法3:把比转化成分数,利用分数的意义求出大班和小班分到的小国旗的面数
3.小结:当我们知道总数的情况下,既可以逐次分一分,也可以算一算。可采用的方法就更多了。平均分能理解为按比分吗?按怎样的比分呢?
三、巩固练习
同学们表现得太出色了,能再帮老师一个忙好吗?好啊
我家有一块近似长方形的菜地,面积大约是984平方米,我想按3:5的比例种茄子和西红柿,茄子和西红柿各种多少平方米?
四、总结
今天的学习,你有哪些收获和感受?
1、通过这节课的学习你对比有了哪些新的认识?
2、把一些事物按一定的比分的时候,可以用哪些策略?
3、你在生活中还能找到比的应用的例子吗?
《比的应用》教学设计 篇45
教学目标:
1、会分别进行简单的小数及分数的加减乘除预算及混合运算。
2、能结合现实素材理解运算顺序,并进行简单的整数四则混合运算。
3、经历与他人交流各自算法的过程。
4、能灵活运用不同的方法解决生活重的简单问题,并能对结果合理性进行判断。
5、借助计算器进行复杂的运算,解决简单的实际问题,探索数学规律。
6、了解比例尺,在具体情境中,会按给定的比例进行图上距离与实际距离的换算。
7、在实际情境中理解什么是按比例分配,并能解决简单的问题。
教学重点和难点:
在交流和反思中改掉计算毛病、养成良好的计算习惯。
教具准备:小黑板、课件
教学过程:
一、创设情境、导入复习
出示小黑板:一部分加减乘除计算题。鼓励学生结合具体的计算过程说一说整数、小数、分数的加、减、乘、除法是怎样算的,交流各种运算的计算方法和四则运算的顺序。这部分是学生进行计算的基础,结合具体的例子鼓励学生说说为什么这样算?
二、回顾整理、构建网络
1、引导学生对自己以往学习中经常出错的题目进行整理和回顾,说说计算中应注意的.问题。教学时,可以先让学生课前整理,课上独立思考,然后在小组交流各自错误,并整理出错误类型,最后在全班交流,教师应鼓励学生说出自己出错的原因和计算中需要注意的地方。
2、补充练习:
31.50+160÷40(58+370)÷(64-45)
32.120-144÷18+35
33.347+45×2-4160÷52
34(58+37)÷(64-9×5)
35.95÷(64-45)
36.178-145÷5×6+42420+580-64×21÷28
3、出示课本第4题:鼓励学生运用计算解决实际问题,并回顾总结解决实际问题的过程。对于可以直接利用运算意义加以解决的实际问题。(本题可以让学生自由说一说计算的方法,如:可以借助线段图分析,可以用找单位“1”的方法来分析)
4、出示第6题:鼓励学生回顾有关比例尺的应用题和比的问题。这部分内容包括计算比例尺、求实际距离、求图上距离、比的应用。教材只回顾了一部分内容,教师可以根据学生情况进行适当补充。需要注意的是,学生完全能够根据比的意义和比例尺的意义解决问题,不需要背诵所谓的解体过程。
三、重点复习、强化提高
1、计算
236+641-0.25312÷35.01-1.81.63+2.31.25×8
38÷43.75÷0.250.72÷0.61/6+3/818×2/316/9÷2/3
师:由于在计算中遇到各种各样的问题,下面以小组为单位,把你们认为易错的一道题,在练习本上完成,并相互交流。明确整数、小数、分数的加法意义相同,减法意义相同,除法意义也相同,只有乘法意义在分数和小数中有扩展。
2、做54页2题本题让生先说运算顺序在计算,集体订正。
四、自主检评、完善提高
1、一批货物,驾车单独运4小时运完,一车单独运5小时运完。两车合运,2小时后,余下的由乙车运,还需多少时间可以运完?
2、两列火车从甲、乙两地同时相对开出,甲车每小时行驶54千米,比乙车速度慢10%。经过3时,两车行了全程的75%。甲、乙两地相距多少千米?
3、有一种衣服现售价是34元,比原来定价便宜15%。现在比原来定价少多少元?
4、粮店运进一批豆油。第一天卖出240千克,第二天卖出320千克,还剩总数的4/9。这批豆油有多少千克?
5、某服装厂上半月完成全月计划的40%,下半月生产服装1800套,正好完成全月计划。下半月比上半月多生产多少套?
6、做55页3、4、5、6、题:要求:(1)读懂题意(2)找到题中的数量关系(3)选择解决问题的方法,列式计算(4)对答案进行检验
7、做56页7—10题,小组讨论方法并交流
8、做57页11、13、15题学生独立完成集体订正,出示小黑板。
9、板书设计:
计算与应用
1、展示自己的错误及改正措施
学生1学生2……
2、交流解决实际问题的步骤
五、教学反思:
培养小学生的计算能力和解决问题的能力也一直是小学数学教学的主要目标之一。教材在引领学生回顾这部分内容时,注重让学生体验计算在日常生活中的广泛应用,注重培养学生基本的计算技能,注重在计算中发展学生的思维能力,注重解决简单实际问题能力的培养,更注重学生回顾和反思能力的提高。=