返回首页
文学网 > 短文 > 教学教案 > 正文

初中数学教学设计

2025/08/25教学教案

文学网整理的初中数学教学设计(精选46篇),供大家参考,希望能给您提供帮助。

初中数学教学设计 篇1

新课程标准指出:“问题是思想方法、知识积累和发展的逻辑力量,是生长新知识、新方法的种子。”有问题才有探究,有探究才有发展、有创新。学生思维的过程受情境的影响。良好的思维情境会激发思维动机,唤起求知欲望;不好的思维情境会抑制学生的思维热情。因此,创设良好的思维情境在数学教学中就显得十分重要。教师通过自己的教学活动,有意识地培养学生善于在好的问题情景下主动建构新知识,积极参与交流和讨论,不断提高学习能力,发展创新意识。

一、联系学生的生活实际,创设问题情境

生活离不开数学,数学也离不开生活。实践证明:联系学生已有的生活经验和学生熟悉的事物入手展开教学,有利于学生更好的掌握数学知识。

例如在教学菱形性质时,导入时是这样设计的:

1、我们大家在日常生活中见过哪些菱形图案?(看谁说的多)学生争先恐后地说:

(1)吃过的菱形形状的食物

(2)春节时门上贴的剪纸花

(3)居室装饰地板砖

(4)中国结

(5)菱形衣帽架等。

2、为什么把这些图案设计成菱形呢?

3、菱形到底有哪些特殊的性质和运用呢?(板书课题) 通过本节课的学习之后大家可以总结出来。

然后通过画图和电脑显示,让学生去猜想,去探究,去发现,去论证。从而弄清了菱形的定义、性质、面积公式及简单运用,

然后让学生思考日常生活中还有哪些菱形性质方面的应用。

这样通过创设问题情境,让学生产生一种好奇,一种对知识的渴望,为探究活动创造了良好的条件,为本节课的成功创造了条件。同时让学生感受到了数学问题来源于生活。让学生多留意身边的事物转化成数学问题。但教学中要注意从实际出发,创设学生所熟悉的喜闻乐见的东西。同时不是为情趣而情趣,要注意增加情趣的.内涵。注意经常引导学生用数学的眼光看待周围的事物,培养学生数学问题意识。

二、变更表述形式,创设问题情境

在数学教学中教师可以运用直观形象的具体材料,创设问题情境,设障布疑,激发学生思维的积极性和求知需要的一种教学方法——有时可通过变更问题的表述形式,引发学生兴趣。 例如:“等腰三角形的判定定理”的教学,为引出等腰三角形的判定定理,通常提出问题:“如图(1),△ABC要判定它是等腰三角形

BC A 有哪些方法呢?”这样出示问题显得单调又乏味。为了同样的教图(1)学目的(引导学生获得判定定理),教师若能根据“性质定理”与“判定定理”的内在联系,在引导学生性质定理后,提出这样一个实际问题“如图(2),△ABC是等腰三角形,AB=AC,因不小心,它的一部分被墨水涂没了,只留下一条底边BC和一个底角∠C,试问能否把原来的△ABC重新画出来?”不仅引发了生动活泼的讨论形式,而且也收到良好的引发效果,(有的先度量∠C度数,再以BC为边作∠B=∠C;有的取BC中点D,过D作BC的垂线等)。由此可见,在定理或概念性较强的性质的教学中,应尽力创设问题情境,使学生认识到所学内容的意义,使他们产生学习需要,形成学习的内驱力,诱发学生积极思维,在教师的指导下,让学生主动去探索解决问题的办法,在实践中培养学生的创造能力。

三、猜想验证法,创设问题情境

在数学教学中,利用猜想验证的课堂教学模式创设问题情境,可以积极的促进学生有效的参与课堂教学,学生兴趣高涨,主动的进行猜想验证。

例如,在教学“三角形的内角和”时,我先请同学们试先量一量自己准备好的三角形的每一个内角的度数,然后告诉我其中两个内角的度数,我迅速的说出第三个内角的度数。同学们都感到很惊讶!为什么老师能很快的说出第三个内角的度数呢?通过观察他们发现:每个三角形的内角和都是180度。我问他们是不是任何一个三角形的内角和都是180度呢?他们的回答是肯定的。我说这只不过是你们的一个猜想,下面就请同学们利用你手中的学具来验证你的猜想。于是,同学们立刻想到了手中的三角板,积极的行动起来证明自己的猜想。

总之,创设问题情境,培养学生问题意识,一方面能激发学生学习动机、培养创新思维,是新课程理念下数学教学的重要环节。另一方面有助于学生积极地建构数学知识,在情境中自主的参与探究和相互交流,从而达到意义建构的目的,提高课堂教学的有效性。当然教学没有最好,只有更好,让我们在今后的教学过程中不断探索,不断创新,争取更打的进步。

初中数学教学设计 篇2

课题

正比例函数

一 教学目标

1.通过案例理解正比例函数,能列出正比例函数关系式 2.教会学生应用正比例函数解决生活实际问题的能力

二 教学重点

理解正比例函数的概念

三 教学难点

利用正比例函数解决生活实际问题

四 教学过程

【提出问题】

《阿甘正传》是一部励志影片。片中阿甘曾跑步绕美国数圈,假设他从德州到加州行进了21000千米,耗费了他150天时间。

(1) 阿甘大约平均每天跑步多少千米?

(2) 阿甘的行程y(km)与时间x(天)之间有什么关系?

(3) 阿甘一个月(30天)的行程是多少千米?

【生】 列算式回答 【师】 点评总结

2.写出下列变量间的函数表达式

(1) 正方形的周长l和半径r之间的关系

【进一步抽象问题让学生思考】

(2) 大米每千克四元,则售价y元与数量x(kg)的函数关系式是什么?

(3) 下列函数关系式有什么共同点?(小组合作)

【分析共同点和不同点,找出规律】 (1) y=200x

(2) l=2∏r (3) m=7.8V 【生回答,师点评】 【引入新课】

1.正比例函数的概念:

一般地,形如y=kx (k≠0)的函数,叫做正比例函数,其中k叫做比例系数.【板书概念,引导学生分析正比例函数的定义】

2 【例题讲解】

例1 在同一坐标系里,画出下列函数的图像: y=0.5x y=x y=3x 解: 【略】

【掌握函数图像的画法:列表,描点,连线】 3.练习

(1)已知正比例函数y=kx.当 x=3 时 y=6 。求 k的值

(2) 一种笔记本每本的单价为3元。则销售金额y元与销售量x之间的关系式是怎样的? 当销售金额为360元时,则售出了多少本这种笔记本?

四 小结

五 课外作业

【反思】

由于函数的概念比较抽象,学生不容易理解。而理解函数的'概念是教学的重点。这节课首先通过实例,回顾函数的概念,其次抽象提出正比例函数关系式,由学生观察得到特点,然后引出正比例函数的概念和特点,再通过练习加以巩固,最后通过小组讨论利用正比例函数解决生活中的问题。

初中数学教学设计 篇3

随着科学技术的发展,教育资源和教育需求也随之增长和变化。我校进行了初中数学分层教学课题研究,而分层次备课是搞好分层教学的关键,教师应在吃透教材、大纲的情况下,按照不同层次学生的实际情况,设计好分层次教学的全过程。本文将结合本人的教学经验,对分层教学教案设计进行初步探讨。

1教学目标的制定

制定具体可行的教学目标,先要分清哪些属于共同目标,哪些属于层次目标。并在知识与技能、过程与方法、情感态度与价值观三个方面对不同层次的学生制定具体的要求。

2教法学法的制定

制定教法学法应结合各层次学生的具体情况而定,如对A层学生少讲多练,注重培养其自学能力;对B层学生,则实行精讲精练,注重课本上的例题和习题的处理;对C层学生则要求要低,浅讲多练,弄懂基本概念,掌握必要的基础知识和基本技能。

3教学重难点的制定

教学重难点的制定也应结合各层次学生的具体情况而定。

4教学过程的设计

4.1情境导向,分层定标。教师以实例演示、设问等多种方法导入新课。要利用各种教学资料创设恰当的'学习情境为各层学生呈现适合于本层学生水平学习的内容。

4.2分层练习,探讨生疑。学生对照各自的目标分层自学。教师要鼓励学生主动实践,自觉地去发现问题、探讨问题、解决问题。

4.3集体回授,异步释疑。“集体回授”主要是针对人数占优势的B层学生,为解决具有共性的问题而组织的一种集体教学活动。教师为那些来不及解决的、不具有共性的问题分先后在层内释疑即“异步释疑”。

5练习与作业的设计

教师在设计练习或布置作业时要遵循“两部三层”的原则。“两部”是指练习或作业分为必做题和选做题两部分;“三层”是指教师在处理练习时要具有三个层次:第一层次为知识的直接运用和基础练习;第二、三两层次的题目为选做题,这样可使A层学生有练习的机会,B、C两层学生也有充分发展的余地。

分层教学下教师不能再“拿一个教案用到底”,而要精心地设计课堂教学活动,针对不同层次的学生选择恰当的方法和手段,了解学生的实际需求,关心他们的进步,改革课堂教学模式,充分调动学生的学习主动性,创造良好的课堂教学氛围,形成成功的激励机制,确保每一个学生都有所进步。

初中数学教学设计 篇4

一、教学目标:

(1)学生在教师引导下,积极主动地经历探索三角形全等的条件的过程,体会利用操作、归纳获得数学结论的过程。

(2)掌握三角形全等的“边边边”、“边角边”、“角边角”、“角角边”的判定方法,了解三角形的稳定性,能用三角形的全等解决一些实际问题。

(3)培养学生的空间观念,推理能力,发展有条理地表达能力,积累数学活动经验。

二、教学的重点与难点:

重点:三角形全等条件的探索过程是本节课的重点。

从设置情景提出问题,到动手操作,交流,直至归纳得出结论,整个过程学生不仅得到了两个三角形全等的条件,更重要得是经历了知识的形成过程,体会了一种分析问题的方法,积累了数学活动经验,这将有利于学生更好的理解数学,应用数学。

难点:三角形全等条件的`探索过程,特别是创设出问题后,学生面对开放性问题,要做出全面、正确得分析,并对各种情况进行讨论,对初一学生有一定的难度。

根据初一学生年龄、生理及心理特征,还不具备独立系统地推理论证几何问题的能力,思维受到一定的局限,考虑问题不够全面,因此要充分发挥教师的主导作用,适时

点拨、引导,尽可能调动所有学生的积极性、主动性参与到合作探讨中来,使学生在与他人的合作交流中获取新知,并使个性思维得以发展。

三、教学过程

电脑显示,带领学生复习全等三角定义及其性质。电脑显示,小明画了一个三角形,怎样才能画一个三角形与他的三角形全等?我们知道全等三角形三条边分别对应相等,三个角分别对应相等,那麽,反之这六个元素分别对应,这样的两个三角形一定全等.但是,是否一定需要六个条件呢?条件能否尽可能少吗?对学生分类中出现的问题,予以纠正,对学生提出的解决问题的不同策略,要给予肯定和鼓励,以满足多样化的学生需要,发展学生个性思维。

按照三角形“边、角”元素进行分类,师生共同归纳得出:

1、一个条件:一角,一边

2、两个条件:两角;两边;一角一边

3、三个条件:三角;三边;两角一边;两边一角

按以上分类顺序动脑、动手操作,验证。

教师收集学生的作品,加以比较,得出结论:

只给出一个或两个条件时,都不能保证所画出的三角形一定全等。

下面将研究三个条件下三角形全等的判定。

(1)已知三角形的三个角分别为40°、60°、80°,画出这个三角形,并与同伴比较是否全等。

学生得出结论后,再举例体会一下。举例说明:

如老师上课用的三角尺与同学用的三角板三个角分别对应相等,但一个大一个小,很显然不全等;

再如同是:等边三角形,边长不等,两个三角形也不全等。等等。

(2)已知三角形三条边分别是4cm,5cm,7cm,画出这个三角形,并与同伴比较是否全等。

板演:三边对应相等的两个三角形全等,简写为“边边边”或“SSS”。

由上面的结论可知:只要三角形三边的长度确定了,这个三角形的形状和大小就确定了。实物演示:由三根木条钉成的一个三角形框架,它的大小和形状是固定不变的,三角形的这个性质叫三角形的稳定性。

举例说明该性质在生活中的应用

类比着三角形,让学生动手操作,研究四边形、五边性有无稳定性

图形的稳定性与不稳定性在生活中都有其作用,让学生举例说明。

题组练习(略)3 、(对有能力的学生要求把实际问题抽象成数学问题,根据自己的理解写出推理过程。对一般学生要求口头表达理由,并能说明每一步的根据。)

教师带领,回顾反思本节课对知识的研究探索过程,小结方法及结论,提炼数学思想,掌握数学规律。

在教师引导下回忆前面知识,为探究新知识作好准备。

议一议:

学生分小组进行讨论交流。受教师启发,从最少条件开始考虑,一个条件;两个条件;三个条件?经过学生逐步分析,各种情况渐渐明朗,进行交流予以汇总,归纳。

想一想:

对只给一个条件画三角形,画出的三角形一定全等吗

?画一画:

按照下面给出的两个条件做出三角形:

(1)三角形的两个角分别是:30°,50°

(2)三角形的两条边分别是:4cm,6cm

(3)三角形的一个角为30,一条边为3cm剪一剪:

把所画的三角形分别剪下来。比一比:

同一条件下作出的三角形与其他同学作的比一比,是否全等。学生重复上面的操作过程,画一画,剪一剪,比一比。学生总结出:三个内角对应相等的两个三角形不一定全等学生举例说明

学生模仿上面的研究方法,独立完成操作过程,通过交流,归纳得出结论。鼓励学生自己举出实例,体验数学在生活中的应用.学生那出准备好的硬纸条,进行实验,得出结论:四边形、五边形不具稳定性。

学生练习

学生在教师引导下回顾反思,归纳整理。

初中数学教学设计 篇5

(一)提出问题,导入新课

1、解二元一次方程组

问题

1、母亲26岁结婚,第二年生个儿子,若干年后母亲的年龄是儿子年龄到3倍,此时母亲的年龄为几岁?

解法一:设经过x年后,母亲的年龄是儿子年龄的3倍。 由题意得

26+x=3x 解法二:设母亲的年龄为x岁。 由题意得

x=3(x-26)

(二)精选讲例,探求新知

2、某班有45位学生,共有班费2400元钱,准备给每位学生订一份报纸。已知《作文报》的订费为60元/年,《科学报》的订费为50元/年,则订阅两种报纸各多少人?

巩固练习 小明和小李两人进行投篮比赛,规则:小明投3分球,小李投2分球,两人共投中20次,经计算两人得分相等,问小李和小明各投中几个球。

(三)变式训练,激活学生思维

问题

3、小明和小李两人进行投篮比赛,小明投3分球,小李投2分球,两人共投中100次,小明投中率为40%,小明投中率为40%,经计算两人得分相等,问小李和小明各投中几个球。 问题

4、已知某电脑公司有A型、B型、C型3种型号的电脑,其价格分别为A型6000元/台、B型4000元/台、C型2500元/台,我校计划将100500元钱全部用于从该公司购进其中两种不同型号电脑共36台,请你设计出几种不同的购买方案供学校采用。小红的方案:她认为可以购进A型和B型电脑,请你判断小红提出的.方案是否合理,并通过计算说明。

(四)课堂练习,巩固新知

1、A、B两地相距36千米,甲从A地出发步行到B地,乙从B地出发步行到A地,两人同时出发,4小时候相遇。若6小时后,甲所余路程为乙所余路程的2倍,求甲乙两人的速度。

2、某班借来一批图书,分借给同学阅览,如果每人借6本,那么会有一个同学没书可借,如果每人借5本,那么还剩5本书没人借,问该班有多少人,有多少书。

(五)拓展

1、变题训练问题2中,若学校要购买A、B、C3种型号的电脑,有如何安排?

2、某中学新建一栋4层的教学大楼,每层楼有8间教室,进、出这栋大楼共有4道门,其中两道正门大小相同,两道侧门大小也相同。安全检查中,对4道门进行测试,当同时开启一道正门和两道侧门时,2分钟内可以通过560名学生,当同时开启一道正门和一道侧门时,4分钟内可以通过800名学生。

⑴问平均每分钟一道正门和一道侧门各可以通过多少名学生。

⑵检查中发现,紧急情况时因学生拥挤,出门的效率将降低20%,安全检查规定,在紧急情况下全大楼的学生应在5分钟内通过这4道门安全撤离。假设这栋大楼每间教师最多有45名学生,问建造的这4道门是否符合安全规定。

初中数学教学设计 篇6

一、教学目标:

1、知道一次函数与正比例函数的定义.

2、理解掌握一次函数的图象的特征和相关的性质;

3、弄清一次函数与正比例函数的区别与联系.

4、掌握直线的平移法则简单应用.

5、能应用本章的基础知识熟练地解决数学问题。

二、教学重、难点:

重点:初步构建比较系统的函数知识体系。

难点:对直线的平移法则的理解,体会数形结合思想。

三、教学过程:

1、一次函数与正比例函数的定义:

一次函数:一般地,若y=kx+b(其中k,b为常数且k≠0),那么y是一次函数

正比例函数:对于 y=kx+b,当b=0, k≠0时,有y=kx,此时称y是x的正比例函数,k为正比例系数。

2. 一次函数与正比例函数的区别与联系:

(1)从解析式看:y=kx+b(k≠0,b是常数)是一次函数;而y=kx(k≠0,b=0)是正比例函数,显然正比例函数是一次函数的特例,一次函数是正比例函数的推广。

(2)从图象看:正比例函数y=kx(k≠0)的图象是过原点(0,0)的一条直线;而一次函数y=kx+b(k≠0)的图象是过点(0,b)且与y=kx

平行的一条直线。

基础训练:

1. 写出一个图象经过点(1,- 3)的函数解析式为: 。

2.直线y = - 2X - 2 不经过第 象限,y随x的增大而。

3.如果P(2,k)在直线y=2x+2上,那么点P到x轴的距离是:。

4.已知正比例函数 y =(3k-1)x,,若y随

x的增大而增大,则k是: 。

5、过点(0,2)且与直线y=3x平行的直线是: 。

6、若正比例函数y =(1-2m)x 的图像过点A(x1,y1)和点B(x2,y2)当x1<x2时,y1>y2,则m的取值范围是: 。

7、若y-2与x-2成正比例,当x=-2时,y=4,则x= 时,y = -4。

8、直线y=- 5x+b与直线y=x-3都交y轴上同一点,则b的值为 。

9、已知圆O的半径为1,过点A(2,0)的直线切圆O于点B,交y轴于点C。(1)求线段AB的长。(2)求直线AC的解析式。

四、教学反思:

教师认真备课,查阅资料,搜集有针对性的训练题,学生只要课堂上能按照教师的思路去做就很高效了。课堂训练以竞赛的形式进行,似乎有一定的`刺激性,但缺少后续的刺激活动,学生没有保持住持久的紧张状态。

课前先把所有的复习任务都交给学生完成,教师指导学生浏览教材、查阅资料归纳本章的基本概念、基本性质、基本方法,并收集与每个知识点相关的有针对性的问题,也可以自己编题,同时要把每一个问

题的答案做出来,尽量要一题多解。再由小组长组织小组成员汇编,在汇编过程中要去粗取精。课堂就是以小组为单位学生展示自己的舞台,在这个舞台上学生是主角,在这个舞台上学生可以成果共享,在这个舞台上学生收获着自己的收获。台上他们是主角,台下他们也是主角。

从另一个角度体会到了减轻学生负担的深刻含义,不单指减少学生课后学习的时间,更重要的是提高学生学习的质量、效率,我的这节课失败之处就是过分的注重了前者,而忽略了实效性。那么在今后的复习课教学中我要多思多想、多问多听(问问老师、听听学生的想法),力求在真正减轻学生负担的基础上打造高效课堂。

初中数学教学设计 篇7

新课程标准指出:“问题是思想方法、知识积累和发展的逻辑力量,是生长新知识、新方法的种子。”有问题才有探究,有探究才有发展、有创新。学生思维的过程受情境的影响。良好的思维情境会激发思维动机,唤起求知欲望;不好的思维情境会抑制学生的思维热情。因此,创设良好的思维情境在数学教学中就显得十分重要。教师通过自己的教学活动,有意识地培养学生善于在好的问题情景下主动建构新知识,积极参与交流和讨论,不断提高学习能力,发展创新意识。

一、联系学生的生活实际,创设问题情境

生活离不开数学,数学也离不开生活。实践证明:联系学生已有的生活经验和学生熟悉的事物入手展开教学,有利于学生更好的掌握数学知识。

例如在教学菱形性质时,导入时是这样设计的:

1、我们大家在日常生活中见过哪些菱形图案?(看谁说的多)学生争先恐后地说:

(1)吃过的菱形形状的食物

(2)春节时门上贴的剪纸花

(3)居室装饰地板砖

(4)中国结

(5)菱形衣帽架等。

2、为什么把这些图案设计成菱形呢?

3、菱形到底有哪些特殊的性质和运用呢?(板书课题) 通过本节课的学习之后大家可以总结出来。

然后通过画图和电脑显示,让学生去猜想,去探究,去发现,去论证。从而弄清了菱形的定义、性质、面积公式及简单运用,

然后让学生思考日常生活中还有哪些菱形性质方面的应用。

这样通过创设问题情境,让学生产生一种好奇,一种对知识的渴望,为探究活动创造了良好的条件,为本节课的成功创造了条件。同时让学生感受到了数学问题来源于生活。让学生多留意身边的事物转化成数学问题。但教学中要注意从实际出发,创设学生所熟悉的喜闻乐见的东西。同时不是为情趣而情趣,要注意增加情趣的内涵。注意经常引导学生用数学的眼光看待周围的事物,培养学生数学问题意识。

二、变更表述形式,创设问题情境

在数学教学中教师可以运用直观形象的具体材料,创设问题情境,设障布疑,激发学生思维的积极性和求知需要的一种教学方法——有时可通过变更问题的表述形式,引发学生兴趣。 例如:“等腰三角形的判定定理”的教学,为引出等腰三角形的判定定理,通常提出问题:“如图(1),△ABC要判定它是等腰三角形

BC A 有哪些方法呢?”这样出示问题显得单调又乏味。为了同样的教图(1)学目的(引导学生获得判定定理),教师若能根据“性质定理”与“判定定理”的内在联系,在引导学生性质定理后,提出这样一个实际问题“如图(2),△ABC是等腰三角形,AB=AC,因不小心,它的一部分被墨水涂没了,只留下一条底边BC和一个底角∠C,试问能否把原来的△ABC重新画出来?”不仅引发了生动活泼的讨论形式,而且也收到良好的引发效果,(有的先度量∠C度数,再以BC为边作∠B=∠C;有的取BC中点D,过D作BC的垂线等)。由此可见,在定理或概念性较强的性质的教学中,应尽力创设问题情境,使学生认识到所学内容的意义,使他们产生学习需要,形成学习的内驱力,诱发学生积极思维,在教师的指导下,让学生主动去探索解决问题的办法,在实践中培养学生的创造能力。

三、猜想验证法,创设问题情境

在数学教学中,利用猜想验证的`课堂教学模式创设问题情境,可以积极的促进学生有效的参与课堂教学,学生兴趣高涨,主动的进行猜想验证。

例如,在教学“三角形的内角和”时,我先请同学们试先量一量自己准备好的三角形的每一个内角的度数,然后告诉我其中两个内角的度数,我迅速的说出第三个内角的度数。同学们都感到很惊讶!为什么老师能很快的说出第三个内角的度数呢?通过观察他们发现:每个三角形的内角和都是180度。我问他们是不是任何一个三角形的内角和都是180度呢?他们的回答是肯定的。我说这只不过是你们的一个猜想,下面就请同学们利用你手中的学具来验证你的猜想。于是,同学们立刻想到了手中的三角板,积极的行动起来证明自己的猜想。

总之,创设问题情境,培养学生问题意识,一方面能激发学生学习动机、培养创新思维,是新课程理念下数学教学的重要环节。另一方面有助于学生积极地建构数学知识,在情境中自主的参与探究和相互交流,从而达到意义建构的目的,提高课堂教学的有效性。当然教学没有最好,只有更好,让我们在今后的教学过程中不断探索,不断创新,争取更打的进步。

初中数学教学设计 篇8

教学目标

1、知道什么是全等形、全等三角形及全等三角形的对应元素;

2、知道全等三角形的性质,能用符号正确地表示两个三角形全等;

3、能熟练找出两个全等三角形的对应角、对应边。

教学重点

全等三角形的性质。

教学难点

找全等三角形的对应边、对应角。

教学过程

一、提出问题,创设情境

1、问题:你能发现这两个三角形有什么美妙的关系吗?

这两个三角形是完全重合的

2、学生自己动手(同桌两名同学配合)

取一张纸,将自己事先准备好的三角板按在纸上,画下图形,照图形裁下来,纸样与三角板形状、大小完全一样。

3、获取概念

让学生用自己的语言叙述:全等形、全等三角形、对应顶点、对应角、对应边,以及有关的数学符号。

形状与大小都完全相同的两个图形就是全等形。

要是把两个图形放在一起,能够完全重合,就可以说明这两个图形的形状、大小相同。

概括全等形的准确定义:能够完全重合的两个图形叫做全等形。请同学们类推得出全等三角形的概念,并理解对应顶点、对应角、对应边的含义。仔细阅读课本中"全等"符号表示的要求。

二、导入新课

将△ABC沿直线BC平移得△DEF;将△ABC沿BC翻折180°得到△DBC;将△ABC旋转180°得△AED。

议一议:各图中的两个三角形全等吗?

不难得出:△ABC≌△DEF,△ABC≌△DBC,△ABC≌△AED。

(注意强调书写时对应顶点字母写在对应的位置上)

启示:一个图形经过平移、翻折、旋转后,位置变化了,但形状、大小都没有改变,所以平移、翻折、旋转前后的图形全等,这也是我们通过运动的'方法寻求全等的一种策略。

观察与思考:

寻找甲图中两三角形的对应元素,它们的对应边有什么关系?对应角呢?

(引导学生从全等三角形可以完全重合出发找等量关系)

得到全等三角形的性质:全等三角形的对应边相等。全等三角形的对应角相等。

[例1]如图,△OCA≌△OBD,C和B,A和D是对应顶点,说出这两个三角形中相等的边和角。

问题:△OCA≌△OBD,说明这两个三角形可以重合,思考通过怎样变换可以使两三角形重合?

将△OCA翻折可以使△OCA与△OBD重合。因为C和B、A和D是对应顶点,所以C和B重合,A和D重合。

∠C=∠B;∠A=∠D;∠AOC=∠DOB。AC=DB;OA=OD;OC=OB。

总结:两个全等的三角形经过一定的转换可以重合。一般是平移、翻转、旋转的方法。

[例2]如图,已知△ABE≌△ACD,∠ADE=∠AED,∠B=∠C,指出其他的对应边和对应角。

分析:对应边和对应角只能从两个三角形中找,所以需将△ABE和△ACD从复杂的图形中分离出来。

根据位置元素来找:有相等元素,它们就是对应元素,然后再依据已知的对应元素找出其余的对应元素。常用方法有:

(1)全等三角形对应角所对的边是对应边;两个对应角所夹的边也是对应边。

(2)全等三角形对应边所对的角是对应角;两条对应边所夹的角是对应角。

解:对应角为∠BAE和∠CAD。

对应边为AB与AC、AE与AD、BE与CD。

[例3]已知如图△ABC≌△ADE,试找出对应边、对应角。(由学生讨论完成)

借鉴例2的方法,可以发现∠A=∠A,在两个三角形中∠A的对边分别是BC和DE,所以BC和DE是一组对应边。而AB与AE显然不重合,所以AB与AD是一组对应边,剩下的AC与AE自然是一组对应边了。再根据对应边所对的角是对应角可得∠B与∠D是对应角,∠ACB与∠AED是对应角。所以说对应边为AB与AD、AC与AE、BC与DE。对应角为∠A与∠A、∠B与∠D、∠ACB与∠AED。

做法二:沿A与BC、DE交点O的连线将△ABC翻折180°后,它正好和△ADE重合。这时就可找到对应边为:AB与AD、AC与AE、BC与DE。对应角为∠A与∠A、∠B与∠D、∠ACB与∠AED。

三、课堂练习

课本练习1。

四、课时小结

通过本节课学习,我们了解了全等的概念,发现了全等三角形的性质,并且利用性质可以找到两个全等三角形的对应元素。这也是这节课大家要重点掌握的

找对应元素的常用方法有两种:

(一)从运动角度看

1、翻转法:找到中心线,沿中心线翻折后能相互重合,从而发现对应元素。

2、旋转法:三角形绕某一点旋转一定角度能与另一三角形重合,从而发现对应元素。

3、平移法:沿某一方向推移使两三角形重合来找对应元素。

(二)根据位置元素来推理

1、全等三角形对应角所对的边是对应边;两个对应角所夹的边是对应边。

2、全等三角形对应边所对的角是对应角;两条对应边所夹的角是对应角。

五、作业

课本习题1

课后作业:《新课堂》

初中数学教学设计 篇9

教学目标

1.知道什么是全等形、全等三角形及全等三角形的对应元素;

2.知道全等三角形的性质,能用符号正确地表示两个三角形全等;

3.能熟练找出两个全等三角形的对应角、对应边.

教学重点

全等三角形的性质.

教学难点

找全等三角形的对应边、对应角.

教学过程

一.提出问题,创设情境

1、问题:你能发现这两个三角形有什么美妙的关系吗?

这两个三角形是完全重合的

2.学生自己动手(同桌两名同学配合)

取一张纸,将自己事先准备好的三角板按在纸上,画下图形,照图形裁下来,纸样与三角板形状、大小完全一样.

3.获取概念

让学生用自己的语言叙述:全等形、全等三角形、对应顶点、对应角、对应边,以及有关的数学符号.

形状与大小都完全相同的两个图形就是全等形.

要是把两个图形放在一起,能够完全重合,就可以说明这两个图形的形状、大小相同.

概括全等形的准确定义:能够完全重合的两个图形叫做全等形.请同学们类推得出全等三角形的概念,并理解对应顶点、对应角、对应边的含义.仔细阅读课本中"全等"符号表示的要求.

二.导入新课

将△ABC沿直线BC平移得△DEF;将△ABC沿BC翻折180°得到△DBC;将△ABC旋转180°得△AED.

议一议:各图中的两个三角形全等吗?

不难得出:△ABC≌△DEF,△ABC≌△DBC,△ABC≌△AED.

(注意强调书写时对应顶点字母写在对应的位置上)

启示:一个图形经过平移、翻折、旋转后,位置变化了,但形状、大小都没有改变,所以平移、翻折、旋转前后的图形全等,这也是我们通过运动的方法寻求全等的一种策略.

观察与思考:

寻找甲图中两三角形的对应元素,它们的对应边有什么关系?对应角呢?

(引导学生从全等三角形可以完全重合出发找等量关系)

得到全等三角形的性质:全等三角形的对应边相等.全等三角形的对应角相等.

[例1]如图,△OCA≌△OBD,C和B,A和D是对应顶点,说出这两个三角形中相等的边和角.

问题:△OCA≌△OBD,说明这两个三角形可以重合,思考通过怎样变换可以使两三角形重合?

将△OCA翻折可以使△OCA与△OBD重合.因为C和B、A和D是对应顶点,所以C和B重合,A和D重合.

∠C=∠B;∠A=∠D;∠AOC=∠DOB.AC=DB;OA=OD;OC=OB.

总结:两个全等的三角形经过一定的转换可以重合.一般是平移、翻转、旋转的方法.

[例2]如图,已知△ABE≌△ACD,∠ADE=∠AED,∠B=∠C,指出其他的对应边和对应角.

分析:对应边和对应角只能从两个三角形中找,所以需将△ABE和△ACD从复杂的图形中分离出来.

根据位置元素来找:有相等元素,它们就是对应元素,然后再依据已知的对应元素找出其余的对应元素.常用方法有:

(1)全等三角形对应角所对的边是对应边;两个对应角所夹的边也是对应边.

(2)全等三角形对应边所对的`角是对应角;两条对应边所夹的角是对应角.

解:对应角为∠BAE和∠CAD.

对应边为AB与AC、AE与AD、BE与CD.

[例3]已知如图△ABC≌△ADE,试找出对应边、对应角.(由学生讨论完成)

借鉴例2的方法,可以发现∠A=∠A,在两个三角形中∠A的对边分别是BC和DE,所以BC和DE是一组对应边.而AB与AE显然不重合,所以AB与AD是一组对应边,剩下的AC与AE自然是一组对应边了.再根据对应边所对的角是对应角可得∠B与∠D是对应角,∠ACB与∠AED是对应角.所以说对应边为AB与AD、AC与AE、BC与DE.对应角为∠A与∠A、∠B与∠D、∠ACB与∠AED.

做法二:沿A与BC、DE交点O的连线将△ABC翻折180°后,它正好和△ADE重合.这时就可找到对应边为:AB与AD、AC与AE、BC与DE.对应角为∠A与∠A、∠B与∠D、∠ACB与∠AED.

三.课堂练习

课本练习1.

四.课时小结

通过本节课学习,我们了解了全等的概念,发现了全等三角形的性质,并且利用性质可以找到两个全等三角形的对应元素.这也是这节课大家要重点掌握的

找对应元素的常用方法有两种:

(一)从运动角度看

1.翻转法:找到中心线,沿中心线翻折后能相互重合,从而发现对应元素.

2.旋转法:三角形绕某一点旋转一定角度能与另一三角形重合,从而发现对应元素.

3.平移法:沿某一方向推移使两三角形重合来找对应元素.

(二)根据位置元素来推理

1.全等三角形对应角所对的边是对应边;两个对应角所夹的边是对应边.

2.全等三角形对应边所对的角是对应角;两条对应边所夹的角是对应角.

五.作业

课本习题1

课后作业:《新课堂》

初中数学教学设计 篇10

讲评目标:

1、通过讲评,进一步巩固本单元知识点。

2、通过对典型错误的剖析、矫正、帮助学生掌握正确的思考方法和解题策略。

学习目标:

认真细致进行错例分析,用心思考,积极交流,总结经验,查漏补缺,体会数学方法和思想在解题中的应用。

教学重点、难点:

典型错误的剖析与矫正。

讲评过程:

一、整体回顾、介绍本次考试情况

1、本次考试平均分87.3分,及格率94.1%,优秀率68.6%,最高分110分,最低分21分。

2、根据本次成绩对前五名和进步比较大的学生进行表扬和鼓励。成绩前五名:李xx110分,翁x110分,张xx110分,杨x,王x,石xx,赵xx,时xx,沈xx,王xx107分。进步比较大的前五名学生:xxx。

二、教师分析学生在答题中存在的问题

1、部分学生对基础知识掌握不扎实,没有养成良好的学习习惯表现在不认真审题,不细心答题,如第6小题结果没有化简,第16小题没有注意x与y的顺序,第五大题的应用题,有的同学没有按题目的要求解,等。

2、部分学生计算的能力不强,表现为计算速度慢,计算的准确率低,不能灵活的使用运算律及一些运算方法。如第1小题判断四个数能不能成比例的技巧,解比例时的一些运算方法,等。

3、不能运用所学知识灵活解决实际问题,分析问题、解决问题的能力有待提高。例如,解决实际问题的第2题,有部分学生按边长和数量成反比例关系进行计算,解决实际问题的第3题,有的同学先算面积,然后再用比例尺算实际面积,有半数以上的学生对于附加题无从下手,等。

三、学生自我分析试卷

学生的有一些问题是因为一时的疏忽做错;有一些是自己的'知识不够牢固,经过自己的学习是可以自己解决的;有一些问题经过学生自己的再思考是可以自己解决的。象这一类的问题肯定可以学生自己处理好,那么就不需要老师来帮忙,只要给以时间和信心就可以了。

四、小组内互帮互助学习

当学生的问题自己解决掉自己能解决的之后,这时转入学生的互帮互助阶段,在小组内由学生提出不会的问题由会做的同学进行讲解。在这个阶段由学生给学生讲解达到学会的目的。组内都不会的问题就由组长记录并交给老师。

五、老师组织讲解

根据各小组的统计,根据各组情况由多到少(不会的小组数)的顺序来解决。经过了两次纠正(自纠和互纠),学生的问题基本解决,剩下的问题再由老师组织,让会做的小组给同学们讲解。讲解题思路,老师适当补充、引导、评价。

六、老师检查学生的掌握情况

学生自己的学习和相互帮助有没有成效要靠自觉,老师可以检查,拿出一部分比较有意义的,需要老师来讲解的问题检查学生,顺便让学生说出老师要说的话,然后有必要就补充、评价。让学生说出每一道题的考察内容解题技巧。

七、当堂检测

1、用2、4、8、4、写出比例式:( )。

2、行驶的路程一定,则车轮的周长和它的转数成( )比例。

3、一种精密零件长5毫米,把它画图上长6厘米,则比例尺是( )

4、若5X-7Y=0,X:Y=( )

5、在比例尺是1:200的图上,一个长方形的长是4㎝,宽是3㎝,这个长方形的实际面积是( )平方米。

6、一间房子要用方砖铺地,用边长3分米的方砖,需要86块。如果改用边长是2分米的方砖要( )块,当堂检测:

1、用2、4、8、4、写出比例式:( )。

2、在A×B=C中,当A一定时,B和C 成( )比例。

3、一种精密零件长5毫米,把它画图上长6厘米,则比例尺是( )

4、若5X-7Y=0,X:Y=( ) 5、在比例尺是1:200的图上,一个长方形的长是4㎝,宽是3㎝,这个长方形的实际面积是( )平方米。

初中数学教学设计 篇11

一、 基本情况分析

1、学生情况分析:

通过上学期的努力,我班多数同学学习数学的兴趣渐浓,学习的自觉性明显提高,学习成绩在不断进步,但是由于我班一些学生数学基础太差,学生数学 成绩两极分化的现象没有显着改观,给教学带来很大难度。设法关注每一个学生,重视学生的全面协调发展是教学的首要任务。本学期是初中学习的关键时期,教学 任务非常艰巨。因此,要完成教学任务,必须紧扣教学目标,结合教学内容和学生实际,把握好重点、难点,努力把本学期的任务圆满完成。九年级毕业班总复习教 学时间紧,任务重,要求高,如何提高数学总复习的质量和效益,是每位毕业班数学教师必须面对的问题。经过与外校九年级数学教学有丰富经验的教师请教交流, 特制定以下教学复习计划。

2、教材分析:

本学期教学内容共四章,第二十六章、二次函数主要是通过二次函数图像探究二次函数性质,探讨二次函数与一元二次议程的关系,最终实现二次函数的 综合应用。本章教学重点是求二次函数解析式、二次函数图像与性质及二者的实际应用。本章教学难点是运用二次函数性质解决实际问题。

第二十七章、相似

本章主要是通过探究相似图形尤其是相似三角形的性质与判定。本章的教学重点是相似多边形的性质和相似三角形的判定。本章的教学难点是相似多这形的性质的理解,相似三角形的判定的理解。

第二十八章、锐角三角函数

本章主要是探究直角三角形的三边关系,三角函数的概念及特殊锐角的三角函数值。本章的教学重点是理解各种三角函数的概念,掌握其对应的表达式,及特殊锐角三角函数值。本章的教学难点是三角函数的概念。

第二十九章、投影与视图

本章主要通过生活实例探索投影与视图两个概念,讨论简单立体图形与其三视图之间的转化。本章的重点理解立体图形各种视图的概念,会画简单立体图形的三视图。本章教学难点是画简单立体图形的三视图。

二、 教学目标和要求

1、 知识与能力目标知识技能目标

理解二次函数的图像、性质与应用;理解相似三角形、相似多边形的判定方法与性质,掌握锐角三角函数有关的计算方法。理解投影与视图在生活中的应用。

2、过程与方法目标

通过探索、学习,使学生逐步学会正确合理地进行运算,逐步学会观察、分析、综合、抽象,会用归纳、演绎、类比进行简单地推理。通过学习交流、合作、讨论的方式,积极探索,改进学生的`学习方式,提高学习质量,逐步形成正确地数学价值观。

3、情感、态度与价值观目标

(1)进一步感受数学与日常生活密不可分的联系,同时对学生进行辩证唯物主义世界观教。

(2)通过体验探索的成功与失败,培养学生克服困难的勇气。

(3)通过小组交流、讨论有关的数学知识,培养学生的合作意识和交流能力。

(4)通过对实际问题的分析和解决,让学生体会数学的价值,培养学生的应用意识和对数学的兴趣。

三、 提高教学质量的主要措施

l、认真研读新课程标准,钻研新教材,根据新课程标准,扩充教材内容,认真上课,批改作业,认真辅导,认真制作考试试卷,也让学生学会认真学习。

2、兴趣是最好的老师,激发学生的兴趣,给学生介绍数学家、数学史、介绍相应的数学趣题,给出数学课外思考题,激发学生的兴趣。

3、引导学生积极参与知识的构建,营造民主、和谐、平等、自主、探究、合作、交流的氛围,分享快乐的学习课堂,让学生体会学习的快乐,享受学习。

4、运用新课程标准的理念指导教学,积极更新自己脑海中固有的教育理念,不同的教育理念将带来不同的教育效果。

5、培养学生良好的学习习惯,陶行知说:教育就是培养习惯,有助于学生稳步提高学习成绩,发展学生的非智力因素,弥补智力上的不足。

6、加强学生解题速度和准确度的培养训练,在新授课时,凡是能当堂完成的作业,要求学生比速度和准确度,谁先完成谁就先交给老师批改,凡是做的全对要给予奖励。

7、加强个别辅导,加强面批、面改,加强定时作业的训练。并进行作业展览,对作业书写的好又全部正确的贴在学习园地中。

8、积极主动的与其他教师协同配合,认真钻研教材,搞好集体备课,不断学习他人之长处。

初中数学教学设计 篇12

20xx年寒假期间,我读《初中数学创新教学设计》一书对我很有帮助,感想很多。

教学设计作为教师进行教学的主要工作之一,对教学起着先导作用,它往往决定着教学工作的方向;同时教学设计的技能作为教师专业发展的重要内容,已成为教师从师任教必备的基本功。所以教师了解初中数学教学设计的内容很有必要。新理念下的初中数学教学设计的内容可以包括:

(1) 教学目标。

在新理念下,教学目标一般包括过程性目标和结果性目标两个方面,也可以进一步细分为知识技能,数学思考,解决问题,情感态度等多方面。

(2)任务分析

进行任务分析的重点在于关注几个要点:

一是关注学生的起点;二是关注学生主要的认知障碍和可能的认知途径;三是分析教学内容的重点、难点和关键;四是研究达成目标的主要途径和方法。

在这里,有两个问题十分重要:第一,要关注学生的经验基础,第二,要正确认识教材。对于前者,意味着不仅要考虑学科自身的特点,更应遵循学生学科学习的心理规律;要把学生的个人知识、直接经验和现实世界作为初中数学教学的重要资源。对于后者,意味着要“用教材教,而不是教教材”。创造性的使用教材是本次新课程对我们提出的新要求,教材是极其宏观性的一个蓝本,覆盖着非常广阔的时空,主要对教师教什么、学生学什么起到指向作用。但教材仅仅是教师组织数学课堂教学活动的素材,使学生进行数学学习的平台。新理念下的教材给教师留下了比较大的创造空间,进行任务分析,就必须改变“以教材为本处理教材”的现象,根据学生实际、教学实际和当地实际,模拟教材,重组教材,编制教材,消减技巧性训练,增加其探索性、思考性和现实性的成分,为实施开放式、活动式的探究、合作、参与等新型学习方式创造条件。事实上,对初中生来说,喜好数学问题,对有关的数学活动充满好奇心,这是进一步学习数学的首要前提和发展动力。

(3)教学思路。

主要考虑具体的教学过程,包括创设的情景、活动的线索、学生可能提出的问题,可能的情况下必须附设计说明。

(4)教学反思。

主要针对如下一些问题开展反思:

是否达到预期目标?如果没有达到,分析其原因,并提供改进的方案。有哪些突发的灵感,印象最深的讨论或学生独特的想法?哪些地方与教学设计的不一样,学生提出了哪些没有想到的问题?为什么会提出这些问题?

了解了教学设计的内容,为我们以后教学设计具有很重要的指导意义。

今天,李老师带着我们去看舞剧《羚羚的故事》。到那里以后,先是主持人讲话,之后是大队辅导员李老师讲话,她带我们一起回顾了羚羚的故事的精彩镜头,看完了我觉得他们太辛苦了!

第一幕讲的是在美丽的可可西里,有很多很多的羚羊在玩,羚羚和妹妹跟妈妈在说话,妈妈说:“你们看,蓝蓝的天空多漂亮啊!”羚羚说:“是啊,你看那朵云彩多像我啊!”妈妈说:“这美丽的一切是很多很多妈妈的牺牲换来的!”之后,一位来西藏旅游的少年来了,她和小羚羊玩耍,对小羚羊特别好。

第二幕讲的是羚羚听见“砰”的一声,她问妈妈是怎么回事,妈妈说:“这是枪声,咱们赶快跑吧!”羚羚说:“妹妹呢?”她们到处找,突然发现妹妹已经被击中了!羊妈妈刚想去救她,但是来不及了,偷猎者来了!妹妹被偷猎者带走了,羚羚非常伤心!

第三幕讲的是小羚羊们又累又饿,走不动了。羊妈妈说:“孩子,坚持一下吧!”羚羚问:“妈妈,我们要去哪儿?我们为什么要离开可可西里?”妈妈说:“我们要去一个没有人类的地方,因为现在的可可西里已经不是我们的家园了。”羚羚问:“妈妈,您不是说人类是我们的好朋友么?我们为什么要远离他们?”羊妈妈说:“因为现在来可可西里的人是魔鬼,他们要杀掉我们,用我们的毛皮做衣服,我们要离开这里!”小羚羊们走着走着,大雪来了,大雨来了,大风来了,羚羚实在受不了了。这时,她们的面前出现了一片沼泽地,小羚羊们很着急,怎么过去呢?羊妈妈说:“我们已经没有选择了!”说着,所有的羊妈妈都跳了下去,她们背着小羚羊过去了,但是羊妈妈们却被埋在了沼泽地里。羚羚和小羚羊们大喊着:“妈妈!妈妈!”这时少年来了,她正在寻找小羚羊,小羚羊看到她,跑了过去。少年说:“羚羚,是你吗?你身上怎么这么多伤?你的妈妈呢?”羚羚伤心地说:“妈妈死了,妹妹也死了!”

第四幕讲的是少年带着她的朋友们来了,他们都是动物保护者,他们同小动物们一起打败了偷猎者。小羚羊们又有了新的家园。这时候羚羚也当妈妈了,她们过上了幸福的生活!

看完这个故事,我想说:“可恶的偷猎者,不许再杀害小动物了!”因为中国的珍稀动物越来越少,比如大熊猫、扬子鳄、白鳍豚,我必须要保护小动物,我们每个人都要保护小动物,它们是我们人类的好朋友!让我们每个人都做环保的小卫士!

研究教学方法的组合运用这一课题,对提高思想政治课教学质量有重要的意义。教学方法是多种多样的,每一种方法都有自己的特点和适用范围。师生在教学中可以也应该自主选择不同的教和学的方法,努力创造新的教和学的方法。教学有法,但无定法,贵在得法,教师教学时必须注意方法选择。我在教学中常用的方法有:演讲法、发现教学法与探究教学法 、训练与实践式教学方法、复习测验式教学法、小组讨论法等。其中用得最多的是演讲法,其优势在于:

(1)演讲法可以说明一些原则,可以叙述一些事实,解决高中政治教学当中某些内容抽象学生难以理解的问题和概念。在新课程标准下,高中政治教学目的在于向学生传授基本的理论知识从而让学生具备正确是世界观和方法论,从而具有在现实生活当中解决问题的能力。

虽然高中政治是一门与时事关系非常密切的学科,但是它同样具有抽象性和蒙蔽性,这些仅仅靠学生的自发理解是解决不了的,这时候,演讲法就具备了相当的'优势。通过演讲法,教师可以将政治学科当中难以理解的问题结合时事和例子深入浅出的讲述清楚,插入有趣的例子和时事,这样就可以将时效性和趣味性结合起来,既解决了教学重点和难点,同时也可以提高学生对政治这门学科的兴趣,让他们明白,这门学科对他们而言具有相当的实用性,而又不显得课堂空荡荡。教师就可以通过“演讲法”,把教学内容和例子相结合,就可以解决这些对学生而言非常抽象的概念和理念,毕竟,高中的学生的理解能力在挖掘发展当中。

(2)可以节省教学的时间,在高中政治教学的过程当中,有时候教学任务繁重在一节课当中,这个时候,“单向式”的演讲法就可以节省时间,能够顺利完成当节教学任务;

正如之前所说的,任何事物都有其两面性,演讲法有其优点,自然也有它的缺陷。它主要是在于「单向教学」的问题,教师不易掌握学生对教材的接受情况与了解的程度,同时也容易发生灌输式教学的危险,如果教师对课堂出现的问题处理能力不强或者语言表达能力不够,那么在使用演讲法时就很容易陷入让学生觉得枯燥乏味的情绪当中,因为毕竟来说高中政治这门学科对于学生来说已经有“枯燥无味”和“学了也没什么用”的这种先入为主的观念了,所以这时候对于高中的政治老师的课堂处理能力和语言表达能力就提出更高的要求对于使用演讲法来说。因此,当高中政治教师在使用演讲法之时,应当配合其它一些可以使学生参与的方法来使用,譬如:讨论式、问题式、游戏式等等,尽量让学生参与到课堂当中,同时通过语言的渲染力提高学生上课的情绪。

比如在讲述到“公民的政治权利”这个概念时,就可以提出当前社会当中易让人困惑的问题让学生参与讨论,通过这样的设问讨论,学生的情绪就非常高涨,纷纷发表自己的看法,最后再通过演讲法由教师进行总结,这样既可以加深对问题的理解,也可以调节课堂气氛,增强师生之间的互动性,这样就可以很好的弥补了演讲法本身的缺陷。教学的重点并不完全在于将一大堆的知识或材料倾倒给学生。学生积极、热切地参与在教与学的过程中是非常重要的。让学生多有运用手及脑的机会是有益处的。对高中这些年纪稍大一点的学生而言,他们自主性很强,有自己独立的思想,愈给他们参与的机会,就学习得愈好。

在教学目标的落实方面需要改进的主要是加强与学生的沟通,因为不管多好的方法,只有能被学生有效分享,为学生的学习提高助力,帮助学生理解教学内容的教学方法才是真正有效的方法。

初中数学教学设计 篇13

一、教学设计:

1 学习方式:

对于全等三角形的研究,实际是平面几何中对封闭的两个图形关系研究的第一步。它是两个三角形间最简单,最常见的关系。它不仅是学习后面知识的基础,并且是证明线段相等、角相等以及两线互相垂直、平行的重要依据。因此必须熟练地掌握全等三角形的判定方法,并且灵活的应用。为了使学生更好地掌握这一部分内容,遵循启发式教学原则,用设问形式创设问题情景,设计一系列实践活动,引导学生操作、观察、探索、交流、发现、思维,使学生经历从现实世界抽象出几何模型和运用所学内容,解决实际问题的过程,真正把学生放到主体位置。

2 学习任务分析:

充分利用教科书提供的素材和活动,鼓励学生经历观察、操作、推理、想象等活动,发展学生的空间观念,体会分析问题、解决问题的方法,积累数学活动经验。培养学生有条理的思考,表达和交流的能力,并且在以直观操作的基础上,将直观与简单推理相结合,注意学生推理意识的建立和对推理过程的理解,能运用自己的方式有条理的表达推理过程,为以后的证明打下基础。

3 学生的认知起点分析:

学生通过前面的学习已了解了图形的全等的概念及特征,掌握了全等图形的对应边、对应角的关系,这为探究三角形全等的.条件做好了知识上的准备。另外,学生也具备了利用已知条件作三角形的基本作图能力,这使学生能主动参与本节课的操作、探究成为可能。

4 教学目标:

(1) 学生在教师引导下,积极主动地经历探索三角形全等的条件的过程,体会利用操作、归纳获得数学结论的过程。

(2) 掌握三角形全等的“边边边”、“边角边”、“角边角”、“角角边”的判定方法,了解三角形的稳定性,能用三角形的全等解决一些实际问题。

(3) 培养学生的空间观念,推理能力,发展有条理地表达能力,积累数学活动经验。

5 教学的重点与难点:

重点:三角形全等条件的探索过程是本节课的重点。从设置情景提出问题,到动手操作,交流,直至归纳得出结论,整个过程学生不仅得到了两个三角形全等的条件,更重要得是经历了知识的形成过程,体会了一种分析问题的方法,积累了数学活动经验,这将有利于学生更好的理解数学,应用数学。难点:三角形全等条件的探索过程,特别是创设出问题后,学生面对开放性问题,要做出全面、正确得分析,并对各种情况进行讨论,对初一学生有一定的难度。

根据初一学生年龄、生理及心理特征,还不具备独立系统地推理论证几何问题的能力,思维受到一定的局限,考虑问题不够全面,因此要充分发挥教师的主导作用,适时点拨、引导,尽可能调动所有学生的积极性、主动性参与到合作探讨中来,使学生在与他人的合作交流中获取新知,并使个性思维得以发展。

6 教学过程

教学步骤

教师活动

学生活动

教学媒体(资源)和教学方式

复习过渡

引入新知

创设情景

提出问题

建立模型

探索发现

归纳总结

得出新知巩固运用

及其推广

反思小结

提炼规律

电脑显示,带领学生复习全等三角定义及其性质。

电脑显示,小明画了一个三角形,怎样才能画一个三角形与他的三角形全等?我们知道全等三角形三条边

分别对应相等,三个角分别对应相等,那麽,反之这六个元素分别对应,这样的两个三角形一定全等.但是,是否一定需要六个条件呢?条件能否尽可能少吗?

对学生分类中出现的问题,予以纠正,对学生提出的解决问题的不同策略,要给予肯定和鼓励,以满足多样化的学生需要,发展学生个性思维。

初中数学教学设计 篇14

一、案例实施背景

本节课是20xx-20xx学年度第一学期开学第七周笔者在长青中学的多媒体教室里上的一节公开课,课堂中数学优秀生、中等生及后进生都有,所用教材为北师大版义务教育教科书七年级数学(上册)。

二、案例主题分析与设计

本节课是北师大版义务教育教科书七年级数学(上册)——科学记数法,它是在学习乘方的基础上,研究更简便的记数方法,是第二章有理数及其运算的重要组成部分。 《数学课程标准》强调:数学教学是数学活动的教学,是师生之间、生生之间交往互动与共同发展的过程;动手实践,自主探索,合作交流是孩子学习数学的重要方式;合作交流的学习形式是培养孩子积极参与、自主学习的有效途径。本节课将以“生活·数学”、“活动·思考”、“表达·应用”为主线开展课堂教学,以学生看得到、感受得到的基本素材创设问题情境,引导学生活动,并在活动中激发学生认真思考、积极探索,主动获取数学知识,从而促进学生研究性学习方式的形成,同

时通过小组内学生相互协作研究,培养学生合作性学习精神。

三、案例教学目标

1、知识与技能:掌握科学记数法的方法,能将一些大数写成科学记数法。

2、过程与方法:在寻找科学记数法的探究过程中,让学生经历观察、比较、联想、分析、归纳、猜想、概括的全过程。

3、情感态度与价值观:通过科学记数法的总结,使学生形成数形结合的数学思想方法,以及知识的迁移能力、创新意识和创新精神。

四、案例教学重、难点

1、重点:正确运用科学记数法表示较大的数

2、难点:正确掌握10的幂指数特征,将科学记数法表示的数写成原数

五、案例教学用具

1、教具:多媒体平台及多媒体课件、图片

六、案例教学过程

一、创设情境,兴趣导学:

1、展示学生收集的非常大的数,与同学交流,你觉得记录这些数据方便吗?

2、展示课本第63页图片,现实中,我们会遇到一些比较

大的数,如世界人口数、地球的半径、光速等,读写这样大的数有一定的困难。

师:(展示刚才演示过的3个大数)我们能不能找到更好的记数方法使下列各数更加便于读、写?请同学们六个人一组,分组进行讨论。

(1) 1 370 000 000 (2) 6 400 000 (3) 300 000 000

生1:答:13.7亿,640万,3亿。

师:回答正确。这是数字加上单位的记数方法,在小学已经学过,是比较常用的一种方法,可是它有一定的局限性。如果我在3亿后面再加上好多个0,那么这种记数方法还好用吗? 生:不好用。(让学生意识到以前所学的方法不够用了) 师:接下来我们一起来探索新的记数方法。

分析:在读写大数时使学生感觉到不方便,从实际生活的需要,自然引入课题,需要寻找一种更简单的方法记数,为新课创设了良好的问题情境。

二、尝试探索,讲授新课:

1、探索10n的特征

计算一下102、103、104、105、1010你发现什么规律? 102=100103 =1 00010 4 =10 000105=100 0001010 =10 000 000 000

(观察并思考,小组讨论)

(1)结果中“0”的个数与10的指数有什么关系?

(2)结果的`位数与10的指数有什么关系?

2、练习:将下列个数写成只有一位整数乘以10n的形式。

(1)500(2)3000(4)40000

师:(学生完成之后)可见这种表示方法不仅书写简短,同时还便于读数。这就是我们本节课研究的内容—科学记数法。 分析:通过教师引导,学生小组讨论,合作探究,成功地找到表示大数的简便记数方法——科学记数法。

4、科学记数法:

像上面这样,把一个大于10的数表示成 a×10n的形式(其中1≤a<10,a是整数数位只有一位的数,n是整数),这种记数方法叫做科学记数法。

(思考,小组讨论)

10的指数与结果的位数有什么关系?

分析:这是本节课的重难点:10的幂指数n与原数的整数位数之间的关系。从特殊数据出发,寻找解决问题的方案,这符合“特殊到一般”的认知规律。在探究过程中,学生的探究活动体现了“化繁为简”、“分析归纳”的数学思想。

三、巩固新知,知识运用:

1、将下列各数写成科学记数法形式。

(1)23 000 000(2)453 000 000(3)13 400 000 000 000 000米,用科学记数法表示是多少米? 分析:学生的模仿能力强,在分析讨论10的指数与结果的位数有什么关系时,会与前面曾经讨论过的10n联系起来,也可以对知识进行迁移和回顾。再加上学生好奇心都特别强,很想将自己总结出来的结论加以应用,针对以上学生特点,给出相应的练习题。这样学生能够体会到学以致用的乐趣,从而调动学生自主学习的积极性。

(观察并思考,小组讨论)

5、如何将一个用科学记数法表示的数写成原数?

a×10n将a的小数点向右移动n位原数

分析:这是本节课另一个重点,也是知识的逆向巩固,学生通过寻找写出原数的方法,更加明白在写科学记数法时,如何确定10的指数,同时也学会了如何写出原数。

练习:人体内约有2.5×10 5个细胞,其原数为多少个?

七、教学反思:

数学课要注重引导学生探索与获取知识的过程而不单注重学生对知识内容的认识,因为“过程”不仅能引导学生更好

地理解知识,还能够引导学生在活动中思考,更好地感受知识的价值,增强应用数学知识解决问题的意识;感受生活与数学的联系,获得“情感、态度、价值观”方面的体验。

初中数学教学设计 篇15

教材与学情:

解直角三角形的应用是在学生熟练掌握了直角三角形的解法的基础上进行教学,它是把一些实际问题转化为解直角三角形的数学问题,对分析问题能力要求较高,这会使学生学习感到困难,在教学中应引起足够的重视。

信息论原理:

将直角三角形中边角关系作为已有信息,通过复习(输入),使学生更牢固地掌握(贮存);再通过例题讲解,达到信息处理;通过总结归纳,使信息优化;通过变式练习,使信息强化并能灵活运用;通过布置作业,使信息得到反馈。

教学目标

⒈认知目标:

⑴懂得常见名词(如仰角、俯角)的意义

⑵能正确理解题意,将实际问题转化为数学

⑶能利用已有知识,通过直接解三角形或列方程的方法解决一些实际问题。

⒉能力目标:培养学生分析问题和解决问题的能力,培养学生思维能力的灵活性。

⒊情感目标:使学生能理论联系实际,培养学生的对立统一的观点。

教学重点、难点:

重点:利用解直角三角形来解决一些实际问题

难点:正确理解题意,将实际问题转化为数学问题。

信息优化策略:

⑴在学生对实际问题的探究中,神经兴奋,思维活动始终处于积极状态

⑵在归纳、变换中激发学生思维的灵活性、敏捷性和创造性。

⑶重视学法指导,以加速教学效绩信息的顺利体现。

教学媒体:

投影仪、教具(一个锐角三角形,可变换图2-图7)

高潮设计:

1、例1、例2图形基本相同,但解法不同;这是为什么?学生的思维处于积极探求状态中,从而激发学生学习的积极性和主动性

2、将一个锐角三角形纸片通过旋转、翻折等变换,使学生对问题本质有了更深的认识

教学过程

一、复习引入,输入并贮存信息

1.提问:如图,在Rt△ABC中,∠C=90°。

⑴三边a、b、c有什么关系?

⑵两锐角∠A、∠B有怎样的关系?

⑶边与角之间有怎样的关系?

2.提问:解直角三角形应具备怎样的条件:

注:直角三角形的边角关系及解直角三角形的条件由投影给出,便于学生贮存信息

二、实例讲解,处理信息:

例1.(投影)在水平线上一点C,测得同顶的仰角为30°,向山沿直线 前进20为到D处,再测山顶A的仰角为60°,求山高AB。

⑴引导学生将实际问题转化为数学问题。

⑵分析:求AB可以解Rt△ABD和

Rt△ABC,但两三角形中都不具备直接条件,但由于∠ADB=2∠C,很容易发现AD=CD=20米,故可以解Rt△ABD,求得AB。

⑶解题过程,学生练习。

⑷思考:假如∠ADB=45°,能否直接来解一个三角形呢?请看例2。

例2.(投影)在水平线上一点C,测得山顶A的仰角为30°,向山沿直线前进20米到D处,再测山顶A的.仰角为45°,求山高AB。

分析:

⑴在Rt△ABC和Rt△ABD中,都没有两个已知元素,故不能直接解一个三角形来求出AB。

⑵考虑到AB是两直角三角形的直角边,而CD是两直角三角形的直角边,而CD均不是两个直角三角形的直角边,但CD=BC=BD,启以学生设AB=X,通过 列方程来解,然后板书解题过程。

解:设山高AB=x米

在Rt△ADB中,∠B=90°∠ADB=45°

∵BD=AB=x(米)

在Rt△ABC中,tgC=AB/BC

∴BC=AB/tgC=√3(米)

∵CD=BC-BD

∴√3x-x=20 解得 x=(10√3+10)米

答:山高AB是(10√3+10)米

三、归纳总结,优化信息

例2的图开完全一样,如图,均已知∠1、∠2及CD,例1中 ∠2=2∠1 求AB,则需解Rt△ABD例2中∠2≠2∠1求AB,则利用CD=BC-BD,列方程来解。

四、变式训练,强化信息

(投影)练习1:如图,山上有铁塔CD为m米,从地上一点测得塔顶C的仰角为∝,塔底D的仰角为β,求山高BD。

练习2:如图,海岸上有A、B两点相距120米,由A、B两点观测海上一保轮船C,得∠CAB=60°∠CBA=75°,求轮船C到海岸AB的距离。

练习3:在塔PQ的正西方向A点测得顶端P的

仰角为30°,在塔的正南方向B点处,测得顶端P的仰角为45°且AB=60米,求塔高PQ。

教师待学生解题完毕后,进行讲评,并利用教具揭示各题实质:

⑴将基本图形4旋转90°,即得图5;将基本图形4中的Rt△ABD翻折180°,即可得图6;将基本图形4中Rt△ABD绕AB旋转90°,即可得图7的立体图形。

⑵引导学生归纳三个练习题的等量关系:

练习1的等量关系是AB=AB;练习2的等量关系是AD+BD=AB;练习3的等量关系是AQ2+BQ2=AB2

五、作业布置,反馈信息

《几何》第三册P57第10题,P58第4题。

板书设计:

解直角三角形的应用

例1已知:………例2已知:………小结:………

求:………求:………

解:………解:………

练习1已知:………练习2已知:………练习3已知:………

求:………求:………求:………

解:………解:………解:………

初中数学教学设计 篇16

20xx年寒假期间,我读《初中数学创新教学设计》一书对我很有帮助,感想很多。

教学设计作为教师进行教学的主要工作之一,对教学起着先导作用,它往往决定着教学工作的方向;同时教学设计的技能作为教师专业发展的重要内容,已成为教师从师任教必备的基本功。所以教师了解初中数学教学设计的内容很有必要。新理念下的初中数学教学设计的内容可以包括:

(1) 教学目标。

在新理念下,教学目标一般包括过程性目标和结果性目标两个方面,也可以进一步细分为知识技能,数学思考,解决问题,情感态度等多方面。

(2)任务分析

进行任务分析的重点在于关注几个要点:

一是关注学生的起点;二是关注学生主要的认知障碍和可能的认知途径;三是分析教学内容的重点、难点和关键;四是研究达成目标的主要途径和方法。

在这里,有两个问题十分重要:第一,要关注学生的经验基础,第二,要正确认识教材。对于前者,意味着不仅要考虑学科自身的特点,更应遵循学生学科学习的心理规律;要把学生的个人知识、直接经验和现实世界作为初中数学教学的重要资源。对于后者,意味着要“用教材教,而不是教教材”。创造性的使用教材是本次新课程对我们提出的新要求,教材是极其宏观性的一个蓝本,覆盖着非常广阔的时空,主要对教师教什么、学生学什么起到指向作用。但教材仅仅是教师组织数学课堂教学活动的素材,使学生进行数学学习的平台。新理念下的教材给教师留下了比较大的创造空间,进行任务分析,就必须改变“以教材为本处理教材”的现象,根据学生实际、教学实际和当地实际,模拟教材,重组教材,编制教材,消减技巧性训练,增加其探索性、思考性和现实性的成分,为实施开放式、活动式的探究、合作、参与等新型学习方式创造条件。事实上,对初中生来说,喜好数学问题,对有关的数学活动充满好奇心,这是进一步学习数学的首要前提和发展动力。

(3)教学思路。

主要考虑具体的教学过程,包括创设的情景、活动的线索、学生可能提出的问题,可能的情况下必须附设计说明。

(4)教学反思。

主要针对如下一些问题开展反思:

是否达到预期目标?如果没有达到,分析其原因,并提供改进的方案。有哪些突发的灵感,印象最深的讨论或学生独特的想法?哪些地方与教学设计的不一样,学生提出了哪些没有想到的问题?为什么会提出这些问题?

了解了教学设计的内容,为我们以后教学设计具有很重要的指导意义。

今天,李老师带着我们去看舞剧《羚羚的故事》。到那里以后,先是主持人讲话,之后是大队辅导员李老师讲话,她带我们一起回顾了羚羚的故事的精彩镜头,看完了我觉得他们太辛苦了!

第一幕讲的是在美丽的可可西里,有很多很多的'羚羊在玩,羚羚和妹妹跟妈妈在说话,妈妈说:“你们看,蓝蓝的天空多漂亮啊!”羚羚说:“是啊,你看那朵云彩多像我啊!”妈妈说:“这美丽的一切是很多很多妈妈的牺牲换来的!”之后,一位来西藏旅游的少年来了,她和小羚羊玩耍,对小羚羊特别好。

第二幕讲的是羚羚听见“砰”的一声,她问妈妈是怎么回事,妈妈说:“这是枪声,咱们赶快跑吧!”羚羚说:“妹妹呢?”她们到处找,突然发现妹妹已经被击中了!羊妈妈刚想去救她,但是来不及了,偷猎者来了!妹妹被偷猎者带走了,羚羚非常伤心!

第三幕讲的是小羚羊们又累又饿,走不动了。羊妈妈说:“孩子,坚持一下吧!”羚羚问:“妈妈,我们要去哪儿?我们为什么要离开可可西里?”妈妈说:“我们要去一个没有人类的地方,因为现在的可可西里已经不是我们的家园了。”羚羚问:“妈妈,您不是说人类是我们的好朋友么?我们为什么要远离他们?”羊妈妈说:“因为现在来可可西里的人是魔鬼,他们要杀掉我们,用我们的毛皮做衣服,我们要离开这里!”小羚羊们走着走着,大雪来了,大雨来了,大风来了,羚羚实在受不了了。这时,她们的面前出现了一片沼泽地,小羚羊们很着急,怎么过去呢?羊妈妈说:“我们已经没有选择了!”说着,所有的羊妈妈都跳了下去,她们背着小羚羊过去了,但是羊妈妈们却被埋在了沼泽地里。羚羚和小羚羊们大喊着:“妈妈!妈妈!”这时少年来了,她正在寻找小羚羊,小羚羊看到她,跑了过去。少年说:“羚羚,是你吗?你身上怎么这么多伤?你的妈妈呢?”羚羚伤心地说:“妈妈死了,妹妹也死了!”

第四幕讲的是少年带着她的朋友们来了,他们都是动物保护者,他们同小动物们一起打败了偷猎者。小羚羊们又有了新的家园。这时候羚羚也当妈妈了,她们过上了幸福的生活!

看完这个故事,我想说:“可恶的偷猎者,不许再杀害小动物了!”因为中国的珍稀动物越来越少,比如大熊猫、扬子鳄、白鳍豚,我必须要保护小动物,我们每个人都要保护小动物,它们是我们人类的好朋友!让我们每个人都做环保的小卫士!

研究教学方法的组合运用这一课题,对提高思想政治课教学质量有重要的意义。教学方法是多种多样的,每一种方法都有自己的特点和适用范围。师生在教学中可以也应该自主选择不同的教和学的方法,努力创造新的教和学的方法。教学有法,但无定法,贵在得法,教师教学时必须注意方法选择。我在教学中常用的方法有:演讲法、发现教学法与探究教学法 、训练与实践式教学方法、复习测验式教学法、小组讨论法等。其中用得最多的是演讲法,其优势在于:

(1)演讲法可以说明一些原则,可以叙述一些事实,解决高中政治教学当中某些内容抽象学生难以理解的问题和概念。在新课程标准下,高中政治教学目的在于向学生传授基本的理论知识从而让学生具备正确是世界观和方法论,从而具有在现实生活当中解决问题的能力。

虽然高中政治是一门与时事关系非常密切的学科,但是它同样具有抽象性和蒙蔽性,这些仅仅靠学生的自发理解是解决不了的,这时候,演讲法就具备了相当的优势。通过演讲法,教师可以将政治学科当中难以理解的问题结合时事和例子深入浅出的讲述清楚,插入有趣的例子和时事,这样就可以将时效性和趣味性结合起来,既解决了教学重点和难点,同时也可以提高学生对政治这门学科的兴趣,让他们明白,这门学科对他们而言具有相当的实用性,而又不显得课堂空荡荡。教师就可以通过“演讲法”,把教学内容和例子相结合,就可以解决这些对学生而言非常抽象的概念和理念,毕竟,高中的学生的理解能力在挖掘发展当中。

(2)可以节省教学的时间,在高中政治教学的过程当中,有时候教学任务繁重在一节课当中,这个时候,“单向式”的演讲法就可以节省时间,能够顺利完成当节教学任务;

正如之前所说的,任何事物都有其两面性,演讲法有其优点,自然也有它的缺陷。它主要是在于「单向教学」的问题,教师不易掌握学生对教材的接受情况与了解的程度,同时也容易发生灌输式教学的危险,如果教师对课堂出现的问题处理能力不强或者语言表达能力不够,那么在使用演讲法时就很容易陷入让学生觉得枯燥乏味的情绪当中,因为毕竟来说高中政治这门学科对于学生来说已经有“枯燥无味”和“学了也没什么用”的这种先入为主的观念了,所以这时候对于高中的政治老师的课堂处理能力和语言表达能力就提出更高的要求对于使用演讲法来说。因此,当高中政治教师在使用演讲法之时,应当配合其它一些可以使学生参与的方法来使用,譬如:讨论式、问题式、游戏式等等,尽量让学生参与到课堂当中,同时通过语言的渲染力提高学生上课的情绪。

比如在讲述到“公民的政治权利”这个概念时,就可以提出当前社会当中易让人困惑的问题让学生参与讨论,通过这样的设问讨论,学生的情绪就非常高涨,纷纷发表自己的看法,最后再通过演讲法由教师进行总结,这样既可以加深对问题的理解,也可以调节课堂气氛,增强师生之间的互动性,这样就可以很好的弥补了演讲法本身的缺陷。教学的重点并不完全在于将一大堆的知识或材料倾倒给学生。学生积极、热切地参与在教与学的过程中是非常重要的。让学生多有运用手及脑的机会是有益处的。对高中这些年纪稍大一点的学生而言,他们自主性很强,有自己独立的思想,愈给他们参与的机会,就学习得愈好。

在教学目标的落实方面需要改进的主要是加强与学生的沟通,因为不管多好的方法,只有能被学生有效分享,为学生的学习提高助力,帮助学生理解教学内容的教学方法才是真正有效的方法。

初中数学教学设计 篇17

一、案例实施背景

本节课是20xx-20xx学年度第一学期笔者在一乡镇中学的多媒体教室里上的一节课,课堂中数学优秀生、中等生及后进生都有,所用教材为人教版义务教育课程九年级数学(上册).

二、案例主题分析与设计

本节课是人教版义务教育教科书九年级上册第24章第1节内容——圆,圆的概念是中心对称的继续,是后面研究扇形、弧长的基础,是“空间与图形”的重要组成部分。《数学课程标准》强调:数学教学是数学活动的教学,是师生之间、生生之间交往互动与共同发展的过程;动手实践,自主探索,合作交流是孩子学习数学的重要方式;合作交流的学习形式是培养孩子积极参与、自主学习的有效途径。本节课将以“生活·数学”、“活动·思考”、“表达·应用”为主线开展课堂教学,以学生看得到、感受得到的基本素材创设问题情境,引导学生活动,并在活动中激发学生认真思考、积极探索,主动获取数学知识,从而促进学生研究性学习方式的形成,同时通过小组内学生相互协作研究,培养学生合作性学习精神。

三、案例教学目标

1、知识技能:探索圆的两种定义,理解并掌握弧、弦、优弧、劣弧、半圆等基本概念,能够从图形中识别.

2、数学思考:体会圆的不同定义方法,感受圆和实际生活的联系

3、解决问题:在解决问题过程中使学生体会数学知识在生活中的普遍性.

四、案例教学重、难点

1、重点:圆的两种定义的探索,能够解释一些生活问题.

2、难点:圆的运动式定义方法.

五、案例教学用具

1、教具:多媒体课件、圆规、细线、铅笔。

2、学具:圆规

六、案例教学过程

(一)创设问题情境,激发学生兴趣,引出本节内容

1、如图1,观察下列图形,从中找出共同特点.

图1

2、学生活动:学生观察图形,发现图中都有圆,然后回答问题,此时学生可以再举出一些生活中类似的图形.

3、教师活动:让学生观察图形,感受圆和实际生活的密切联系,同时激发学生的学习渴望以及探究热情.

(二)问题引申,探究圆的定义,培养学生的探究精神

1、如图2,观察下列画圆的过程,你能由此说出圆的形成过程吗?(课件展示画图过程)

图2

2、学生活动:学生小组合作、分组讨论,通过动画演示,发现在一个平面内一条线段OA绕它的一个端点O旋转一周,另一个端点形成的图形就是圆.

3、教师活动设计:在学生归纳的基础上,引导学生对圆的一些基本概念作一界定:圆:在一个平面内,一条线段OA绕它的一个端点O旋转一周,另一个端点A所形成的图形叫作圆;圆心:固定的端点叫作圆心;半径:线段OA的长度叫作这个圆的半径;圆的表示方法:以点O为圆心的圆,记作“⊙O”,读作“圆O”.

4、师生共同归纳:

(1)圆上各点到定点(圆心)的距离都等于定长(半径);

(2)到定点的距离等于定长的点都在同一个圆上.

(3)圆的第二定义:所有到定点的距离等于定长的点组成的图形叫作圆.

5、讨论圆中相关元素的定义.

(1)如图3,你能说出弦、直径、弧、半圆的定义吗?

图3 (2)学生活动:学生小组讨论,讨论结束后派一名代表发言进行交流,在交流中逐步完善自己的结果.

(3)教师活动:在学生交流的基础上得出上述概念的严格定义,对于学生的不准确的叙述,可以让学生讨论解决. 弦:连接圆上任意两点的线段叫作弦; 直径:经过圆心的弦叫作直径;

弧:圆上任意两点间的部分叫作圆弧,简称弧;

AB,读作“圆弧AB”或“弧弧的表示方法:以A、B为端点的弧记作AB”;

半圆:圆的任意一条直径的'两个端点把圆分成两条弧,每一条弧都叫作半圆.

优弧:大于半圆的弧叫作优弧,用三个字母表示,如图3中的 ABC;

. 劣弧:小于半圆的弧叫作劣弧,如图3中的BC

(三)讨论,车轮为什么做成圆形?如果做成正方形会有什么结果?(课件:车轮;课件:方形车轮)

1、学生活动:学生首先根据对圆的概念的理解独立思考,然后进行分组讨论,最后进行交流.

2、教师活动设计:引导学生进行如下分析:如图4,把车轮做成圆形,车轮上各点到车轮中心(圆心)的距离都等于车轮的半径,当车轮在平面上滚动时,车轮中心与平面的距离保持不变,因此当车辆在平坦的路上行驶时,坐车的人会感觉到非常平稳;如果做成其他图形,比如正方形,正方形的中心(对角线的交点)距离地面的距离随着正方形的滚动而改变,因此中心到地面的距离就不是保持不变,因此不稳定.

图4

(四)应用提高,培养学生的应用意识和创新能力m的圆?说出你的理由

2、师生活动设计:教师鼓励学生独立思考,让学生表述自己的方法.根据圆的定义可以知道,圆是一条线段绕一个端点旋转一周,另一个端点形成的图形,所以可以用一条长5m的绳子,将绳子的一端A固定,然后拉紧绳子的另一端B,并绕A在地上转一圈.B所经过的路径就是所要的圆.cm,这棵红杉树平均每年半径增加多少?

图5

4、师生活动设计:首先求出半径,然后除以20即可.

解答:树干的半径是23÷2=11.5(cm).

平均每年半径增加11.5÷20=0.575(cm).

(五)归纳小结、布置作业

小结:圆的两种定义以及相关概念.

作业:请做一个正方形的车轮,体会在车轮滚动的过程中车身的情况

七、教学反思

1、教师角色的转变:本节课教师的角色从知识的传授者转变为学生学习的组织者、引导者、合作者与共同探讨者。在引导学生观察、画图、发现结论后,利用多媒体课件直观的、动态的展示圆的形成过程及车轮原理,激发了兴趣。

2、学生角色的转变:学生的角色从学会转变为会学。本节课学生不是停留在学会课本知识的层面上,而是站在研究者的角度深入其境。

3、课堂氛围的转变:整节课以 “流畅、开放、合作、“隐导”为基本特征。教师对学生的思维活动减少干预,教学过程呈现一种比较流畅的特征,整节课学生与学生、学生与教师之间以“对话”、“讨论”为出发点,以互助、合作为手段,以解决问题为目的,让学生在一个较为宽松的环境中自主选择获得成功的方向,判断发现的价值。

初中数学教学设计 篇18

7月8日至7月11日去宁波大学参加了“以深度学习为指导的初中数学习题教学与设计”培训活动,感受颇多。

本次培训在3月份已经报名,在负责人解老师第一次发短信确定是否参加培训时,我是打了退堂鼓的,担心疫情,不敢参加,但是我老公告诉我疫情形势还可以,你去去没问题的,然后我才再次确定参加的,再加上从嘉善去宁波路程遥远,我们中午才到,以致于解老师一口叫出我和蒋老师的姓名,我是很惊喜的。通过后面的听课,心里暗自庆幸幸亏过来了,真是不虚此行!

第一堂课是宁波市名师、鄞州区曙光中学教研组长章剑雄老师的课,看着名字以为是一位高大的男老师,结果居然是一位瘦弱的女老师,小小地惊讶了一下,通过听章老师的讲座发现章老师瘦弱的身材却聚集着庞大的能量,她的几何直观教学策略完美地诠释了几何直观的内涵以及“数形结合百般好”。听了章老师的课我才发现原来有些几何图形的题目不用复杂的计算单凭图形的剪拼就可以快捷得出答案,这对于计算困难的`同学来说是一场及时雨。很多时候,学生会列式,但很难算对,图形的计算往往都很复杂若是单凭图形变换就能得出结果将大大减少学生的计算量,从而提高正确率。还有很多代数题从代数的角度很难解决或者比较麻烦,若是能够画出与之相对应的图形,则可以事半功倍!虽然我们平时也在用数形结合,但是章老师用的是炉火纯青,我们自愧不如!哎,得抓紧修炼呀!

第二堂课是浙江省特级教师、宁波市鄞州区初中数学教研员潘小梅老师的《解题教学的思考与实践》。潘老师的第一句话就指明数学教学以及学习的核心:掌握数学就意味着善于解题。然后灵魂拷问:这三句话每个数学老师都应该牢记,你们会背吗?(会用数学眼光观察现实世界、会用数学思想思考现实世界、会用数学眼光表达现实世界)我暗暗汗颜┅┅潘老师以具体的题目来一点点给我们展示思维如何变无限为有限,如何找到问题的突破口等等。然后潘老师还给我们展示了她这一年来关于解题教学的尝试:从中考复习解题教学到基本图形的教学,再到中考数学压轴题,最后是学生说题。每一块内容都讲得非常详细,对于培训的我们来说是满满的收获!

后面的课我就不一一赘述了,总之每个老师的课都很接地气,很实用,干货满满,期间解老师还安排李小红老师给我们来了一场《向易经借智慧》的讲座,李老师用诙谐幽默的话语给我们带来了一场艺术的盛宴,最后以黄伟健老师的《不仅仅只是解题》的讲座完美收官。黄老师是最接地气的一位老师,他一直致力于如何让不会做题的人也能得分的研究,也给予我很多启示。

在本次培训中,不仅上课的老师让我们感到不虚此行,本次培训负责接待和安排的解老师也让我们非常感动,一切事宜都考虑的非常周到,我们的吃、住、学都很舒适,感谢本次上课的所有老师以及解老师,谢谢你们!

初中数学教学设计 篇19

一、 内容简介

本节课的主题:通过一系列的探究活动,引导学生从计算结果中总结出完全平方公式的两种形式。

关键信息:

1、以教材作为出发点,依据《数学课程标准》,引导学生体会、参与科学探究过程。首先提出等号左边的两个相乘的多项式和等号右边得出的三项有什么关系。通过学生自主、独立的发现问题,对可能的答案做出假设与猜想,并通过多次的检验,得出正确的结论。学生通过收集和处理信息、表达与交流等活动,获得知识、技能、方法、态度特别是创新精神和实践能力等方面的发展。

2、用标准的数学语言得出结论,使学生感受科学的严谨,启迪学习态度和方法。

二、学习者分析:

1、在学习本课之前应具备的基本知识和技能:

①同类项的定义。

②合并同类项法则

③多项式乘以多项式法则。

2、学习者对即将学习的内容已经具备的水平:

在学习完全平方公式之前,学生已经能够整理出公式的右边形式。这节课的.目的就是让学生从等号的左边形式和右边形式之间的关系,总结出公式的应用方法。

三、 教学/学习目标及其对应的课程标准:

(一)教学目标:

1、经历探索完全平方公式的过程,进一步发展符号感和推力能力。

2、会推导完全平方公式,并能运用公式进行简单的计算。

(二)知识与技能:经历从具体情境中抽象出符号的过程,认识有理

数、实数、代数式、防城、不等式、函数;掌握必要的运算,(包括估算)技能;探索具体问题中的数量关系和变化规律,并能运用代数式、防城、不等式、函数等进行描述。

(四)解决问题:能结合具体情景发现并提出数学问题;尝试从不同

角度寻求解决问题的方法,并能有效地解决问题,尝试评价不同方法之间的差异;通过对解决问题过程的反思,获得解决问题的经验。

(五)情感与态度:敢于面对数学活动中的困难,并有独立克服困难

和运用知识解决问题的成功体验,有学好数学的自信心;并尊重与理解他人的见解;能从交流中获益。

四、 教育理念和教学方式:

1、教师是学生学习的组织者、促进者、合作者:学生是学习的主人,在教师指导下主动的、富有个性的学习,用自己的身体去亲自经历,用自己的心灵去亲自感悟。

教学是师生交往、积极互动、共同发展的过程。当学生迷路的时

候,教师不轻易告诉方向,而是引导他怎样去辨明方向;当学生登山畏惧了的时候,教师不是拖着他走,而是唤起他内在的精神动力,鼓励他不断向上攀登。

2、采用“问题情景—探究交流—得出结论—强化训练”的模式

展开教学。

3、教学评价方式:

(1) 通过课堂观察,关注学生在观察、总结、训练等活动中的主

动参与程度与合作交流意识,及时给与鼓励、强化、指导和矫正。

(2) 通过判断和举例,给学生更多机会,在自然放松的状态下,

揭示思维过程和反馈知识与技能的掌握情况,使老师可以及时诊断学情,调查教学。

(3) 通过课后访谈和作业分析,及时查漏补缺,确保达到预期的

教学效果。

五、 教学媒体 :多媒体

六、 教学和活动过程:

教学过程设计如下:

〈一〉、提出问题

[引入] 同学们,前面我们学习了多项式乘多项式法则和合并同类项法则,通过运算下列四个小题,你能总结出结果与多项式中两个单项式的关系吗?

(2m+3n)2=_______________,(-2m-3n)2=______________,

(2m-3n)2=_______________,(-2m+3n)2=_______________。

〈二〉、分析问题

1、[学生回答] 分组交流、讨论

(2m+3n)2= 4m2+12mn+9n2,(-2m-3n)2= 4m2+12mn+9n2,

(2m-3n)2= 4m2-12mn+9n2, (-2m+3n)2= 4m2-12mn+9n2。

(1)原式的特点。

(2)结果的项数特点。

(3)三项系数的特点(特别是符号的特点)。

(4)三项与原多项式中两个单项式的关系。

2、[学生回答] 总结完全平方公式的语言描述:

两数和的平方,等于它们平方的和,加上它们乘积的两倍;

两数差的平方,等于它们平方的和,减去它们乘积的两倍。

3、[学生回答] 完全平方公式的数学表达式:

(a+b)2=a2+2ab+b2;

(a-b)2=a2-2ab+b2.

〈三〉、运用公式,解决问题

1、口答:(抢答形式,活跃课堂气氛,激发学生的学习积极性)

(m+n)2=____________, (m-n)2=_______________,

(-m+n)2=____________, (-m-n)2=______________,

(a+3)2=______________, (-c+5)2=______________,

(-7-a)2=______________, (0.5-a)2=______________.

2、判断:

( )① (a-2b)2= a2-2ab+b2

( )② (2m+n)2= 2m2+4mn+n2

( )③ (-n-3m)2= n2-6mn+9m2

( )④ (5a+0.2b)2= 25a2+5ab+0.4b2

( )⑤ (5a-0.2b)2= 5a2-5ab+0.04b2

( )⑥ (-a-2b)2=(a+2b)2

( )⑦ (2a-4b)2=(4a-2b)2

( )⑧ (-5m+n)2=(-n+5m)2

3、小试牛刀

① (x+y)2 =______________;② (-y-x)2 =_______________;

③ (2x+3)2 =_____________;④ (3a-2)2 =_______________;

⑤ (2x+3y)2 =____________;⑥ (4x-5y)2 =______________;

⑦ (0.5m+n)2 =___________;⑧ (a-0.6b)2 =_____________.

〈四〉、[学生小结]

你认为完全平方公式在应用过程中,需要注意那些问题?

(1) 公式右边共有3项。

(2) 两个平方项符号永远为正。

(3)中间项的符号由等号左边的两项符号是否相同决定。

(4)中间项是等号左边两项乘积的2倍。

〈五〉、冒险岛:

(1)(-3a+2b)2=________________________________

(2)(-7-2m) 2 =__________________________________

(3)(-0.5m+2n) 2=_______________________________

(4)(3/5a-1/2b) 2=________________________________

(5)(mn+3) 2=__________________________________

(6)(a2b-0.2) 2=_________________________________

(7)(2xy2-3x2y) 2=_______________________________

(8)(2n3-3m3) 2=________________________________

〈六〉、学生自我评价

[小结] 通过本节课的学习,你有什么收获和感悟?

本节课,我们自己通过计算、分析结果,总结出了完全平方公式。在知识探索的过程中,同学们积极思考,大胆探索,团结协作共同取得了进步。

〈七〉[作业] P34 随堂练习 P36 习题

七、课后反思

本节课虽然算不上课本中的难点,但在整式一章中是个重点。它是多项式乘法特殊形式下的一种简便运算。学生需要熟练掌握公式两种形式的使用方法,以提高运算速度。授课过程中,应注重让学生总结公式的等号两边的特点,让学生用语言表达公式的内容,让学生说明运用公式过程中容易出现的问题和特别注意的细节。然后再通过逐层深入的练习,巩固完全平方公式两种形式的应用。为完全平方公式第二节课的实际应用和提高应用做好充分的准备

初中数学教学设计 篇20

一、内容和内容解析

(一)内容

概念:不等式、不等式的解、不等式的解集、解不等式以及能在数轴上表示简单不等式的解集.

(二)内容解析

现实生活中存在大量的相等关系,也存在大量的不等关系.本节课从生活实际出发导入常见行程问题的不等关系,使学生充分认识到学习不等式的重要性和必然性,激发他们的求知欲望.再通过对实例的进一步深入分析与探索,引出不等式、不等式的解、不等式的解集以及解不等式几个概念.前面学过方程、方程的解、解方程的概念.通过类比教学、不等式、不等式的解、解不等式几个概念不难理解.但是对于初学者而言,不等式的解集的理解就有一定的难度.因此教材又进行数形结合,用数轴来表示不等式的解集,这样直观形象的表示不等式的解集,对理解不等式的解集有很大的帮助.基于以上分析,可以确定本节课的教学重点是:正确理解不等式、不等式的解与解集的意义,把不等式的解集正确地表示在数轴上.

二、目标和目标解析

(一)教学目标

1.理解不等式的概念

2.理解不等式的解与解集的意义,理解它们的区别与联系3.了解解不等式的概念

4.用数轴来表示简单不等式的解集

(二)目标解析

1.达成目标1的标志是:能正确区别不等式、等式以及代数式.

2.达成目标2的标志是:能理解不等式的解是解集中的某一个元素,而解集是所有解组成的一个集合.

3.达成目标3的标志是:理解解不等式是求不等式解集的一个过程.

4、达成目标4的标志是:用数轴表示不等式的解集是数形结合的又一个重要体现,也是学习不等式的.一种重要工具.操作时,要掌握好“两定”:一是定界点,一般在数轴上只标出原点和界点即可,边界点含于解集中用实心圆点,或者用空心圆点;二是定方向,小于向左,大于向右.

三、教学问题诊断分析

本节课实质是一节概念课,对于不等式、不等式的解以及解不等式可通过类比方程、方程的解、解方程类比教学,学生不难理解,但是对不等式的解集的理解就有一定的难度.

因此,本节课的教学难点是:理解不等式解集的意义以及在数轴上正确表示不等式的解集.

四、教学支持条件分析

利用多媒体直观演示课前引入问题,激发学生的学习兴趣.

五、教学过程设计

(一)动画演示情景激趣多媒体演示:两个体重相同的孩子正在跷跷板上做游戏,现在换了一个大人上去,跷跷板发生了倾斜,游戏无法继续进行下去了,这是什么原因呢?设计意图:通过实例创设情境,从“等”过渡到“不等”,培养学生的观察能力,分析能力,激发他们的学习兴趣.

(二)立足实际引出新知

问题一辆匀速行驶的汽车在11︰20距离a地50km,要在12︰00之前驶过a地,车速应满足什么条件?

小组讨论,合作交流,然后小组反馈交流结果.最后,老师将小组反馈意见进行整理(学生没有讨论出来的思路老师进行补充)

1.从时间方面虑:2.从行程方面:<>50 3.从速度方面考虑:x>50÷

设计意图:培养学生合作、交流的意识习惯,使他们积极参与问题的讨论,并敢于发表自己的见解.老师对问题解决方法的梳理与补充,发散学生思维,培养学生分析问题、解决问题的能力.

(三)紧扣问题概念辨析

1.不等式

设问1:什么是不等式?

设问2:能否举例说明?由学生自学,老师可作适当补充.比如:是不等式.

2.不等式的解

设问1:什么是不等式的解?设问2:不等式的解是唯一的吗?由学生自学再讨论.

老师点拨:由x>50÷得x>75说明x任意取一个大于75的数都是不等式

3.不等式的解集

设问1:什么是不等式的解集?<,>50的解.<,>50,x>50÷都设问2:不等式的解集与不等式的解有什么区别与联系?由学生自学后再小组合作交流.

老师点拨:不等式的解是不等式解集中的一个元素,而不等式的解集是不等式所有解组成的一个集合.

4.解不等式

设问1:什么是解不等式?由学生回答.

老师强调:解不等式是一个过程.

设计意图:培养学生的自学能力,进一步培养学生合作交流的意识.遵循学生的认知规律,有意识、有计划、有条理地设计一些问题,可以让学生始终处于积极的思维状态,不知不觉中接受了新知识.老师再适当点拨,加深理解.

(四)数形结合,深化认识

问题1:由上可知,x>75既是不等式的解集.那么在数轴上如何表示x>75呢?问题2:如果在数轴上表示x≤ 75,又如何表示呢?由老师讲解,注意规范性,准确性.老师适当补充:“≥”与“≤”的意义,并强调用“≥”或“≤”连接的式子也是不等式.比如x≤ 75就是不等式.

设计意图:通过数轴的直观让学生对不等式的解集进一步加深理解,渗透数形结合思想.

(五)归纳小结,反思提高教师与学生一起回顾本节课所学主要内容,并请学生回答如下问题

1、什么是不等式?<的解集,也是不等式>50

2、什么是不等式的解?

3、什么是不等式的解集,它与不等式的解有什么区别与联系?

4、用数轴表示不等式的解集要注意哪些方面?

设计意图:归纳本节课的主要内容,交流心得,不断积累学习经验.

(六)布置作业,课外反馈

教科书第119页第1题,第120页第2,3题.

设计意图:通过课后作业,教师及时了解学生对本节课知识的掌握情况,以便对教学进度和方法进行适当的调整.

六、目标检测设计

1.填空

下列式子中属于不等式的有___________________________

①x +7>

②x≥ y + 2 = 0

③ 5x + 7

设计意图:让学生正确区分不等式、等式与代数式,进一步巩固不等式的概念.

2.用不等式表示

① a与5的和小于7

② a的与b的3倍的和是非负数

③正方形的边长为xcm,它的周长不超过160cm,求x满足的条件设计意图:培养学生审题能力,既要正确抓住题目中的关键词,如“大于(小于)、非负数(正数或负数)、不超过(不低于)”等等,正确选择不等号,又要注意实际问题中的数量的实际意义.

初中数学教学设计 篇21

新课程标准指出:“问题是思想方法、知识积累和发展的逻辑力量,是生长新知识、新方法的种子。”有问题才有探究,有探究才有发展、有创新。学生思维的过程受情境的影响。良好的思维情境会激发思维动机,唤起求知欲望;不好的思维情境会抑制学生的思维热情。因此,创设良好的思维情境在数学教学中就显得十分重要。教师通过自己的教学活动,有意识地培养学生善于在好的问题情景下主动建构新知识,积极参与交流和讨论,不断提高学习能力,发展创新意识。

一、联系学生的生活实际,创设问题情境

生活离不开数学,数学也离不开生活。实践证明:联系学生已有的生活经验和学生熟悉的事物入手展开教学,有利于学生更好的掌握数学知识。

例如在教学菱形性质时,导入时是这样设计的:

1、我们大家在日常生活中见过哪些菱形图案?(看谁说的多)学生争先恐后地说:

(1)吃过的菱形形状的食物

(2)春节时门上贴的剪纸花

(3)居室装饰地板砖

(4)中国结

(5)菱形衣帽架等。

2、为什么把这些图案设计成菱形呢?

3、菱形到底有哪些特殊的性质和运用呢?(板书课题)通过本节课的学习之后大家可以总结出来。

然后通过画图和电脑显示,让学生去猜想,去探究,去发现,去论证。从而弄清了菱形的定义、性质、面积公式及简单运用,然后让学生思考日常生活中还有哪些菱形性质方面的应用。

这样通过创设问题情境,让学生产生一种好奇,一种对知识的渴望,为探究活动创造了良好的条件,为本节课的成功创造了条件。同时让学生感受到了数学问题来源于生活。让学生多留意身边的事物转化成数学问题。但教学中要注意从实际出发,创设学生所熟悉的喜闻乐见的东西。同时不是为情趣而情趣,要注意增加情趣的内涵。注意经常引导学生用数学的眼光看待周围的事物,培养学生数学问题意识。

二、变更表述形式,创设问题情境

在数学教学中教师可以运用直观形象的具体材料,创设问题情境,设障布疑,激发学生思维的积极性和求知需要的一种教学方法——有时可通过变更问题的表述形式,引发学生兴趣。例如:“等腰三角形的判定定理”的教学,为引出等腰三角形的判定定理,通常提出问题:“如图(1),△ABC要判定它是等腰三角形

BC A有哪些方法呢?”这样出示问题显得单调又乏味。为了同样的教图(1)学目的(引导学生获得判定定理),教师若能根据“性质定理”与“判定定理”的内在联系,在引导学生性质定理后,提出这样一个实际问题“如图(2),△ABC是等腰三角形,AB=AC,因不小心,它的一部分被墨水涂没了,只留下一条底边BC和一个底角∠C,试问能否把原来的△ABC重新画出来?”不仅引发了生动活泼的讨论形式,而且也收到良好的引发效果,(有的先度量∠C度数,再以BC为边作∠B=∠C;有的取BC中点D,过D作BC的垂线等)。由此可见,在定理或概念性较强的性质的教学中,应尽力创设问题情境,使学生认识到所学内容的意义,使他们产生学习需要,形成学习的内驱力,诱发学生积极思维,在教师的'指导下,让学生主动去探索解决问题的办法,在实践中培养学生的创造能力。

三、猜想验证法,创设问题情境

在数学教学中,利用猜想验证的课堂教学模式创设问题情境,可以积极的促进学生有效的参与课堂教学,学生兴趣高涨,主动的进行猜想验证。

例如,在教学“三角形的内角和”时,我先请同学们试先量一量自己准备好的三角形的每一个内角的度数,然后告诉我其中两个内角的度数,我迅速的说出第三个内角的度数。同学们都感到很惊讶!为什么老师能很快的说出第三个内角的度数呢?通过观察他们发现:每个三角形的内角和都是180度。我问他们是不是任何一个三角形的内角和都是180度呢?他们的回答是肯定的。我说这只不过是你们的一个猜想,下面就请同学们利用你手中的学具来验证你的猜想。于是,同学们立刻想到了手中的三角板,积极的行动起来证明自己的猜想。

总之,创设问题情境,培养学生问题意识,一方面能激发学生学习动机、培养创新思维,是新课程理念下数学教学的重要环节。另一方面有助于学生积极地建构数学知识,在情境中自主的参与探究和相互交流,从而达到意义建构的目的,提高课堂教学的有效性。当然教学没有最好,只有更好,让我们在今后的教学过程中不断探索,不断创新,争取更打的进步。

初中数学教学设计 篇22

一、学情分析

学生通过上节课的学习,已经掌握了如何用没有刻度的直尺和圆规作一条线段等于已知线段。同时在学习中学生已经初步理解了作图的步骤,具备了基本的作图能力,并能简单的表达作图过程,为本节课的学习奠定了良好的知识基础。同时在以前的数学学习中学生已经经历了很多合作学习的过程,具有了一定的合作学习的经验,具备了一定的合作与交流的能力。

二、教学目标分析

教科书基于学生在上节课学习了如何作一条线段等于已知线段,并积累了一定的活动经验,提出本节课的主要教学任务是:会用尺规作一个角等于已知角,并了解它在尺规作图中的简单应用。为此,本节课的教学目标是:

1、能按照作图语言来完成作图动作,能用尺规作一个角等于已知角,并了解它在尺规作图中的简单应用。

2、能利用尺规作角的和、差、倍。

3、能够通过尺规设计并绘制简单的.图案。

4、在尺规作图过程当中,积累数学活动经验,培养动手能力和逻辑分析能力。

三、教学设计分析

1、回顾与思考

活动内容:

(1)怎样利用没有刻度的直尺和圆规作一条线段等于已知线段?

(2)练习:已知线段a,b,c,作一条线段m,使得m=a+b—c

活动目的:

通过回顾上节课学习的用尺规作线段,既达到了复习巩固,反馈落实的目的,同时熟练尺规的使用,积累活动经验,也为后面学习用尺规作角起到了铺垫的作用。

2、情境引入,探索发现

活动内容:如图2

初中数学教学设计 篇23

一、内容简介

本节课的主题:通过一系列的探究活动,引导学生从计算结果中总结出完全平方公式的两种形式。

关键信息:

1、以教材作为出发点,依据《数学课程标准》,引导学生体会、参与科学探究过程。首先提出等号左边的两个相乘的多项式和等号右边得出的三项有什么关系。通过学生自主、独立的发现问题,对可能的答案做出假设与猜想,并通过多次的检验,得出正确的结论。学生通过收集和处理信息、表达与交流等活动,获得知识、技能、方法、态度特别是创新精神和实践能力等方面的发展。

2、用标准的数学语言得出结论,使学生感受科学的严谨,启迪学习态度和方法。

二、学习者分析:

1、在学习本课之前应具备的基本知识和技能:

①同类项的定义。

②合并同类项法则

③多项式乘以多项式法则。

2、学习者对即将学习的内容已经具备的水平: 在学习完全平方公式之前,学生已经能够整理出公式的右边形式。这节课的目的就是让学生从等号的左边形式和右边形式之间的关系,总结出公式的应用方法。

三、教学/学习目标及其对应的课程标准:

(一)教学目标:

1、经历探索完全平方公式的过程,进一步发展符号感和推力能力。

2、会推导完全平方公式,并能运用公式进行简单的计算。

(二)知识与技能:经历从具体情境中抽象出符号的过程,认识有理数、实数、代数式、方程、不等式、函数;掌握必要的运算,(包括估算)技能;探索具体问题中的数量关系和变化规律,并能运用代数式、方程、不等式、函数等进行描述。

(三)解决问题:能结合具体情景发现并提出数学问题;尝试从不同角度寻求解决问题的方法,并能有效地解决问题,尝试评价不同方法之间的差异;通过对解决问题过程的反思,获得解决问题的经验。

(四)情感与态度:敢于面对数学活动中的困难,并有独立克服困难和运用知识解决问题的成功体验,有学好数学的自信心;并尊重与理解他人的见解,能从交流中获益。

四、教育理念和教学方式:

1.教师是学生学习的组织者、促进者、合作者,学生是学习的主人,在教师指导下主动的、富有个性的学习,用自己的身体去亲自经历,用自己的心灵去亲自感悟。教学是师生交往、积极互动、共同发展的过程。当学生迷路的时候,教师不轻易告诉方向,而是引导他怎样去辨明方向;当学生登山畏惧了的时候,教师不是拖着他走,而是唤起他内在的精神动力,鼓励他不断向上攀登。

2.采用“问题情景—探究交流—得出结论—强化训练”的模式展开教学。

3.教学评价方式:

(1)通过课堂观察,关注学生在观察、总结、训练等活动中的主动参与程度与合作交流意识,及时给与鼓励、强化、指导和矫正。

(2)通过判断和举例,给学生更多机会,在自然放松的状态下,揭示思维过程和反馈知识与技能的掌握情况,使老师可以及时诊断学情,调查教学。

(3)通过课后访谈和作业分析,及时查漏补缺,确保达到预期的教学效果。

五、教学媒体:

多媒体

六、教学和活动过程:

〈一〉、提出问题

[引入] 同学们,前面我们学习了多项式乘多项式法则和合并同类项法则,通过运算下列四个小题,你能总结出结果与多项式中两个单项式的.关系吗? (2m+3n)2=_______________,(-2m-3n)2=______________, (2m-3n)2=_______________,(-2m+3n)2=_______________。 〈二〉、分析问题

1.[学生回答] 分组交流、讨论

(2m+3n)2= 4m2+12mn+9n2,(-2m-3n)2= 4m2+12mn+9n2, (2m-3n)2= 4m2-12mn+9n2, (-2m+3n)2= 4m2-12mn+9n2。 (1)原式的特点。 (2)结果的项数特点。

(3)三项系数的特点(特别是符号的特点)。 (4)三项与原多项式中两个单项式的关系。 2.[学生回答] 总结完全平方公式的语言描述:

两数和的平方,等于它们平方的和,加上它们乘积的两倍; 两数差的平方,等于它们平方的和,减去它们乘积的两倍。 3.[学生回答] 完全平方公式的数学表达式:

(a+b)2=a2+2ab+b2; (a-b)2=a2-2ab+b2.

〈三〉、运用公式,解决问题 1.口答:(抢答形式,活跃课堂气氛,激发学生的学习积极性)

(m+n)2=____________, (m-n)2=_______________,

(-m+n)2=____________, (-m-n)2=______________,

(a+3)2=______________, (-c+5)2=______________,

(-7-a)2=______________, (0.5-a)2=______________.

2.判断:

()① (a-2b)2= a2-2ab+b2 ()

② (2m+n)2= 2m2+4mn+n2 ()

③ (-n-3m)2= n2-6mn+9m2 ()

④ (5a+0.2b)2= 25a2+5ab+0.4b2 ()

⑤ (5a-0.2b)2= 5a2-5ab+0.04b2 ()

⑥ (-a-2b)2=(a+2b)2 ()

⑦ (2a-4b)2=(4a-2b)2 ()

⑧ (-5m+n)2=(-n+5m)2

3.小试牛刀

① (x+y)2 =______________;

② (-y-x)2 =_______________;

③ (2x+3)2 =_____________;

④ (3a-2)2 =_______________;

⑤ (2x+3y)2 =____________;

⑥ (4x-5y)2 =______________;

⑦ (0.5m+n)2 =___________;

⑧ (a-0.6b)2 =_____________.

〈四〉、学生小结

你认为完全平方公式在应用过程中,需要注意那些问题?

(1) 公式右边共有3项。

(2) 两个平方项符号永远为正。

(3)中间项的符号由等号左边的两项符号是否相同决定。

(4)中间项是等号左边两项乘积的2倍。

〈五〉、冒险岛:

(1)(-3a+2b)2=________________________________

(2)(-7-2m) 2 =__________________________________

(3)(-0.5m+2n) 2=_______________________________

(4)(3/5a-1/2b) 2=________________________________

(5)(mn+3) 2=__________________________________

(6)(a2b-0.2) 2=_________________________________

(7)(2xy2-3x2y) 2=_______________________________

(8)(2n3-3m3) 2=________________________________

〈六〉、学生自我评价

[小结] 通过本节课的学习,你有什么收获和感悟?

本节课,我们自己通过计算、分析结果,总结出了完全平方公式。在知识探索的过程中,同学们积极思考,大胆探索,团结协作共同取得了进步。

〈七〉[作业]

p34 随堂练习

p36 习题

七、课后反思

本节课虽然算不上课本中的难点,但在整式一章中是个重点。它是多项式乘法特殊形式下的一种简便运算。学生需要熟练掌握公式两种形式的使用方法,以提高运算速度。授课过程中,应注重让学生总结公式等号两边的特点,让学生用语言表达公式的内容,由于语言缺陷的原因,这一点对聋生来说比较困难,让学生说明运用公式过程中容易出现的问题和特别注意的细节。然后再通过逐层深入的练习,巩固完全平方公式两种形式的应用,为完全平方公式第二节课的实际应用和提高应用做好充分的准备。

1 . 教学内容精心组织,容量恰当,重点突出,体现内容的有效性、系统性和有序性;

2 . 重视启发,活跃思维,方式、方法多样,选择适当;教学环节紧凑、合理;

3 . 教学媒体使用适时、适量、适度、有效。

4 . 教学结构组合优化,优质高效。

初中数学教学设计 篇24

一、教学目标:

(1)学生在教师引导下,积极主动地经历探索三角形全等的条件的过程,体会利用操作、归纳获得数学结论的过程。

(2)掌握三角形全等的“边边边”、“边角边”、“角边角”、“角角边”的判定方法,了解三角形的稳定性,能用三角形的全等解决一些实际问题。

(3)培养学生的空间观念,推理能力,发展有条理地表达能力,积累数学活动经验。

二、教学的重点与难点:

重点:三角形全等条件的探索过程是本节课的重点。

从设置情景提出问题,到动手操作,交流,直至归纳得出结论,整个过程学生不仅得到了两个三角形全等的条件,更重要得是经历了知识的形成过程,体会了一种分析问题的方法,积累了数学活动经验,这将有利于学生更好的理解数学,应用数学。

难点:三角形全等条件的探索过程,特别是创设出问题后,学生面对开放性问题,要做出全面、正确得分析,并对各种情况进行讨论,对初一学生有一定的难度。

根据初一学生年龄、生理及心理特征,还不具备独立系统地推理论证几何问题的能力,思维受到一定的局限,考虑问题不够全面,因此要充分发挥教师的主导作用,适时

点拨、引导,尽可能调动所有学生的积极性、主动性参与到合作探讨中来,使学生在与他人的合作交流中获取新知,并使个性思维得以发展。

三、教学过程

电脑显示,带领学生复习全等三角定义及其性质。电脑显示,小明画了一个三角形,怎样才能画一个三角形与他的三角形全等?我们知道全等三角形三条边分别对应相等,三个角分别对应相等,那麽,反之这六个元素分别对应,这样的两个三角形一定全等.但是,是否一定需要六个条件呢?条件能否尽可能少吗?对学生分类中出现的问题,予以纠正,对学生提出的解决问题的不同策略,要给予肯定和鼓励,以满足多样化的学生需要,发展学生个性思维。

按照三角形“边、角”元素进行分类,师生共同归纳得出:

1、一个条件:一角,一边

2、两个条件:两角;两边;一角一边

3、三个条件:三角;三边;两角一边;两边一角

按以上分类顺序动脑、动手操作,验证。

教师收集学生的.作品,加以比较,得出结论:

只给出一个或两个条件时,都不能保证所画出的三角形一定全等。

下面将研究三个条件下三角形全等的判定。

(1)已知三角形的三个角分别为40°、60°、80°,画出这个三角形,并与同伴比较是否全等。

学生得出结论后,再举例体会一下。举例说明:

如老师上课用的三角尺与同学用的三角板三个角分别对应相等,但一个大一个小,很显然不全等;

再如同是:等边三角形,边长不等,两个三角形也不全等。等等。

(2)已知三角形三条边分别是4cm,5cm,7cm,画出这个三角形,并与同伴比较是否全等。

板演:三边对应相等的两个三角形全等,简写为“边边边”或“SSS”。

由上面的结论可知:只要三角形三边的长度确定了,这个三角形的形状和大小就确定了。实物演示:由三根木条钉成的一个三角形框架,它的大小和形状是固定不变的,三角形的这个性质叫三角形的稳定性。

举例说明该性质在生活中的应用

类比着三角形,让学生动手操作,研究四边形、五边性有无稳定性

图形的稳定性与不稳定性在生活中都有其作用,让学生举例说明。

题组练习(略)3 、(对有能力的学生要求把实际问题抽象成数学问题,根据自己的理解写出推理过程。对一般学生要求口头表达理由,并能说明每一步的根据。)

教师带领,回顾反思本节课对知识的研究探索过程,小结方法及结论,提炼数学思想,掌握数学规律。

在教师引导下回忆前面知识,为探究新知识作好准备。

议一议:

学生分小组进行讨论交流。受教师启发,从最少条件开始考虑,一个条件;两个条件;三个条件?经过学生逐步分析,各种情况渐渐明朗,进行交流予以汇总,归纳。

想一想:

对只给一个条件画三角形,画出的三角形一定全等吗

?画一画:

按照下面给出的两个条件做出三角形:

(1)三角形的两个角分别是:30°,50°

(2)三角形的两条边分别是:4cm,6cm

(3)三角形的一个角为30,一条边为3cm剪一剪:

把所画的三角形分别剪下来。比一比:

同一条件下作出的三角形与其他同学作的比一比,是否全等。学生重复上面的操作过程,画一画,剪一剪,比一比。学生总结出:三个内角对应相等的两个三角形不一定全等学生举例说明

学生模仿上面的研究方法,独立完成操作过程,通过交流,归纳得出结论。鼓励学生自己举出实例,体验数学在生活中的应用.学生那出准备好的硬纸条,进行实验,得出结论:四边形、五边形不具稳定性。

学生练习

学生在教师引导下回顾反思,归纳整理。

初中数学教学设计 (15篇)

作为一位无私奉献的人民教师,总不可避免地需要编写教学设计,借助教学设计可以更大幅度地提高学生各方面的能力,从而使学生获得良好的发展。那么大家知道规范的教学设计是怎么写的吗?以下是小编为大家收集的初中数学教学设计 ,欢迎阅读,希望大家能够喜欢。

初中数学教学设计 篇25

一、素质教育目标

(一)知识教学点

1、要求学生学会用移项解方程的方法。

2、使学生掌握移项变号的基本原则。

(二)能力训练点

由移项变形方法的教学,培养学生由算术解法过渡到代数解法的解方程的基本能力。

(三)德育渗透点

用代数方法解方程中,渗透了数学中的化未知为已知的重要数学思想。

(四)美育渗透点

用移项法解方程明显比用前面的方法解方程方便,体现了数学的方法美。

二、学法引导

1、教学方法:采用引导发现法发现法则,课堂训练体现学生的主体地位,引进竞争机制,调动课堂气氛。

2、学生学法:练习→移项法制→练习。

三、重点、难点、疑点及解决办法

1、重点:移项法则的掌握。

2、难点:移项法解一元一次方程的步骤。

3、疑点:移项变号的掌握。

四、课时安排

3课时

五、教具学具准备

投影仪或电脑、自制胶片、复合胶片。

六、师生互动活动设计

教师出示探索性练习题,学生观察讨论得出移项法则,教师出示巩固性练习,学生以多种形式完成。

七、教学步骤

(一)创设情境,复习导入

师提出问题:上节课我们研究了方程、方程的解和解方程的有关知识,请同学们首先回顾上节课的有关内容;回答下面问题。

(出示投影1)

利用等式的性质解方程

(1)xx;(2)xxx;

解:方程的两边都加7,解:方程的两边都减去x,

得x,xx 得x,

即x 、 合并同类项得x。

【教法说明】通过上面两小题,对用等式性质解方程进行巩固、回忆,为讲解新方法奠定基础。

提出问题:下面我们观察上面方程的变形过程,从中观察变化的项的规律是什么?

(二)探索新知,讲授新课

投影展示上面变形的过程,用制作复合式运动胶片将上面的变形展示如下,让学生观察在变形过程中,变化的项的变化规律,引出新知识。

(出示投影2)

师提出问题:

1、上述演示中,两个题目中的哪些项改变了在原方程中的位置?怎样变的?

2、改变的项有什么变化?

学生活动:分学习小组讨论,各组把讨论的结果派代表上报教师,分四组,这样节省时间。

师总结学生活动的结果:大家讨论的结论,有如下共同点:①方程(1)的已知项从左边移到了方程右边,方程(2)的项从右边移到了左边;②这些位置变化的'项都改变了原来的符号。

【教法说明】在这里的投影变化中,教师要抓住时机,让学生发现变化的规律,准确掌握这种变化的法则,也是为以后解更复杂方程打下好的基础。

师归纳:像上面那样,把方程中的某项改变符号后,从方程的一边移到另一边的变形叫做移项、这里应注意移项要改变符号。

(三)尝试反馈,巩固练习

师提出问题:我们可以回过头来,想一想刚解过的两个方程哪个变化过程可以叫做移项。

学生活动:要求学生对课前解方程的变形能说出哪一过程是移项。

【教法说明】可由学生对前面两个解方程问题用移项过程,重新写一遍,以理解解方程的步骤和格式。

对比练习:(出示投影3)

解方程:(1);(2);

(3);(4)、

学生活动:把学生分四组练习此题,一组、二组同学(1)(2)题用等式性质解,(3)(4)题移项变形解;三、四组同学(1)(2)题用移项变形解,(3)(4)题用等式性质解。

师提出问题:用哪种方法解方程更简便?解方程的步骤是什么?(答:移项法;移项、合并同类项、检验、)

【教法说明】这部分教学旨在于使学生学会用移项这一手段解方程的方法,通过学生动手尝试,理解解方程的步骤,从而掌握移项这一法则。

巩固练习:(出示投影4)

通过移项解下列方程,并写出检验。

(1);(2);

(3);(4)、

【教法说明】这组题训练学生解题过程的严密性,故采取学生亲自动手做,四个同学板演形式完成。

(四)变式训练,培养能力

(出示投影5)

口答:

1、下面的移项对不对?如果不对,错在哪里?应怎样改正?

(1)从,得到;

(2)从,得到;

(3)从,得到;

2、小明在解方程时,是这样写的解题过程:

(1)小明这样写对不对?为什么?

(2)应该怎样写?

【教法说明】通过以上两题进一步印证移项这种变形的规律,即“移项要变号”、要使学生认清这里的移项是把某项从方程的一边移到另一边而不是在同一边交换位置,弄懂解方程的书写格式是方程在变形,变形时保持“左右两边相等”这一数学模式。

(出示投影6)

用移项解方程:

(1);(2);

(3);(4)、

【教法说明】这组题增加了难度,即移项变形是左右两边都有可移的项,教学时由学生思考后再进行解答书写,可提醒学生先分组讨论,各组由一名同学叙述解题过程,教师归纳出最严密最精炼的解题过程,最后全体学生都做这几个题目。

学生活动:5分钟竞赛:规则是分两大组,基础分100分,每组同学全对1人加10分,不全对1人减10分,互相判题,学习委员记分。

(出示投影7)

解下列方程:

(1);(2);(3);

(4);(5);(6)、

【教法说明】这组题用竞赛的形式,由学生独立完成是为了培养学生的解方程的速度和能力,同时激发学生的竞争意识,从而达到调动全体学生参与的目的,而互相评判更增加了课堂上的民主意识。

(五)归纳小结

师:今天我们学习了解方程的变形方法,通过学习我们应该明确两个方面的问题:①解方程需把方程中的项从一边移到另一边,移项要变号这是重点、②检验要把所得未知数的值代入原方程。

初中数学教学设计 篇26

新课程标准指出:“问题是思想方法、知识积累和发展的逻辑力量,是生长新知识、新方法的种子。”有问题才有探究,有探究才有发展、有创新。学生思维的过程受情境的影响。良好的思维情境会激发思维动机,唤起求知欲望;不好的思维情境会抑制学生的思维热情。因此,创设良好的思维情境在数学教学中就显得十分重要。教师通过自己的教学活动,有意识地培养学生善于在好的问题情景下主动建构新知识,积极参与交流和讨论,不断提高学习能力,发展创新意识。

一、联系学生的生活实际,创设问题情境

生活离不开数学,数学也离不开生活。实践证明:联系学生已有的生活经验和学生熟悉的事物入手展开教学,有利于学生更好的掌握数学知识。

例如在教学菱形性质时,导入时是这样设计的:

1、我们大家在日常生活中见过哪些菱形图案?(看谁说的多)学生争先恐后地说:

(1)吃过的菱形形状的食物

(2)春节时门上贴的剪纸花

(3)居室装饰地板砖

(4)中国结

(5)菱形衣帽架等。

2、为什么把这些图案设计成菱形呢?

3、菱形到底有哪些特殊的性质和运用呢?(板书课题) 通过本节课的学习之后大家可以总结出来。

然后通过画图和电脑显示,让学生去猜想,去探究,去发现,去论证。从而弄清了菱形的定义、性质、面积公式及简单运用,

然后让学生思考日常生活中还有哪些菱形性质方面的应用。

这样通过创设问题情境,让学生产生一种好奇,一种对知识的渴望,为探究活动创造了良好的条件,为本节课的成功创造了条件。同时让学生感受到了数学问题来源于生活。让学生多留意身边的事物转化成数学问题。但教学中要注意从实际出发,创设学生所熟悉的喜闻乐见的东西。同时不是为情趣而情趣,要注意增加情趣的内涵。注意经常引导学生用数学的眼光看待周围的事物,培养学生数学问题意识。

二、变更表述形式,创设问题情境

在数学教学中教师可以运用直观形象的`具体材料,创设问题情境,设障布疑,激发学生思维的积极性和求知需要的一种教学方法——有时可通过变更问题的表述形式,引发学生兴趣。 例如:“等腰三角形的判定定理”的教学,为引出等腰三角形的判定定理,通常提出问题:“如图(1),△ABC要判定它是等腰三角形

BC A 有哪些方法呢?”这样出示问题显得单调又乏味。为了同样的教图(1)学目的(引导学生获得判定定理),教师若能根据“性质定理”与“判定定理”的内在联系,在引导学生性质定理后,提出这样一个实际问题“如图(2),△ABC是等腰三角形,AB=AC,因不小心,它的一部分被墨水涂没了,只留下一条底边BC和一个底角∠C,试问能否把原来的△ABC重新画出来?”不仅引发了生动活泼的讨论形式,而且也收到良好的引发效果,(有的先度量∠C度数,再以BC为边作∠B=∠C;有的取BC中点D,过D作BC的垂线等)。由此可见,在定理或概念性较强的性质的教学中,应尽力创设问题情境,使学生认识到所学内容的意义,使他们产生学习需要,形成学习的内驱力,诱发学生积极思维,在教师的指导下,让学生主动去探索解决问题的办法,在实践中培养学生的创造能力。

三、猜想验证法,创设问题情境

在数学教学中,利用猜想验证的课堂教学模式创设问题情境,可以积极的促进学生有效的参与课堂教学,学生兴趣高涨,主动的进行猜想验证。

例如,在教学“三角形的内角和”时,我先请同学们试先量一量自己准备好的三角形的每一个内角的度数,然后告诉我其中两个内角的度数,我迅速的说出第三个内角的度数。同学们都感到很惊讶!为什么老师能很快的说出第三个内角的度数呢?通过观察他们发现:每个三角形的内角和都是180度。我问他们是不是任何一个三角形的内角和都是180度呢?他们的回答是肯定的。我说这只不过是你们的一个猜想,下面就请同学们利用你手中的学具来验证你的猜想。于是,同学们立刻想到了手中的三角板,积极的行动起来证明自己的猜想。

总之,创设问题情境,培养学生问题意识,一方面能激发学生学习动机、培养创新思维,是新课程理念下数学教学的重要环节。另一方面有助于学生积极地建构数学知识,在情境中自主的参与探究和相互交流,从而达到意义建构的目的,提高课堂教学的有效性。当然教学没有最好,只有更好,让我们在今后的教学过程中不断探索,不断创新,争取更打的进步。

初中数学教学设计 篇27

新学期已到来,我们又要投入到紧张、繁忙而有序地教育教学工作中,使自己今后的教学工作中能有效地、有序地贯彻新的教育精神,围绕我校新学期的工作计划要求制定初中一年级数学教学设计方案:

一、教材分析:

本学期是本年级学生初中学习阶段的第二学期、新授课程主要有相交线与平行线、平面直角坐标系、三角形、二元一次方程组、不等式与不等式组、数据的收集、现行教材、教学大纲要求学生从身边的实际问题出发,乘坐观察、思考、探究、讨论、归纳之舟,去探索、发现数学的奥妙,用学到的本领去解决复习巩固、综合运用、拓展探索等不同层次的问题、教师在灵活选用现有教材的基础上,应适度引用新例,把初中数学各单元的知识明晰化、条理化、规律化,激励学生自主、合作、探究学习,培养学习兴趣和习惯品质、

二、教学目标:

本学期的数学教学要从学生的实际问题出发,积极引导学生观察、思考、探究、讨论、归纳数学问题,要鼓励学生去探索、发现数学的奥妙,用学到的本领去解决复习巩固、综合运用、拓展探索等不同层次的问题、教学中既要注意知识的覆盖面,关注中考的重点、热点和难点,又要突出数学知识在社会、科技中的运用,让学生在学习、练习中熟记知识要点、考试内容,掌握应试技巧和数学思想方法,提高综合素质,培养创新意识和探索能力、在期末考试中力争生均分87分左右,及格率75%以上,并将低分率控制到10%以下,综合成绩县前五、

三、教学措施:

1、认真钻研教材,积极捕捉课改信息,尽力倡导自主、合作、探究学习,努力培养学生的学习兴趣和个性品质、

2、把握学生思想动态,及时与学生沟通,搞好师生关系、

3、充分利用课堂教学时间,帮助学生理解教学重难点,训练考点、热点,强化记忆,形成能力,提高成绩、

4、改进教学方法,用挂图,实物创设情景进行教学,力求课堂的多样化、生活化和开放化,力争有更多的`师生互动、生生互动的机会、

5、精讲多练,在教学新知识的同时,注重旧知识的复习,使所学知识系统化,条理化,让学生在练习、测试中巩固提高,减少遗忘、

6、开辟第二课堂,在不加重学生负担的前提下,积极引导学生阅读课外书,促进学生自主、合作,探究学习,培养兴趣,提高能力、

7、加强培优补中促差生的个别辅导,因材施教,培养学生的个性特长、特别要多鼓励后进生,提高他们的学习兴趣,培养他们良好的学习习惯:

(1)课前预习习惯;

(2)积极思考,主动发言习惯;

(3)自主作业习惯;

(4)课后复习习惯。

初中数学教学设计通用15篇

作为一名人民教师,通常会被要求编写教学设计,教学设计是根据课程标准的要求和教学对象的特点,将教学诸要素有序安排,确定合适的教学方案的设想和计划。那么问题来了,教学设计应该怎么写?下面是小编收集整理的初中数学教学设计,仅供参考,大家一起来看看吧。

初中数学教学设计 篇28

教材与学情:

解直角三角形的应用是在学生熟练掌握了直角三角形的解法的基础上进行教学,它是把一些实际问题转化为解直角三角形的数学问题,对分析问题能力要求较高,这会使学生学习感到困难,在教学中应引起足够的重视。

信息论原理:

将直角三角形中边角关系作为已有信息,通过复习(输入),使学生更牢固地掌握(贮存);再通过例题讲解,达到信息处理;通过总结归纳,使信息优化;通过变式练习,使信息强化并能灵活运用;通过布置作业,使信息得到反馈。

教学目标

⒈认知目标:

⑴懂得常见名词(如仰角、俯角)的意义

⑵能正确理解题意,将实际问题转化为数学

⑶能利用已有知识,通过直接解三角形或列方程的方法解决一些实际问题。

⒉能力目标:培养学生分析问题和解决问题的能力,培养学生思维能力的灵活性。

⒊情感目标:使学生能理论联系实际,培养学生的对立统一的观点。

教学重点、难点:

重点:利用解直角三角形来解决一些实际问题

难点:正确理解题意,将实际问题转化为数学问题。

信息优化策略:

⑴在学生对实际问题的探究中,神经兴奋,思维活动始终处于积极状态

⑵在归纳、变换中激发学生思维的灵活性、敏捷性和创造性。

⑶重视学法指导,以加速教学效绩信息的顺利体现。

教学媒体:

投影仪、教具(一个锐角三角形,可变换图2-图7)

高潮设计:

1、例1、例2图形基本相同,但解法不同;这是为什么?学生的思维处于积极探求状态中,从而激发学生学习的积极性和主动性

2、将一个锐角三角形纸片通过旋转、翻折等变换,使学生对问题本质有了更深的认识

教学过程

一、复习引入,输入并贮存信息

1.提问:如图,在Rt△ABC中,∠C=90°。

⑴三边a、b、c有什么关系?

⑵两锐角∠A、∠B有怎样的关系?

⑶边与角之间有怎样的关系?

2.提问:解直角三角形应具备怎样的条件:

注:直角三角形的边角关系及解直角三角形的条件由投影给出,便于学生贮存信息

二、实例讲解,处理信息:

例1.(投影)在水平线上一点C,测得同顶的仰角为30°,向山沿直线 前进20为到D处,再测山顶A的仰角为60°,求山高AB。

⑴引导学生将实际问题转化为数学问题。

⑵分析:求AB可以解Rt△ABD和

Rt△ABC,但两三角形中都不具备直接条件,但由于∠ADB=2∠C,很容易发现AD=CD=20米,故可以解Rt△ABD,求得AB。

⑶解题过程,学生练习。

⑷思考:假如∠ADB=45°,能否直接来解一个三角形呢?请看例2。

例2.(投影)在水平线上一点C,测得山顶A的.仰角为30°,向山沿直线前进20米到D处,再测山顶A的仰角为45°,求山高AB。

分析:

⑴在Rt△ABC和Rt△ABD中,都没有两个已知元素,故不能直接解一个三角形来求出AB。

⑵考虑到AB是两直角三角形的直角边,而CD是两直角三角形的直角边,而CD均不是两个直角三角形的直角边,但CD=BC=BD,启以学生设AB=X,通过 列方程来解,然后板书解题过程。

解:设山高AB=x米

在Rt△ADB中,∠B=90°∠ADB=45°

∵BD=AB=x(米)

在Rt△ABC中,tgC=AB/BC

∴BC=AB/tgC=√3(米)

∵CD=BC-BD

∴√3x-x=20 解得 x=(10√3+10)米

答:山高AB是(10√3+10)米

三、归纳总结,优化信息

例2的图开完全一样,如图,均已知∠1、∠2及CD,例1中 ∠2=2∠1 求AB,则需解Rt△ABD例2中∠2≠2∠1求AB,则利用CD=BC-BD,列方程来解。

四、变式训练,强化信息

(投影)练习1:如图,山上有铁塔CD为m米,从地上一点测得塔顶C的仰角为∝,塔底D的仰角为β,求山高BD。

练习2:如图,海岸上有A、B两点相距120米,由A、B两点观测海上一保轮船C,得∠CAB=60°∠CBA=75°,求轮船C到海岸AB的距离。

练习3:在塔PQ的正西方向A点测得顶端P的

仰角为30°,在塔的正南方向B点处,测得顶端P的仰角为45°且AB=60米,求塔高PQ。

教师待学生解题完毕后,进行讲评,并利用教具揭示各题实质:

⑴将基本图形4旋转90°,即得图5;将基本图形4中的Rt△ABD翻折180°,即可得图6;将基本图形4中Rt△ABD绕AB旋转90°,即可得图7的立体图形。

⑵引导学生归纳三个练习题的等量关系:

练习1的等量关系是AB=AB;练习2的等量关系是AD+BD=AB;练习3的等量关系是AQ2+BQ2=AB2

五、作业布置,反馈信息

《几何》第三册P57第10题,P58第4题。

板书设计:

解直角三角形的应用

例1已知:………例2已知:………小结:………

求:………求:………

解:………解:………

练习1已知:………练习2已知:………练习3已知:………

求:………求:………求:………

解:………解:………解:………

初中数学教学设计 篇29

一、学情分析

八年级学生具有强烈的好胜心和求知欲,抽象思维趋于成熟,形象直观思维能力较强,具有一定的独立思考、实践操作、合作交流、归纳概括等能力,能进行简单的推理

二、教材分析

这节课是人教版八年级第十八章第一节的内容,教学内容是勾股定理公式的推导、证明及其简单的应用。本节课是在学生已经掌握了直角三角形有关性质的基础上进行学习的,勾股定理是几何中最重要的定理之一,它揭示的是直角三角形中三条边之间的数量关系,将数与形密切联系起来,为以后学习四边形、圆、解直角三角形等数学知识奠定了基础。它有着丰富的历史背景,在数学的发展中起着重要的作用,在现实生活中也有着广泛的应用。学生通过对勾股定理的学习,可以在原有的基础上对直角三角形有进一步的认识和理解。

三、教学目标设计

知识与技能

探索勾股定理的内容并证明,能够运用勾股定理进行简单计算和运用

过程与方法

(1)通过观察分析,大胆猜想,探索勾股定理,培养学生动手操作、合作交流、逻辑推理的能力。

(2)在探索勾股定理的过程中,让学生经历“观察—猜想—归纳—验证”的数学过程,并体会数形结合和从特殊到一般的思想方法情感态度与价值

(1)在探索勾股定理的过程中,培养学生的合作交流意识和探索精神,增进数学学习的信心,感受数学之美,探究之趣。

(2)利用远程教育资源介绍中国古代勾股方面的成就,激发学生热爱祖国和热爱祖国悠久文化的思想感情,培养学生的民族自豪感和钻研精神。

四、教学重点难点

教学重点

探索和证明勾股定理

教学难点

用拼图的方法证明勾股定理

五、教学方法

(学法)“引导探索法”

(自主探究,合作学习,采用小组合作的方法。

六、教具准备

课件、三角板

七、教学过程设计

教学环节1

教学过程:创设情境探索新知

教师活动:出示第24届国际数学家大会的会徽的图案向学生提问

(1)你见过这个图案吗?

(2)你听说过“勾股定理”吗?

学生活动:

学生思考回答

设计意图:目的在于从现实生活中提出“赵爽弦图”,进一步激发学生积极主动地投入到探索活动中,同时为探索勾股定理提供背景材料。

教学环节

教学过程:

实验操作获取新知归纳验证完善新知

教师活动:出示课件,引导学生探索

学生活动:猜想实验合作交流画图测量拼图验证

设计意图:渗透从特殊到一般的数学思想.为学生提供参与数学活动的时间和空间,发挥学生的主体作用;让学生自己动手拼出赵爽弦图,培养他们学习数学的成就感。通过拼图活动,使学生对定理的理解更加深刻,体会数学中的数形结合思想,调动学生思维的积极性,激发学生探求新知的欲望.给学生充分的时间与空间讨论、交流,鼓励学生敢于发表自己的见解,感受合作的重要性。教学环节3教学过程:解决问题应用新知

教师活动:出示例题和练习

学生活动:交流合作,解决问题

设计意图:通过运用勾股定理对实际问题的解释和应用,培养学生从身边的'事物中抽象出几何模型的能力,使学生更加深刻地认识数学的本质:数学来源于生活,并能服务于生活,顺利解决如何将实际问题转化为求直角三角形边长的问题,培养学生的数学应用意识.

教学环节4

教学内容:

课堂小结

巩固新知布置作业

教师活动:引导学生小结

学生活动:讨论交流、自由发言

设计意图:既引导学生从面积的角度理解勾股定理,又从能力、情感、态度等方面关注学生对课堂整体感受,在轻松愉快的气氛中体会收获的喜悦.

通过布置课外作业,给学生留有继续学习的空间和兴趣,及时获知学生对本节课知识的掌握情况,适当的调整教学进度和教学方法,并对学习有困难的学生给与指导.

八、板书设计

勾股定理:如果直角三角形的两直角边分别为a和b,斜边为c,那么a2+b2=c2。

九、习题拓展

如图,将长为10米的梯子AC斜靠在墙上,BC长为6米。(1)求梯子上端A到墙的底端B的距离AB。

(2)若梯子下部C向后移动2米到C1点,那么梯子上部A向下移动了多少米?

十、作业设计

1、收集有关勾股定理的证明方法,下节课展示、交流.

2、做一棵奇妙的勾股树(选做)

初中数学教学设计 篇30

为了提高学生的学习兴趣,增大学生的学习参与面,减小差距。努力作好教学工作,在这一学期中,下文将准备了初中二年级下册数学教学设计如下:

一、教学目标:

通过本期的学习,要使学生在情感与态度上,认识到数学来源于实践,又反作用于实践,认识现实生活中图形间的数量关系,能够设计精美的图案,提高学生的审美情趣,培养学生实事求是、严肃认真的学习态度,激发学生的学习兴趣,培养学生对数学的热爱,对生活的热爱,在民主、和谐、合作、探究、有序、分享发现快乐,感受学习的快乐。对于过程与方法,通过学生积极参与对知识的探究,经历发现知识,发现知识间的内在联系,让学生经历发现知识道路上坎坎坷坷,达到深刻理解掌握知识的目的,达到漫江碧透,鱼翔浅底的境界,在经历这些活动中,提高学生的动手实践能力,提高学生的逻辑推理能力与逻辑思维能力,自主探究,解决问题的能力,提高运算能力,使所有学生在数学上都有不同的发展,尽可能接近其发展的最大值,培养学生良好的学习习惯,发展学生的非智力因素,使学生潜移默化的接受辩证唯物主义的熏陶,提高学生素质。

二、教材分析

本学期教学内容共计五章,知识的前后联系,教材的教学目标,重、难点分析如下:

第十六章 分式 本章的主要内容包括:分式的概念,分式的基本性质,分式的约分与通分,分式的加、减、乘、除运算,整数指数幂的概念及运算性质,分式方程的概念及可化为一元一次方程的分式方程的解法。

第十七章 反比例函数 函数是研究现实世界变化规律的一个重要模型,本单元学生在学习了一次函数后,进一步研究反比例函数。学生在本章中经历:反比例函数概念的抽象概括过程,体会建立数学模型的思想,进一步发展学生的'抽象思维能力;经历反比例函数的图象及其性质的探索过程,在交流中发展能力这是本章的重点之一;经历本章的重点之二:利用反比例函数及图象解决实际问题的过程,发展学生的数学应用能力;经历函数图象信息的识别应用过程,发展学生形象思维;能根据所给信息确定反比例函数表达式,会作反比例函数图象,并利用它们解决简单的实际问题。本章的难点在于对学生抽象思维的培养,以及提高数形结合的意识和能力。

第十八章 勾股定理 直角三角形是一种特殊的三角形,它有许多重要的性质,如两个锐角互余,30度角所对的直角边等于斜边的一半,本章所研究的勾股定理,也是直角三角形的性质,而且是一条非常重要的性质,本章分为两节,第一节介绍勾股定理及其应用,第二节介绍勾股定理的逆定理。

第十九章 四边形 四边形是人们日常生活中应用较广泛的一种图形,尤其是平行四边形、矩形、菱形、正方形、梯形等特殊四边形的用处更多。因此,四边形既是几何中的基本图形,也是空间与图形领域研究的主要对象之一。本章是在学生前面学段已经学过的四边形知识、本学段学过的多边形、平行线、三角形的有关知识的基础上来学习的,也可以说是在已有知识的基础上做进一步系统的整理和研究,本章内容的学习也反复运用了平行线和三角形的知识。从这个角度来看,本章的内容也是前面平行线和三角形等内容的应用和深化。

第二十章 数据的分析 本章主要研究平均数、中位数、众数以及极差、方差等统计量的统计意义,学习如何利用这些统计量分析数据的集中趋势和离散情况,并通过研究如何用样本的平均数和方差估计总体的平均数和方差,进一步体会用样本估计总体的思想。

三、提高学科教育质量的主要措施:

1、认真做好教学七认真工作。把教学七认真作为提高成绩的主要方法,认真研读新课程标准,钻研新教材,根据新课程标准,扩充教材内容,认真上课,批改作业,认真辅导,认真制作测试试卷,也让学生学会认真学习。

2、兴趣是最好的老师,爱因斯坦如是说。激发学生的兴趣,给学生介绍数学家,数学史,介绍相应的数学趣题,给出数学课外思考题,激发学生的兴趣。

3、引导学生积极参与知识的构建,营造民主、和谐、平等、自主、探究、合作、交流、分享发现快乐的高效的学习课堂,让学生体会学习的快乐,享受学习。引导学生写复习提纲,使知识来源于学生的构造。

4、引导学生积极归纳解题规律,引导学生一题多解,多解归一,培养学生透过现象看本质,提高学生举一反三的能力,这是提高学生素质的根本途径之一,培养学生的发散思维,让学生处于一种思如泉涌的状态。

5、运用新课程标准的理念指导教学,积极更新自己脑海中固有的教育理念,不同的教育理念将带来不同的教育效果。

6、培养学生良好的学习习惯,陶行知说:教育就是培养习惯,有助于学生稳步提高学习成绩,发展学生的非智力因素,弥补智力上的不足。

7、指导成立课外兴趣小组的民间组织,开展丰富多彩的课外活动,开展对奥数题的研究,课外调查,操作实践,带动班级学生学习数学,同时发展这一部分学生的特长。

8、开展分层教学,布置作业设置A、B、C三类分层布置分别适合于差、中、好三类学生,课堂上的提问要照顾好、中、差三类学生,使他们都等到发展。

9、进行个别辅导,优生提升能力,扎实打牢基础知识,对差生,一些关键知识,辅导差生过关,为差生以后的发展铺平道路。

10、站在系统的高度,使知识构筑在一个系统,上升到哲学的高度,八方联系,浑然一体,使学生学得轻松,记得牢固。

初中数学教学设计 篇31

一、案例实施背景

本节课是20xx-20xx学年度第一学期笔者在一乡镇中学的多媒体教室里上的一节课,课堂中数学优秀生、中等生及后进生都有,所用教材为人教版义务教育课程九年级数学(上册).

二、案例主题分析与设计

本节课是人教版义务教育教科书九年级上册第24章第1节内容——圆,圆的概念是中心对称的继续,是后面研究扇形、弧长的基础,是“空间与图形”的重要组成部分。《数学课程标准》强调:数学教学是数学活动的教学,是师生之间、生生之间交往互动与共同发展的过程;动手实践,自主探索,合作交流是孩子学习数学的重要方式;合作交流的学习形式是培养孩子积极参与、自主学习的有效途径。本节课将以“生活·数学”、“活动·思考”、“表达·应用”为主线开展课堂教学,以学生看得到、感受得到的基本素材创设问题情境,引导学生活动,并在活动中激发学生认真思考、积极探索,主动获取数学知识,从而促进学生研究性学习方式的形成,同时通过小组内学生相互协作研究,培养学生合作性学习精神。

三、案例教学目标

1、知识技能:探索圆的两种定义,理解并掌握弧、弦、优弧、劣弧、半圆等基本概念,能够从图形中识别.

2、数学思考:体会圆的不同定义方法,感受圆和实际生活的联系

3、解决问题:在解决问题过程中使学生体会数学知识在生活中的普遍性.

四、案例教学重、难点

1、重点:圆的两种定义的探索,能够解释一些生活问题.

2、难点:圆的运动式定义方法.

五、案例教学用具

1、教具:多媒体课件、圆规、细线、铅笔。

2、学具:圆规

六、案例教学过程

(一)创设问题情境,激发学生兴趣,引出本节内容

1、如图1,观察下列图形,从中找出共同特点.

图1

2、学生活动:学生观察图形,发现图中都有圆,然后回答问题,此时学生可以再举出一些生活中类似的图形.

3、教师活动:让学生观察图形,感受圆和实际生活的密切联系,同时激发学生的学习渴望以及探究热情.

(二)问题引申,探究圆的定义,培养学生的探究精神

1、如图2,观察下列画圆的过程,你能由此说出圆的形成过程吗?(课件展示画图过程)

图2

2、学生活动:学生小组合作、分组讨论,通过动画演示,发现在一个平面内一条线段OA绕它的一个端点O旋转一周,另一个端点形成的图形就是圆.

3、教师活动设计:在学生归纳的基础上,引导学生对圆的一些基本概念作一界定:圆:在一个平面内,一条线段OA绕它的一个端点O旋转一周,另一个端点A所形成的图形叫作圆;圆心:固定的端点叫作圆心;半径:线段OA的长度叫作这个圆的半径;圆的表示方法:以点O为圆心的圆,记作“⊙O”,读作“圆O”.

4、师生共同归纳:

(1)圆上各点到定点(圆心)的距离都等于定长(半径);

(2)到定点的距离等于定长的点都在同一个圆上.

(3)圆的第二定义:所有到定点的距离等于定长的点组成的图形叫作圆.

5、讨论圆中相关元素的定义.

(1)如图3,你能说出弦、直径、弧、半圆的定义吗?

图3 (2)学生活动:学生小组讨论,讨论结束后派一名代表发言进行交流,在交流中逐步完善自己的结果.

(3)教师活动:在学生交流的基础上得出上述概念的严格定义,对于学生的不准确的叙述,可以让学生讨论解决. 弦:连接圆上任意两点的线段叫作弦; 直径:经过圆心的弦叫作直径;

弧:圆上任意两点间的部分叫作圆弧,简称弧;

AB,读作“圆弧AB”或“弧弧的表示方法:以A、B为端点的弧记作AB”;

半圆:圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫作半圆.

优弧:大于半圆的弧叫作优弧,用三个字母表示,如图3中的 ABC;

. 劣弧:小于半圆的弧叫作劣弧,如图3中的BC

(三)讨论,车轮为什么做成圆形?如果做成正方形会有什么结果?(课件:车轮;课件:方形车轮)

1、学生活动:学生首先根据对圆的概念的'理解独立思考,然后进行分组讨论,最后进行交流.

2、教师活动设计:引导学生进行如下分析:如图4,把车轮做成圆形,车轮上各点到车轮中心(圆心)的距离都等于车轮的半径,当车轮在平面上滚动时,车轮中心与平面的距离保持不变,因此当车辆在平坦的路上行驶时,坐车的人会感觉到非常平稳;如果做成其他图形,比如正方形,正方形的中心(对角线的交点)距离地面的距离随着正方形的滚动而改变,因此中心到地面的距离就不是保持不变,因此不稳定.

图4

(四)应用提高,培养学生的应用意识和创新能力m的圆?说出你的理由

2、师生活动设计:教师鼓励学生独立思考,让学生表述自己的方法.根据圆的定义可以知道,圆是一条线段绕一个端点旋转一周,另一个端点形成的图形,所以可以用一条长5m的绳子,将绳子的一端A固定,然后拉紧绳子的另一端B,并绕A在地上转一圈.B所经过的路径就是所要的圆.cm,这棵红杉树平均每年半径增加多少?

图5

4、师生活动设计:首先求出半径,然后除以20即可.

解答:树干的半径是23÷2=11.5(cm).

平均每年半径增加11.5÷20=0.575(cm).

(五)归纳小结、布置作业

小结:圆的两种定义以及相关概念.

作业:请做一个正方形的车轮,体会在车轮滚动的过程中车身的情况

七、教学反思

1、教师角色的转变:本节课教师的角色从知识的传授者转变为学生学习的组织者、引导者、合作者与共同探讨者。在引导学生观察、画图、发现结论后,利用多媒体课件直观的、动态的展示圆的形成过程及车轮原理,激发了兴趣。

2、学生角色的转变:学生的角色从学会转变为会学。本节课学生不是停留在学会课本知识的层面上,而是站在研究者的角度深入其境。

3、课堂氛围的转变:整节课以 “流畅、开放、合作、“隐导”为基本特征。教师对学生的思维活动减少干预,教学过程呈现一种比较流畅的特征,整节课学生与学生、学生与教师之间以“对话”、“讨论”为出发点,以互助、合作为手段,以解决问题为目的,让学生在一个较为宽松的环境中自主选择获得成功的方向,判断发现的价值。

初中数学教学设计 篇32

课型:新授课

学习目标:

1.能根据具体问题中的数量关系列出一元二次方程并利用它解决具体问题.

2.学会运用数学知识分析解决实际问题,体会数学的价值。

重点:列一元二次方程解应用题

难点:学会分析问题中的等量关系

一、知识回顾

列方程解应用题的一般步骤是①②③④⑤⑥

二、自学教材、合作探究

1、自学教材45页,学习分析“探究一”中的数量关系

设每轮传染中平均一个人传染了x个人。开始有一人患了流感,第一轮的传染源就是这个人,他传染了x个人,那么,用代数式表示,第一轮后共有( )人患了流感;第二轮传染中,这些人中的每个人又传染了x个人,用代数式表示,第二轮后共有( )人患了流感。则可列方程为:

2、解这个方程,得

3、想一想:三轮传染后有多少人患流感?四轮呢?

三、检查自学效果

1.(xxxx年毕节地区)有一人患了流感,经过两轮传染后共有100人患了流感,那么每轮传染中,平均一个人传染的人数为( )

A.8人B.9人C.10人D.11人

2.生物兴趣小组的学生,将自己收集的标本向本组其他成员各赠送一件;全组共互赠了182件.如果全组有x名学生,则根据题意列出的方程是( )

A. B. C. D.

四、指导学生应用

某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮感染后就会有81台电脑被感染.请你用学过的知识分析,每轮感染中平均一台电脑会感染几台电脑?若病毒得不到有效控制,3轮感染后,被感染的'电脑会不会超过700台?(xxxx广东中考9分)

解:设每轮感染中平均每一台电脑会感染台电脑,1分

4分

解之得6分

8分

答:每轮平均每一台电脑会感染台电脑,3轮感染后,被感染的电脑超过700台。

五、巩固训练:

1.一个多边形的对角线有9条,则这个多边形的边数是( ).

A.6 B.7 C.8 D.9

2.元旦期间,一个小组有若干人,新年互送贺卡一张,已知全组共送贺卡132张,则这个小组共有( )人

A.11 B.12 C.13 D.14

3.九年级(3)班文学小组在举行的图书共享仪式上互赠图书,每个同学都把自己的图书向本组其他成员赠送一本,全组共互赠了240本图书,如果设全组共有x名同学,依题意,可列出的方程是( )

A.x(x+1)=240 B.x(x-1)=240

C.2x(x+1)=240 D.x(x+1)=240

4.参加中秋晚会的每两个人都握了一次手,所有人共握手10次,则有( )人参加聚会。

5.学校组织了一次篮球单循环比赛,共进行了15场比赛,那么有个球队参加了这次比赛。

6.甲型H1N1流感病毒的传染性极强,某地因1人患了甲型H1N1流感没有及时隔离治疗,经过两天传染后共有9人患了甲型H1N1流感,每天传染中平均一个人传染了几个人?如果按照这个传染速度,再经过5天的传染后,这个地区一共将会有多少人患甲型H1N1流感?

反思:2题和4题列方程时为何不一样呢?

六、归纳小结:

1.本节课我们学习了列一元一次方程解应用题,要注意解题步骤,特别地,要检验解的结果是否正确与符合题意,并注意题型的积累。

2.(方法归纳)解应用题地步骤是:审、设、列、解、检、答,关键是寻找等量关系,可以采用列式法,线段图示法,列表法等来帮助寻找,并注重检验。

七、效果测评:

1.解下列方程。(1)+10x+21=0(2)-x=1

2.两个相邻的偶数的积是240,求这两个偶数。

3.参加一次足球联赛的每两个队之间都进行两场比赛,共要比赛90场,共有多少个队参加比赛?

初中数学教学设计 篇33

1、该节课能以旧引新,寻找新旧知识的关联和生长点,注重知识的发生发展过程,能找到教材特点及本课的疑点,并恰当处理,在课堂上设疑问难,引导点拨,是一节很有个性特点的课

2、本节课各种学习活动设计具体、充分注意学生学习习惯的培养,因材施教,调动学生自主学习的积极性,遵循常规但不拘泥,根据学生的差异和特点,从具体到抽象对教材进行处理,是一节很成功的课

3、该节课教学过程设计完整有序,既体现知识结构,知识点,又注意突出学生活动设计,体现教学民主、培养学生良好的学习品质

4、课堂结构完整,密度恰当。

5、该节课很有艺术,教学安排清晰有序,科学规范。在教材处理上从具体到抽象,化难为易,以简驾繁突破难点。各环节有详细的练习,科学合理有效地培养学生自主,探究,创新能力的发展。

6、本节课非常成功,设计突出了以学生为本的理念、全面培养学生素养、自主合作探究学习的理念。教师配以亲切活泼的教态,能较为恰当地运用丰富的表扬手段,让学生在学习中感受到成功的快乐。

7、该节课教学重难点把握准确,教学内容主次分明,抓住关键;结构合理,衔接自然紧凑,组织严密,采用有效的教学手段,引导自主探究、合作交流,成功地教学生“会学”。

8、该节课堂结构层次清楚、运用恰当的`教学方法和手段启迪学生思维、解决重点、突出难点。精心设计练习,并在整个教学过程中注重学生能力的培养,是一节优秀的课。

9、该节课很有创意,对教材把握透彻、挖掘深入、处理新颖,针对学生基础和学生发展性目标,设计各种教学活动,引导学生自主学习,有条理地将旧知识综合进行运用。

10、本节课教学目标包括思想教育要求和知识要求两部分,在课堂教学中注重后进生的补辅,尖子生的拔尖工作,做到对学生动之以情,爱之以诚,使网页比赛取得完美的成果。

11、该节课教学设计非常巧妙,结合教材特点,学生、教师实际,一法为主,多法配合,优化组合。练习提供了学生喜闻乐见的资料,课堂练习紧扣重点,并注意在“趣”字上下功夫。

12、该节课教学环节清晰、完整具体,能活化教学内容,使之生活化,课堂教学的开放性、师生关系的民主性、教学模式的多样性,培养学生良好的学习品质,体显出该教师教学能力非常强。

13、该节课很有特色,创设情景,通过建站,让学生亲自体验、实践、感悟,收集、整理、筛选资料,突出体现了以人为本、以学生发展为本的教育理念。是一节很成功的课。

14、本节课很有艺术,在教材内容的基础上作了适当的必要的扩展,精心安排学生自主学习、质疑、操作实践等活动以启发式、讨论式为主。学生在完成任务的过和程中学会合作。

15、该节课重点突出,目标全面、准确、具体,整体现知识与能力、方法与过程、情感态度与价值观三个维度,布局合理,设计各种教学活动,引导学生自主学习,有条理地将旧知识综合进行运用。

16、该节课堂结构清晰、运用恰当的教学方法和手段启迪学生思维、解决重点、突出难点。根据班级实际情况,精心设计练习,并在整个教学过程中注重因材施教,是一节优秀的课。

17、该节课十分有创意,教学目的明确,方法得当、语言清晰,具有感染力,习题典型,题量适当,激发学生兴趣,引导自主探究、合作交流完成任务,整个课堂效率非常高。

18、本节课对教学内容把握透彻、挖掘深入、处理新颖,在课堂教学中,对重难点言简意赅,分析透彻。对练习以思维训练为核心,落实双基,是一节非常成功的课

初中数学教学设计 篇34

★目标预设

一、知识与能力

借助生活中的实例会判断一个数是正数还是负数,能用正负数表示具有相反意义的量

二、过程与方法

1、过程:通过实例引入负数,从而指导学生会识别正负数及其表示法,能应用正负数表示具有相反意义的量。

2、方法:讨论法、探究法、讲授法、观察法。

三、情感、态度、价值观

乐于接触社会环境中的数学信息,愿意谈论数学话题,在数学活动中发挥积极作用

★教学重难点

一、重点:理解正数和负数的概念,判断一个数是正数还是负数,应用正负数表示具有相反意义的量

二、难点:负数的意义,理解具有相反意义的量。

★教学准备

带有负数的实例若干

★预习导学

在生活、生产、科研中,经常遇到数的表示与数的运算的问题。例如,

⑴天气预报20xx年11月某天北京的温度为-3~3℃,它的确切含义是什么?这一天北京的温差是多少?

⑵有三个队参加的足球比赛中,红队胜黄队(4∶1),黄队胜蓝队(1∶0),蓝队胜红队(1∶0),如何确定三个队的净胜球数与排名顺序?

⑶某机器零件的长度设计为100mm,加工图纸标注的尺寸为100±0.5(mm),这里的±0.5代表什么意思?合格产品的长度范围是多少?(问题1-3友情提示、全班交流、教师点评)

★教学过程

一、创设情景,谈话引入

在小学里我们已经学过哪些类型的数(自然数和分数),它们都是由实际需要而产生的,由记数、排序产生数1,2,3……,由表示“没有”“空位”,产生数0,由分物、测量产生分数 , ,……,但在预习导学中表示温度、净胜球数、加工允许误差时用到数

-3,3,2,-2,0,+0.5,-0.5。

二、精讲点拨,质疑问难

这里出现了一种新数:-3,-2,-0.5。在前面的实际问题中它们分别表示:零下3摄氏度,净输2球,小于设计尺寸0.5mm,像-3,-2,-0.5这样的数(即在以前学过的0以外的数前面加上负号“-”的数)叫做负数。而3,2,+0.5在问题中分别表示零上3摄氏度,净胜2球,大于设计尺寸0.5mm,它们与负数具有相反的意义。我们把这样的`数(即以前学过的0以外的数)叫做正数

数字前的“+”,“-”分别读“正”,“负”。

正数前的“+”可加也可省略。

数0既不是正数,也不是负数。

把0以外的数分成正数和负数,表示具有相反意义的量。

三、课堂活动,强化训练

小组讨论:生活中你们见过带“-”的数吗?(代表发言,教师适当表扬学生)

例1:下面哪些数是正数,哪些是负数。(学生独立思考,个别回答,教师点评)

-11,4.8,+73,-2.7, ,- ,-8.12,100

例2:在知识竞赛中,如果用+10分表示加10分,那么扣20分怎样表示?(个别回答,学生点评)

练习:见书本P5练习(学生独立完成,教师巡视,个别指导)

四、延伸拓展,巩固内化

例3:(1)一个月内,小明体重增加2千克,小华体重减少一千克,小强体重没变化,写出他们这个月的体重增长值(减少值呢)?(小组讨论,代表发言,教师点评)

(2)20xx年下列国家的商品进出口总额比上年的变化情况是:

美国减少6.4%,德国增长1.3%

法国减少2.4%,英国减少3.5%

意大利增长0.2%, 中国增长7.5%

写出这些国家20xx年商品进出口总额的增长率。(学生独立思考,教师点评)

(3)一潜水艇所在高度为-50米,一条鲨鱼在潜水艇上方10米处,鲨鱼所在的高度是多少?

(4)向北走-20米所表示的意思是什么?

(5)某银行职员在一天内经办了五笔业务:取出10000元,存进25000元,取出5000元,存进8000元。求该职员在一天内使银行变化了多少元?

(6)在一次数学竞赛中,成绩在120分以上为优秀120分到119分为合格,100分以下的不合格。老师将他班上的十位竞赛成绩简记为:-10、-5、0、-28、+10、20、-3、+15、+8、-23,则这十位同学中优秀的有几名?

(7)判断下列各题:

①正数就是自然数

②既不是正数也不是负数的数不存在

③带正号的数为正数带负号的数为负数

④零是最小的整数

⑤-a是负数

练习:见书本P6(独立完成,教师巡视,适时指导,得出结论)

五、布置作业,当堂反馈

见书本P7 《当堂反馈》

初中数学教学设计 篇35

摘 要:本着对课堂练习分层教学设计的要求与目的,本节课设计了三个层次。针对学困生的特殊情况,课堂练习通过诵读定理和抄写例题来使其加深印象;在巩固练习中中等生要求书面写出步骤并进行展示;对于优等生在快结束本节课时抛出变式让他们进行思考,并交流思路。这三个层次都贯穿于整个课堂教学,使每位学生上课都有事可做,根据自己的能力来解决能力范围内的问题。

关键词:相切;环节说明;分层体现;

一、案例背景介绍

(一)教学环境

在我们着手进行课题《初中数学分层教学方式与策略研究》的研究开始后,大家齐心协力探索、研究方法,组内各种分层招数可谓是百花齐放,为此我代表课题组上了一节分层教学的展示课,以供同仁观摩点评,为促进数学教学的分层设计向更好的方向前行作贡献。

(二)学生情况

我校学生大部分来自韩庄镇不同的自然村,由于小学地域的不同,所以学生的基础各不相同,很多学生的基础还相当薄弱。因此这种情况特别适合分层教学。

(三)教材情况

本课是人教版初三数学上册第24章圆第2节点和圆、直线和圆的位置关系中的一个课时:直线和圆相切的情况。学生已经有了点和圆的位置关系的基础以及直线和圆的位置关系的数量的认识,本节课研究直线与圆的特殊位置关系相切,将相切从位置到数量的逻辑自然过渡,进而引出圆的切线的判定和性质。重点是圆的切线的判定定理和性质定理。难点是判定定理的理解和性质定理证明中反证法的理解。

二、案例内容设计及说明

环节一:复习引入

通过回顾旧知再次加深圆与直线的位置关系,在全班集体朗读中体会d与r的关系,并顺势将位置关系量化这一问题显化,同时自然引出特殊情况――相切

环节说明:俗话说书读百遍,其意自现。数学概念在朗读中更能逐渐理解其本质,因此不光语文需要朗读,数学也要朗读。而且针对我班学困生上课听不懂,不会做的现象,这样来设计复习方式更能调动我班学生学习的动力,让每位学生都参与到课堂教学中来。这也是这个环节分层的体现。

环节二:新知探究

活动

1、引导学生从直线与圆相切的位置及数量关系上来深入探究,通过动态演示来理解一条直线何时变成圆的切线。

环节说明:上节课得到的圆与直线相切是数量上的关系,通过动态的演示让学生明确位置的变化,从而总结出切线的判定。但是引导很重要,从两个方面去观察:直线经过哪里?与圆的半径有什么位置关系?需要老师点拨。并要等待学生来总结,不能操之过急。分层体现1对观察的.结果分别让两位程度较差的学生回答,再让中等程度的学生来总结;体现2对定理的数学表达让全体学生写在练习本上,老师选择展示,并修改;体现3对总结出的判定进行朗读。

活动

2、将判定的题设和结论互换后的探究。

环节说明:反证法在过三点做圆时已有所涉及,所以在这里用反证法证明切线的性质时让学生互相交流讨论然后进行汇报就行,不要进行过多的引申,否则淡化了主题。分层体现1讨论交流时采取师傅和徒弟在同一组,师傅负责解释证明的方法;体现2数学语言的书写让学生自己写并派代表写在黑板上。

环节三:巩固和应用

通过判断题加深对切线的判定和性质的理解。通过师生共同分析解决几何解答证明题,并由学生书写证明步骤。

环节说明:判断题中设置了3道小题,并给出了反例,能使学生更加明确定理的意义。这里教学的分层体现在针对反例来问学困生为什么不对,让学生说出违背了所需条件的哪一条,强化切线判定条件在这部分学生头脑中的印象。例题的分析采取了小组讨论交流的方法,与环节二中的分组一样,分层体现在“师带徒”弄清解题思路,师傅增强了解题的逻辑性,更严密,徒弟学会了解题的分析,拓宽了视野,打开了思路。在有思路的前提下,全班安静书写步骤。还可以展示在投影下,由学生来评判书写的是否清楚。

环节四:课堂小结

在小结中,除了总结出本节课所学的判定和性质外,将相关的判定和性质做一归纳很有必要,“在不断的总结中收获、进步”不是吗?同时提出下节课要学习的相关性质更能激起学生学习的积极性。

环节说明:在小结的分层中判定由程度稍差点的学生总结,哪怕照着书上找都行,并进行诵读,使其再次熟知所学知识。在性质的总结中,老师抛出两条本节未涉及的性质给学生,让学生课后思考证明,在下节课时可由学生简要发表见解并证明。

环节五:拓展练习

通过引导学生添加辅助线,点拨学生圆中常用辅助线的做法,分情况添加恰当的辅助线。这两个练习旨在拓展尖子生的思维。

环节六:作业布置

通过分层布置,使每位学生都能在自己能力范围内进行巩固练习。

环节说明:作业

1、重点面向学困生考察其掌握基础的程度。作业

2、针对待优生夯实基础的基础上,提高其运用能力。作业

3、是设计的培优计划,对学有余力的学生来说是个很好的锻炼机会。

三、案例分析与反思

实际上本节课中圆的切线的判定定理是为了便于应用而对直线和圆相切的定义改写得到的一种形式,而圆的切线的性质定理的证明仅仅要求学生再次感受反证法,并不要求会应用,所以本节的设计在分层中很注重理解和感知,通过互帮互助和朗读感知达到难点的突破,另外圆是学生学习的第一个曲线形,由直线形到曲线形,在知识上是一个飞跃,本节利用图形运动变化过程发现其中图形的性质,做好了知识前后的衔接,同时加强了新旧知识的联系,发挥出了知识的迁移作用。类比也是本节课所用到的一个重要的学习方法,而且在教授过程中难度的控制非常适当,分层的影子处处可见。纵观整节课的分层之处进入都很自然,也落到了实处,但分层效果的检测没有体现出来,这也是遗憾之处。

初中数学教学设计 篇36

课型:新授课

学习目标:

1.能根据具体问题中的数量关系列出一元二次方程并利用它解决具体问题.

2.学会运用数学知识分析解决实际问题,体会数学的价值。

重点:列一元二次方程解应用题

难点:学会分析问题中的等量关系

一、知识回顾

列方程解应用题的一般步骤是①②③④⑤⑥

二、自学教材、合作探究

1、自学教材45页,学习分析“探究一”中的数量关系

设每轮传染中平均一个人传染了x个人。开始有一人患了流感,第一轮的传染源就是这个人,他传染了x个人,那么,用代数式表示,第一轮后共有( )人患了流感;第二轮传染中,这些人中的每个人又传染了x个人,用代数式表示,第二轮后共有( )人患了流感。则可列方程为:

2、解这个方程,得

3、想一想:三轮传染后有多少人患流感?四轮呢?

三、检查自学效果

1.(xxxx年毕节地区)有一人患了流感,经过两轮传染后共有100人患了流感,那么每轮传染中,平均一个人传染的人数为( )

A.8人B.9人C.10人D.11人

2.生物兴趣小组的学生,将自己收集的标本向本组其他成员各赠送一件;全组共互赠了182件.如果全组有x名学生,则根据题意列出的方程是( )

A. B. C. D.

四、指导学生应用

某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮感染后就会有81台电脑被感染.请你用学过的知识分析,每轮感染中平均一台电脑会感染几台电脑?若病毒得不到有效控制,3轮感染后,被感染的电脑会不会超过700台?(xxxx广东中考9分)

解:设每轮感染中平均每一台电脑会感染台电脑,1分

4分

解之得6分

8分

答:每轮平均每一台电脑会感染台电脑,3轮感染后,被感染的电脑超过700台。

五、巩固训练:

1.一个多边形的对角线有9条,则这个多边形的边数是( ).

A.6 B.7 C.8 D.9

2.元旦期间,一个小组有若干人,新年互送贺卡一张,已知全组共送贺卡132张,则这个小组共有( )人

A.11 B.12 C.13 D.14

3.九年级(3)班文学小组在举行的'图书共享仪式上互赠图书,每个同学都把自己的图书向本组其他成员赠送一本,全组共互赠了240本图书,如果设全组共有x名同学,依题意,可列出的方程是( )

A.x(x+1)=240 B.x(x-1)=240

C.2x(x+1)=240 D.x(x+1)=240

4.参加中秋晚会的每两个人都握了一次手,所有人共握手10次,则有( )人参加聚会。

5.学校组织了一次篮球单循环比赛,共进行了15场比赛,那么有个球队参加了这次比赛。

6.甲型H1N1流感病毒的传染性极强,某地因1人患了甲型H1N1流感没有及时隔离治疗,经过两天传染后共有9人患了甲型H1N1流感,每天传染中平均一个人传染了几个人?如果按照这个传染速度,再经过5天的传染后,这个地区一共将会有多少人患甲型H1N1流感?

反思:2题和4题列方程时为何不一样呢?

六、归纳小结:

1.本节课我们学习了列一元一次方程解应用题,要注意解题步骤,特别地,要检验解的结果是否正确与符合题意,并注意题型的积累。

2.(方法归纳)解应用题地步骤是:审、设、列、解、检、答,关键是寻找等量关系,可以采用列式法,线段图示法,列表法等来帮助寻找,并注重检验。

七、效果测评:

1.解下列方程。(1)+10x+21=0(2)-x=1

2.两个相邻的偶数的积是240,求这两个偶数。

3.参加一次足球联赛的每两个队之间都进行两场比赛,共要比赛90场,共有多少个队参加比赛?

初中数学教学设计 篇37

一、背景

新课标要求,应让学生在实际背景中理解基本的数量关系和变化规律,注重使学生经历从实际问题中建立数学模型、估计、求解、验证解的正确性与合理性的过程。在实际工作中让学生学会从具体问题情景中抽象出数学问题,使用各种数学语言表达问题、建立数学关系式、获得合理的解答、理解并掌握相应的数学知识与技能,这些多数教师都注意到了,但要做好,还有一定难度。

二、教学片段

在刚过去的这个学期,我上了一节“一元一次不等式组的应用”。

出示例题:小宝和爸爸、妈妈三人在操场上玩跷跷板,爸爸体重为72千克,坐在跷跷板的一端,体重只有妈妈一半的小宝和妈妈一同坐在另一端。这时,爸爸的一端仍然着地,后来小宝借来一副质量为6千克的哑铃,加在他和妈妈坐的一端,结果,爸爸被高高地跷起。猜猜看,小宝的体重约多少千克?

我问学生:“你们玩过跷跷板吗?先看看题,一会请同学复述一下。”学生复述后,基本已经熟悉了题目。我接着让学生思考:他们三人坐了几次跷跷板?第一次坐时情况怎样?第二次呢?学生议论了一会儿,自主发言,很快发现本题中存在的两种文字形式的不等关系:

爸爸体重>小宝体重+妈妈体重

爸爸体重<小宝体重+妈妈体重+一副哑铃重量

我引导:你还能怎么判断小宝体重?学生安静了几分钟后,开始议论。一学生举手了:“可以列不等式组。”我给出提示:“小宝的体重应该同时满足上述的两个条件。怎么把这个意思表达成数学式子呢?”这时学生们七嘴八舌地讨论起来,都抢着回答,

我注意到一位平时不爱说话的学生紧锁眉头,便让他发言:“可以设小宝的体重为x千克,能列出两个不等式。可是接下来我就不知道了。”我听了心中一动,意识到这应是思想渗透的好机会,便解释说:“我们在初中会遇到许多问题都可以用类似的方法来研究解决,比方说前面列方程组”不等我说完,学生都齐声答:“列不等式组。”全班12小组积极投入到解题活动中了。5分钟后,我请学生板演,自己下去巡查、指导,发现学生的解题思路都很清楚,只是部分学生对答案的表达不够准确。于是提议学生说说列不等式组解应用题分几步,应注意什么。此时学生也基本上形成了对不等式方法的完整认识。我便出示拓展应用课件:

一次考试共25道选择题,做对一道得4分,做错一道减2分,不做得0分。若小明想确保考试成绩在60分以上,那么他至少要做对多少题?

设置这道题,既有调查本节课效果的.意图,也想巩固拓展一下学生的思维。没料到相当多学生对“至少”一词理解不准确,导致失误。这正好让我们的“本课小结”填补了一个空白——弄清题目中描述数量关系的关键词才是解题的关键。

三、反思

本节课讲完后,我感到一丝欣慰,看到孩子们跃跃欲试的学习劲头,突然领悟到:教师的教学行为至关重要,成功的教学,能开启学生心灵的窗户,能帮学生树立学习的自信心。

本节课我有几个深刻的感受:

1、在课前准备的时候,我就觉得不等式组的应用是个难点。所以在课堂教学中设置了几个台阶,这也正好符合了循序渐进的教学原则。

2、例题贴近学生实际,我在教学中有采用了更亲近的教学语言,有利于激发学生的探究欲望。

3、关注学生的学习状态,随时采取灵活适宜的教学方法,师生互动,生生互动,课堂教学才更加有效。

4、学生在学习后,确实感受到“不等式的方法”就像方程的方法一样是从字母表示数开始研究解决的。这种方法可以帮助我们用数学的方式解决实际问题。

初中数学教学设计 篇38

一、学情分析

八年级学生具有强烈的好胜心和求知欲,抽象思维趋于成熟,形象直观思维能力较强,具有一定的独立思考、实践操作、合作交流、归纳概括等能力,能进行简单的推理

二、教材分析

这节课是人教版八年级第十八章第一节的内容,教学内容是勾股定理公式的推导、证明及其简单的应用。本节课是在学生已经掌握了直角三角形有关性质的基础上进行学习的,勾股定理是几何中最重要的定理之一,它揭示的是直角三角形中三条边之间的数量关系,将数与形密切联系起来,为以后学习四边形、圆、解直角三角形等数学知识奠定了基础。它有着丰富的历史背景,在数学的发展中起着重要的作用,在现实生活中也有着广泛的应用。学生通过对勾股定理的学习,可以在原有的基础上对直角三角形有进一步的认识和理解。

三、教学目标设计

知识与技能

探索勾股定理的内容并证明,能够运用勾股定理进行简单计算和运用

过程与方法

(1)通过观察分析,大胆猜想,探索勾股定理,培养学生动手操作、合作交流、逻辑推理的能力。

(2)在探索勾股定理的过程中,让学生经历“观察—猜想—归纳—验证”的数学过程,并体会数形结合和从特殊到一般的思想方法。

情感态度与价值

(1)在探索勾股定理的过程中,培养学生的合作交流意识和探索精神,增进数学学习的信心,感受数学之美,探究之趣。

(2)利用远程教育资源介绍中国古代勾股方面的成就,激发学生热爱祖国和热爱祖国悠久文化的思想感情,培养学生的民族自豪感和钻研精神。

四、教学重点难点

教学重点

探索和证明勾股定理 ·教学难点

用拼图的方法证明勾股定理

五、教学方法

(学法)“引导探索法”

(自主探究,合作学习,采用小组合作的方法。

六、教具准备

课件、三角板

七、教学过程设计

教学环节1

教学过程:创设情境探索新知 教师活动:出示第24届国际数学家大会的会徽的图案向学生提问

(1) 你见过这个图案吗?

(2) 你听说过“勾股定理”吗?

学生活动:学生思考回答

设计意图:目的在于从现实生活中提出“赵爽弦图”,进一步激发学生积极主动地投入到探索活动中,同时为探索勾股定理提供背景材料。

教学环节2 教学过程:实验操作获取新知归纳验证完善新知

教师活动:出示课件,引导学生探索

学生活动:猜想实验合作交流画图测量拼图验证

设计意图:渗透从特殊到一般的数学思想。为学生提供参与数学活动的时间和空间,发挥学生的'主体作用;让学生自己动手拼出赵爽弦图,培养他们学习数学的成就感。通过拼图活动,使学生对定理的理解更加深刻,体会数学中的数形结合思想,调动学生思维的积极性,激发学生探求新知的欲望。给学生充分的时间与空间讨论、交流,鼓励学生敢于发表自己的见解,感受合作的重要性。

教学环节3 教学过程:解决问题应用新知

教师活动:出示例题和练习

学生活动:交流合作,解决问题

设计意图:通过运用勾股定理对实际问题的解释和应用,培养学生从身边的事物中抽象出几何模型的能力,使学生更加深刻地认识数学的本质:数学来源于生活,并能服务于生活,顺利解决如何将实际问题转化为求直角三角形边长的问题,培养学生的数学应用意识。

教学环节4 教学内容:课堂小结巩固新知布置作业

教师活动:引导学生小结

学生活动:讨论交流、自由发言

设计意图:既引导学生从面积的角度理解勾股定理,又从能力、情感、态度等方面关注学生对课堂整体感受,在轻松愉快的气氛中体会收获的喜悦。

通过布置课外作业,给学生留有继续学习的空间和兴趣,及时获知学生对本节课知识的掌握情况,适当的调整教学进度和教学方法,并对学习有困难的学生给与指导。

八、板书设计

勾股定理:如果直角三角形的两直角边分别为a和b,斜边为c,那么 a2+b2=c2。

九、习题拓展

如图,将长为10米的梯子AC斜靠在墙上,BC长为6米。

(1)求梯子上端A到墙的底端B的距离AB。

(2)若梯子下部C向后移动2米到C1点,那么梯子上部A向下移动了多少米?

十、作业设计

1。收集有关勾股定理的证明方法, 下节课展示、交流。

2。做一棵奇妙的勾股树(选做)

初中数学教学设计 篇39

一、教材分析

本节课是人民教育出版社义务教育课程标准实验教科书(六三学制)七年级下册第七章第三节多边形内角和。

二、教学目标

1、知识目标:了解多边形内角和公式。

2、数学思考:通过把多边形转化成三角形体会转化思想在几何中的运用,同时让学生体会从特殊到一般的认识问题的方法。

3、解决问题:通过探索多边形内角和公式,尝试从不同角度寻求解决问题的方法并能有效地解决问题。

4、情感态度目标:通过猜想、推理活动感受数学活动充满着探索以及数学结论的确定性,提高学生学习热情。

三、教学重、难点

重点:探索多边形内角和。

难点:探索多边形内角和时,如何把多边形转化成三角形。

四、教学方法:

引导发现法、讨论法

五、教具、学具

教具:多媒体课件

学具:三角板、量角器

六、教学媒体:

大屏幕、实物投影

七、教学过程:

(一)创设情境,设疑激思

师:大家都知道三角形的内角和是180,那么四边形的内角和,你知道吗?

活动一:探究四边形内角和。

在独立探索的基础上,学生分组交流与研讨,并汇总解决问题的方法。

方法一:用量角器量出四个角的度数,然后把四个角加起来,发现内角和是360。

方法二:把两个三角形纸板拼在一起构成四边形,发现两个三角形内角和相加是360。

接下来,教师在方法二的基础上引导学生利用作辅助线的方法,连结四边形的对角线,把一个四边形转化成两个三角形。

师:你知道五边形的内角和吗?六边形呢?十边形呢?你是怎样得到的?

活动二:探究五边形、六边形、十边形的内角和。

学生先独立思考每个问题再分组讨论。

关注:

(1)学生能否类比四边形的方式解决问题得出正确的结论。

(2)学生能否采用不同的方法。

学生分组讨论后进行交流(五边形的内角和)

方法1:把五边形分成三个三角形,3个180的和是540。

方法2:从五边形内部一点出发,把五边形分成五个三角形,然后用5个180的和减去一个周角360。结果得540。

方法3:从五边形一边上任意一点出发把五边形分成四个三角形,然后用4个180的和减去一个平角180,结果得540。

方法4:把五边形分成一个三角形和一个四边形,然后用180加上360,结果得540。

师:你真聪明!做到了学以致用。

交流后,学生运用几何画板演示并验证得到的方法。

得到五边形的内角和之后,同学们又认真地讨论起六边形、十边形的内角和。类比四边形、五边形的讨论方法最终得出,六边形内角和是720,十边形内角和是1440。

(二)引申思考,培养创新

师:通过前面的讨论,你能知道多边形内角和吗?

活动三:探究任意多边形的内角和公式。

思考:

(1)多边形内角和与三角形内角和的关系?

(2)多边形的边数与内角和的关系?

(3)从多边形一个顶点引的对角线分三角形的个数与多边形边数的关系?

学生结合思考题进行讨论,并把讨论后的结果进行交流。

发现1:四边形内角和是2个180的和,五边形内角和是3个180的和,六边形内角和是4个180的和,十边形内角和是8个180的和。发现2:多边形的边数增加1,内角和增加180。

发现3:一个n边形从一个顶点引出的对角线分三角形的个数与边数n存在(n—2)的关系。

得出结论:多边形内角和公式:(n—2)·180。

(三)实际应用,优势互补

1、口答:(1)七边形内角和()

(2)九边形内角和()

(3)十边形内角和()

2、抢答:(1)一个多边形的内角和等于1260,它是几边形?

(2)一个多边形的内角和是1440,且每个内角都相等,则每个内角的度数是()。

3、讨论回答:一个多边形的`内角和比四边形的内角和多540,并且这个多边形的各个内角都相等,这个多边形每个内角等于多少度?

(四)概括存储

学生自己归纳总结:

1、多边形内角和公式

2、运用转化思想解决数学问题

3、用数形结合的思想解决问题

(五)作业:练习册第93页1、2、3

八、教学反思:

1、教的转变

本节课教师的角色从知识的传授者转变为学生学习的组织者、引导者、合作者与共同研究者,在引导学生画图、测量发现结论后,利用几何画板直观地展示,激发学生自觉探究数学问题,体验发现的乐趣。

2、学的转变

学生的角色从学会转变为会学。本节课学生不是停留在学会课本知识层面,而是站在研究者的角度深入其境。

3、课堂氛围的转变

整节课以“流畅、开放、合作、隐导”为基本特征,教师对学生的思维减少干预,教学过程呈现一种比较流畅的特征。整节课学生与学生,学生与教师之间以“对话”、“讨论”为出发点,以互助合作为手段,以解决问题为目的,让学生在一个比较宽松的环境中自主选择获得成功的方向,判断发现的价值。

初中数学教学设计 篇40

教材与学情:

解直角三角形的应用是在学生熟练掌握了直角三角形的解法的基础上进行教学,它是把一些实际问题转化为解直角三角形的数学问题,对分析问题能力要求较高,这会使学生学习感到困难,在教学中应引起足够的重视。

信息论原理:

将直角三角形中边角关系作为已有信息,通过复习(输入),使学生更牢固地掌握(贮存);再通过例题讲解,达到信息处理;通过总结归纳,使信息优化;通过变式练习,使信息强化并能灵活运用;通过布置作业,使信息得到反馈。

教学目标:

⒈认知目标:

⑴懂得常见名词(如仰角、俯角)的意义

⑵能正确理解题意,将实际问题转化为数学

⑶能利用已有知识,通过直接解三角形或列方程的方法解决一些实际问题。

⒉能力目标:培养学生分析问题和解决问题的能力,培养学生思维能力的灵活性。

⒊情感目标:使学生能理论联系实际,培养学生的对立统一的观点。

教学重点、难点:

重点:利用解直角三角形来解决一些实际问题

难点:正确理解题意,将实际问题转化为数学问题。

信息优化策略:

⑴在学生对实际问题的探究中,神经兴奋,思维活动始终处于积极状态

⑵在归纳、变换中激发学生思维的灵活性、敏捷性和创造性。

⑶重视学法指导,以加速教学效绩信息的顺利体现。

教学媒体:

投影仪、教具(一个锐角三角形,可变换图2-图7)

高潮设计:

1、例1、例2图形基本相同,但解法不同;这是为什么?学生的思维处于积极探求状态中,从而激发学生学习的积极性和主动性

2、将一个锐角三角形纸片通过旋转、翻折等变换,使学生对问题本质有了更深的认识

教学过程:

一、复习引入,输入并贮存信息:

1.提问:如图,在Rt△ABC中,∠C=90°。

⑴三边a、b、c有什么关系?

⑵两锐角∠A、∠B有怎样的关系?

⑶边与角之间有怎样的关系?

2.提问:解直角三角形应具备怎样的条件:

注:直角三角形的边角关系及解直角三角形的条件由投影给出,便于学生贮存信息

二、实例讲解,处理信息:

例1.(投影)在水平线上一点C,测得同顶的仰角为30°,向山沿直线前进20为到D处,再测山顶A的仰角为60°,求山高AB。

⑴引导学生将实际问题转化为数学问题。

⑵分析:求AB可以解Rt△ABD和

Rt△ABC,但两三角形中都不具备直接条件,但由于∠ADB=2∠C,很容易发现AD=CD=20米,故可以解Rt△ABD,求得AB。

⑶解题过程,学生练习。

⑷思考:假如∠ADB=45°,能否直接来解一个三角形呢?请看例2。

例2.(投影)在水平线上一点C,测得山顶A的仰角为30°,向山沿直线前进20米到D处,再测山顶A的仰角为45°,求山高AB。

分析:

⑴在Rt△ABC和Rt△ABD中,都没有两个已知元素,故不能直接解一个三角形来求出AB。

⑵考虑到AB是两直角三角形的直角边,而CD是两直角三角形的直角边,而CD均不是两个直角三角形的直角边,但CD=BC=BD,启以学生设AB=X,通过列方程来解,然后板书解题过程。

解:设山高AB=x米

在Rt△ADB中,∠B=90°∠ADB=45°

∵BD=AB=x(米)

在Rt△ABC中,tgC=AB/BC

∴BC=AB/tgC=√3(米)

∵CD=BC-BD

∴√3x-x=20解得x=(10√3+10)米

答:山高AB是(10√3+10)米

三、归纳总结,优化信息

例2的`图开完全一样,如图,均已知∠1、∠2及CD,例1中∠2=2∠1求AB,则需解Rt△ABD例2中∠2≠2∠1求AB,则利用CD=BC-BD,列方程来解。

四、变式训练,强化信息

(投影)练习1:如图,山上有铁塔CD为m米,从地上一点测得塔顶C的仰角为∝,塔底D的仰角为β,求山高BD。

练习2:如图,海岸上有A、B两点相距120米,由A、B两点观测海上一保轮船C,得∠CAB=60°∠CBA=75°,求轮船C到海岸AB的距离。

练习3:在塔PQ的正西方向A点测得顶端P的

仰角为30°,在塔的正南方向B点处,测得顶端P的仰角为45°且AB=60米,求塔高PQ。

教师待学生解题完毕后,进行讲评,并利用教具揭示各题实质:

⑴将基本图形4旋转90°,即得图5;将基本图形4中的Rt△ABD翻折180°,即可得图6;将基本图形4中Rt△ABD绕AB旋转90°,即可得图7的立体图形。

⑵引导学生归纳三个练习题的等量关系:

练习1的等量关系是AB=AB;练习2的等量关系是AD+BD=AB;练习3的等量关系是AQ2+BQ2=AB2

五、作业布置,反馈信息

《几何》第三册P57第10题,P58第4题。

板书设计:

解直角三角形的应用

例1已知:………例2已知:………小结:………

求:………求:………

解:………解:………

练习1已知:………练习2已知:………练习3已知:………

求:………求:………求:………

解:………解:………解:………

初中数学教学设计精选15篇

作为一名老师,编写教学设计是必不可少的,借助教学设计可以提高教学效率和教学质量。教学设计要怎么写呢?以下是小编收集整理的初中数学教学设计,欢迎大家分享。

初中数学教学设计 篇41

[教学目标]

1.会说出怎样的两个图形是全等形,并会用符号语言表示两个三角形全等。

2.知道全等三角形的有关概念,会在全等三角形中正确地找出对应顶点、对应边、对应角。

3.会说出全等三角形的对应边、对应角相等的性质。

此外,通过把两个重合的三角形变换其中一个的位置,使它们呈现各种不同位置的活动,让学生从中了解并体会图形变换的思想,逐步培养学生

动态的研究几何图形的意思。

[引导性材料]

我们身边经常看到"一模一样"的图形,比如同一版面的记念邮票,同一版面的人民币、用两张纸叠在一起剪出的两张窗花等,请大家举出这类图形的例子。

说明:让学生在举出实际例子以及对所举例子的辨析中获得对全等图形尽可能多的精确的感知。

[教学设计]

问题1:几何中,我们把上述所例举的"一模一样"的图形叫做"全等形",以下是描述全等形的三种不同的说法,你认为哪种说法是恰当的?(l)形状相同的两个图形叫全等形。

(2)大小相等的两个图形叫全等形。

(3)能够完全重合的两个图形叫全等形。

(学生阅读课本第21页,全等三角形的有关概念、全等三解形的表示方法。)操作和观察(学生用两块透明塑料片叠合在一起,任意剪两个全等的三角形,教师制作两个全等三角形的复合投影片演示。)(1)将重合的两块全等三角形塑料片中的一个沿着一边所在的直线移动,观察移动过程中这两个三角形有哪几种不同位置?画出这两个全等三角形不同位置的组合图形。

(2)图是上述移动过程中的两个全等三角形组合的图形,说出它们的对应顶点、对应边、对应角。

(3)将重合的两块三角形塑料片,以一边所在的直线为轴,把其中一个三角形翻折180,请你画出翻折后的两个全等三角形组合的图形。

(4)将两块全等的三角形塑料片拼合成如图中的图形,并指出它们的对应顶点、对应边、对应角。

[小结]

1.识别全等三角形的对应边、对应角的关键是正确识别它们的对应顶点。

2.用全等三变换的方法观察图形,有助于正确、迅速的从复杂图形中识别出全等三角形。

[作业]课本组第2、3、4题。

初中数学实践课教案设计三一、教材分析本节课是人民教育出版社义务教育课程标准实验教科书(六三学制)七年级下册第七章第三节多边形内角和。

二、教学目标1、知识目标:了解多边形内角和公式。

2、数学思考:通过把多边形转化成三角形体会转化思想在几何中的运用,同时让学生体会从特殊到一般的认识问题的方法。

3、解决问题:通过探索多边形内角和公式,尝试从不同角度寻求解决问题的方法并能有效地解决问题。

4、情感态度目标:通过猜想、推理活动感受数学活动充满着探索以及

数学结论的确定性,提高学生学习热情。

三、教学重、难点重点:探索多边形内角和。

难点:探索多边形内角和时,如何把多边形转化成三角形。

四、教学方法:引导发现法、讨论法五、教具、学具教具:多媒体课件学具:三角板、量角器六、教学媒体:大屏幕、实物投影七、教学过程:

(一)创设情境,设疑激思师:大家都知道三角形的内角和是180o,那么四边形的内角和,你知道吗?活动一:探究四边形内角和。

在独立探索的基础上,学生分组交流与研讨,并汇总解决问题的方法。

方法一:用量角器量出四个角的度数,然后把四个角加起来,发现内角和是360o。

方法二:把两个三角形纸板拼在一起构成四边形,发现两个三角形内角和相加是360o。

接下来,教师在方法二的基础上引导学生利用作辅助线的方法,连结四边形的对角线,把一个四边形转化成两个三角形。

师:你知道五边形的内角和吗?六边形呢?十边形呢?你是怎样得到的?

活动二:探究五边形、六边形、十边形的内角和。

学生先独立思考每个问题再分组讨论。

关注:(1)学生能否类比四边形的方式解决问题得出正确的结论。

(2)学生能否采用不同的方法。

学生分组讨论后进行交流(五边形的内角和)方法1:把五边形分成三个三角形,3个180o的和是540o。

方法2:从五边形内部一点出发,把五边形分成五个三角形,然后用5个180o的和减去一个周角360o。结果得540o。

方法3:从五边形一边上任意一点出发把五边形分成四个三角形,然后用4个180o的和减去一个平角180o,结果得540o。

方法4:把五边形分成一个三角形和一个四边形,然后用180o加上360o,结果得540o。

师:你真聪明!做到了学以致用。

交流后,学生运用几何画板演示并验证得到的方法。

得到五边形的内角和之后,同学们又认真地讨论起六边形、十边形的内角和。类比四边形、五边形的讨论方法最终得出,六边形内角和是720o,十边形内角和是1440o。

(二)引申思考,培养创新师:通过前面的讨论,你能知道多边形内角和吗?活动三:探究任意多边形的内角和公式。

思考:(1)多边形内角和与三角形内角和的关系?(2)多边形的边数与内角和的关系?

(3)从多边形一个顶点引的对角线分三角形的个数与多边形边数的关系?学生结合思考题进行讨论,并把讨论后的结果进行交流。

发现1:四边形内角和是2个180o的和,五边形内角和是3个180o的和,六边形内角和是4个180o的和,十边形内角和是8个180o的和。

发现2:多边形的边数增加1,内角和增加180o。

发现3:一个n边形从一个顶点引出的对角线分三角形的'个数与边数n存在(n-2)的关系。

得出结论:多边形内角和公式:(n-2)180。

(三)实际应用,优势互补

1、口答:

(1)七边形内角和xx

(2)九边形内角和xx

(3)十边形内角和xx

2、抢答:

(1)一个多边形的内角和等于1260o,它是几边形?

(2)一个多边形的内角和是1440o,且每个内角都相等,则每个内角的度数是xx。

3、讨论回答:一个多边形的内角和比四边形的内角和多540o,并且这个多边形的各个内角都相等,这个多边形每个内角等于多少度?(四)概括存储学生自己归纳总结:

1、多边形内角和公式

2、运用转化思想解决数学问题

3、用数形结合的思想解决问题(五)作业:练习册第93页1、2、3

八、教学反思:

1、教的转变本节课教师的角色从知识的传授者转变为学生学习的组织者、引导者、合作者与共同研究者,在引导学生画图、测量发现结论后,利用几何画板直观地展示,激发学生自觉探究数学问题,体验发现的乐趣。

2、学的转变学生的角色从学会转变为会学。本节课学生不是停留在学会课本知识层面,而是站在研究者的角度深入其境。

3、课堂氛围的转变整节课以"流畅、开放、合作、隐导"为基本特征,教师对学生的思维减少干预,教学过程呈现一种比较流畅的特征。整节课学生与学生,学生与教师之间以"对话"、"讨论"为出发点,以互助合作为手段,以解决问题为目的,让学生在一个比较宽松的环境中自主选择获得成功的方向,判断发现的价值。

初中数学教学设计 篇42

教育改革的关键在于教师观念的转变,现代教育理论告诉我们:教师的职责现在已经越来越少地传授知识,而是越来越多地鼓励、思考……将越来越成为一位顾问、一位交流意见的参加者、一位帮助发现而不是拿出现成真理的人,必须拿出更多的时间和精力去从事那些有效果的和有创造性的活动:互相影响、讨论、激励、了解、鼓舞。这说明了一个道理:教师的地位发生了根本性的变化,不再仅仅是知识的传授者,还要确定“以人为本”的观念,把课堂教学看作自己也是学生人生中的一段激荡的生命经历,鼓励、激发学生去不断探索,把学生的“发现”与“创造”视为最有价值的劳动成果,教师与学生平等地对话,与他们共同感悟思潮的跌宕涌动。我想从三个方面谈谈自己在教学时的一些认识:

一、联系生活、感知数学

“数学课程不仅要考虑数学自身的特点,而且应遵循学生学习数学的心理规律,强调从学生已有的生活经验出发,让学生亲身经历将实际问题抽象成数学模型进行解释与应用的过程。”这就要求我们遵循学生的思维规律,在实际问题和数学模型之间架起一座桥梁,让学生在不知不觉中走进数学、感知数学。数学来源于生活并服务于生活,主体(学生)在思考问题时,既符合自身的认知规律,又有直觉洞察、直观猜想、合理归纳与活动思维过程,有利于提高自己对数学的认识。

二、身临其境,探索规律

“数学教学活动必须建立在学生的认识发展水平和已有的知识经验上,教师应激发学生的学习积极性,向学生提供充分从事数学活动的机会。

在教学时教师应根据知识的内在结构和学生的学习规律,提供现象和问题,创设思维情境,引导学生主动参与,进行观察、思考、探索。这样有利于激发学生解决问题的热情,提升学生的学习水平。比如在探究一元二次方程的根与系数的关系时,我们可以按下列步骤来创设情境。

1.求三个一元二次方程的两根之和与两根之积。一般来说学生都是先把方程的根求出来,然后计算,学生可能体会不到什么,此时课堂气氛比较平稳。

2.求一元二次方程的两根之和与两根之积,这时很多学生会感到很繁,怕动手计算,课堂出现沉闷现象。此时教师立即口答出答案,学生就会感觉到很惊奇,为之一振,进而产生疑问:“老师怎么会看出答案?这里会不会有规律?”课堂出现窃窃私语,激活了学生的'思维,活跃了课堂气氛。

3.提出问题:你能根据你开始的计算和老师的结论观察出一元二次方程的根与系数之间的关系吗?学生们跃跃欲试,开始投入到观察、思考、探索中去。

4.提出问题:你敢肯定你所猜测到的结论是正确的吗?再一次激发学生的斗志,使他们敢于说理、敢于证明,给予他们充分展示自己才华的机会。

三、由点到面,触类旁通

复习不是简单的知识重复,而是一个再认识、再提高的过程,复习中的最大矛盾是时间短、内容多、要求高。复习既要做到突出重点、抓住典型,又能在高度概括中深刻揭示知识的内在联系,让学生在掌握规律中理解、记忆、熟练、提高。比如在复习一元二次方程根的判别式和根与系数的关系时,可以把一元二次方程根的判别式、根与系数的关系和二次函数的有关知识相联系,根的判别式可以作为判别二次函数的图像与x轴的交点个数的依据:当△>0时,抛物线与x轴有两个不同的交点;当△<0时,抛物线与x轴没有交点;当△=0时,抛物线与x轴只有一个交点即顶点。如果抛物线与x轴有两个不同的交点,用根与系数的关系可以求抛物线与x轴的两个交点之间的距离,可以判别抛物线与x轴交点的位置(交点是在坐标原点的左边还是在坐标原点的右边)等等。这样在复习过程中把知识拓一拓、伸一伸,能激起学生思维的火花、学习的积极性,培养学生运用知识提高分析问题和解决问题的能力。

总之,课堂教学面对的是独立、有个性、有思维的学生,课堂教学设计应适应学生的发展,应随“学情”的变化而变化。课堂教学设计的成效如何,完全取决于教师对教材的理解、对学生情况的了解。只有教师具备“以学生为本”的教学理念,才能一切从学生实际出发、一切为学生考虑,才能真正做到教学服务于学生,实现“不同的人在数学上得到不同的发展”。

初中数学教学设计 篇43

一、教学目标:

1.经历探索二次函数与一元二次方程的关系的过程,体会方程与函数之间的联系.

2.理解抛物线交x轴的点的个数与一元二次方程的根的个数之间的关系,理解何时方程有两个不等的实根、两个相等的实数和没有实根.

3.能够利用二次函数的图象求一元二次方程的近似根。

二、教学重点

利用二次函数的图象求一元二次方程的近似根。

教学难点:

理解二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系。

三、教学方法:

启发引导合作交流

四:教具、学具:

课件

五、教学媒体:

计算机、实物投影。

六、教学过程:

[活动1]检查预习引出课题

预习作业:

1.解方程:(1)x2+x-2=0; (2) x2-6x+9=0; (3) x2-x+1=0; (4) x2-2x-2=0.

2.回顾一次函数与一元一次方程的关系,利用函数的图象求方程3x-4=0的解.

师生行为:教师展示预习作业的内容,指名回答,师生共同回顾旧知,教师做出适当总结和评价。

教师重点关注:学生回答问题结论准确性,能否把前后知识联系起来,2题的格式要规范。

设计意图:这两道预习题目是对旧知识的回顾,为本课的教学起到铺垫的作用,1题中的三个方程是课本中观察栏目中的三个函数式的变式,这三个方程把二次方程的根的三种情况体现出来,让学生回顾二次方程的相关知识;2题是一次函数与一元一次方程的关系的问题,这题的'设计是让学生用学过的熟悉的知识类比探究本课新知识。

[活动2]创设情境探究新知

问题

1.课本p16问题.

2.结合图形指出,为什么有两个时间球的高度是15m或0m?为什么只在一个时间球的高度是20m?

(结合预习题1,完成课本p16观察中的题目。)

师生行为:教师提出问题1,给学生独立思考的时间,教师可适当引导,对学生的解题思路和格式进行梳理和规范;问题2学生独立思考指名回答,注重数形结合思想的渗透;问题3是由学生分组探究的,这个问题的探究稍有难度,活动中教师要深入到各个小组中进行点拨,引导学生总结归纳出正确结论。

二次函数y=ax2+bx+c的图象和x轴交点的坐标与一元二次方程ax2+bx+c=0的根有什么关系?

二次函数y=ax2+bx+c的

图象和x轴交点

两个交点

一个交点

没有交点

教师重点关注:

1.学生能否把实际问题准确地转化为数学问题;

2.学生在思考问题时能否注重数形结合思想的应用;

3.学生在探究问题的过程中,能否经历独立思考、认真倾听、获得信息、梳理归纳的过程,使解决问题的方法更准确。

设计意图:由现实中的实际问题入手给学生创设熟悉的问题情境,促使学生能积极地参与到数学活动中去,体会二次函数与实际问题的关系;学生通过小组合作分析、交流,探求二次函数与一元二次方程的关系,培养学生的合作精神,积累学习经验。

[活动3]例题学习巩固提高

问题:例利用函数图象求方程x2-2x-2=0的实数根(精确到0.1).

师生行为:教师提出问题,引导学生根据预习题2独立完成,师生互相订正。

教师关注:(1)学生在解题过程中格式是否规范;(2)学生所画图象是否准确,估算方法是否得当。

设计意图:通过预习题2的铺垫,同学们已经从旧知识中寻找到新知识的生长点,很容易明确例题的解题思路和方法,这样既降低难点且突出重点。

[活动4]练习反馈巩固新知一元二次方程一元二次方程ax2+bx+c=0ax2+bx+c=0的根两个相异的实数根两个相等的实数根没有实数根根的判别式δ=b2-4acb2-4ac > 0b2-4ac = 0b2-4ac < 0

问题:(1)p97.习题1、2(1)。

师生行为:教师提出问题,学生独立思考后写出答案,师生共同评价;问题(2)学生独立思考后同桌交流,实物投影出学生解题过程,教师强调正确解题思路。

教师关注:学生能否准确应用本节课的知识解决问题;学生解题时候暴露的共性问题作针对性的点评,积累解题经验。

设计意图:这两个题目就是对本节课知识的巩固应用,让新知识内化升华,培养数学思维的严谨性。

[活动5]自主小结,深化提高:

1.通过这节课的学习,你获得了哪些数学知识和方法?

2.这节课你参与了哪些数学活动?谈谈你获得知识的方法和经验。

师生活动:学生思考后回答,教师对学生的错误予以纠正,不足的予以补充,精彩的适当表扬。

设计意图:

1.题促使学生反思在知识和技能方面的收获;

2.题让学生反思自己的学习活动、认知过程,总结解决问题的策略,积累学习知识的方法,力求不同的学生有不同的发展。

[活动6]分层作业,发展个性:

1.(必做题)阅读教材并完成p97习题21。2:3、4.

2.(备选题)p97习题21。2:5、6

设计意图:分层作业,使不同层次的学生都能有所收获。

七、教学反思:

1.注重知识的发生过程与思想方法的应用

《用函数的观点看一元二次方程》内容比较多,而课时安排只一节,为了在一节课的时间里更有效地突出重点,突破难点,按照学生的认知规律遵循教师为主导、学生为主体的指导思想,本节课给学生布置的预习作业,从学生已有的经验出发引发学生观察、分析、类比、联想、归纳、总结获得新的知识,让学生充分感受知识的产生和发展过程,使学生始终处于积极的思维状态中,对新的知识的获得觉得不意外,让学生“跳一跳就可以摘到桃子”。

探究抛物线交x轴的点的个数与一元二次方程的根的个数之间的关系及其应用的过程中,引导学生观察图形,从图象与x轴交点的个数与方程的根之间进行分析、猜想、归纳、总结,这是重要的数学中数形结合的思想方法,在整个教学过程中始终贯穿的是类比思想方

法。这些方法的使用对学生良好思维品质的形成有重要的作用,对学生的终身发展也有一定的作用。

2.关注学生学习的过程

在教学过程中,教师作为引导者,为学生创设问题情境、提供问题串、给学生提供广阔的思考空间、活动空间、为学生搭建自主学习的平台;学生则在老师的指导下经历操作、实践、思考、交流、合作的过程,其知识的形成和能力的培养相伴而行,创造“海阔凭鱼跃,天高任鸟飞”的课堂境界。

3.强化行为反思

“反思是数学的重要活动,是数学活动的核心和动力”,本节课在教学过程中始终融入反思的环节,用问题的设计,课堂小结,课后的数学日记等方式引发学生反思,使学生在掌握知识的同时,领悟解决问题的策略,积累学习方法。说到数学日记,“数学日记”就是学生以日记的形式,记述学生在数学学习和应用过程中的感受与体会。通过日记的方式,学生可以对他所学的数学内容进行总结,写出自己的收获与困惑。“数学日记”该如何写,写什么呢?开始摸索写数学日记的时候,我根据课程标准的内容给学生提出写数学日记的简单模式:日记参考格式:课题;所涉及的重要数学概念或规律;理解得最好的地方;不明白的或还需要进一步理解的地方;所涉及的数学思想方法;所学内容能否应用在日常生活中,举例说明。通过这两年的摸索,我把数学日记大致分为:课堂日记、复习日记、错题日记。

4.优化作业设计

作业的设计分必做题和选做题,必做题巩固本课基础知识,基本要求;选做题属于拓广探索题目,培养学生的创新能力和实践能力。

初中数学教学设计 篇44

★目标预设

一、知识与能力

借助生活中的实例会判断一个数是正数还是负数,能用正负数表示具有相反意义的量

二、过程与方法

1、过程:通过实例引入负数,从而指导学生会识别正负数及其表示法,能应用正负数表示具有相反意义的量。

2、方法:讨论法、探究法、讲授法、观察法。

三、情感、态度、价值观

乐于接触社会环境中的数学信息,愿意谈论数学话题,在数学活动中发挥积极作用

★教学重难点

一、重点:理解正数和负数的概念,判断一个数是正数还是负数,应用正负数表示具有相反意义的量

二、难点:负数的意义,理解具有相反意义的量。

★教学准备

带有负数的实例若干

★预习导学

在生活、生产、科研中,经常遇到数的表示与数的运算的问题。例如,

⑴天气预报20xx年11月某天北京的温度为-3~3℃,它的确切含义是什么?这一天北京的'温差是多少?

⑵有三个队参加的足球比赛中,红队胜黄队(4∶1),黄队胜蓝队(1∶0),蓝队胜红队(1∶0),如何确定三个队的净胜球数与排名顺序?

⑶某机器零件的长度设计为100mm,加工图纸标注的尺寸为100±0.5(mm),这里的±0.5代表什么意思?合格产品的长度范围是多少?(问题1-3友情提示、全班交流、教师点评)

★教学过程

一、创设情景,谈话引入

在小学里我们已经学过哪些类型的数(自然数和分数),它们都是由实际需要而产生的,由记数、排序产生数1,2,3……,由表示“没有”“空位”,产生数0,由分物、测量产生分数 , ,……,但在预习导学中表示温度、净胜球数、加工允许误差时用到数

-3,3,2,-2,0,+0.5,-0.5。

二、精讲点拨,质疑问难

这里出现了一种新数:-3,-2,-0.5。在前面的实际问题中它们分别表示:零下3摄氏度,净输2球,小于设计尺寸0.5mm,像-3,-2,-0.5这样的数(即在以前学过的0以外的数前面加上负号“-”的数)叫做负数。而3,2,+0.5在问题中分别表示零上3摄氏度,净胜2球,大于设计尺寸0.5mm,它们与负数具有相反的意义。我们把这样的数(即以前学过的0以外的数)叫做正数

数字前的“+”,“-”分别读“正”,“负”。

正数前的“+”可加也可省略。

数0既不是正数,也不是负数。

把0以外的数分成正数和负数,表示具有相反意义的量。

三、课堂活动,强化训练

小组讨论:生活中你们见过带“-”的数吗?(代表发言,教师适当表扬学生)

例1:下面哪些数是正数,哪些是负数。(学生独立思考,个别回答,教师点评)

-11,4.8,+73,-2.7, ,- ,-8.12,100

例2:在知识竞赛中,如果用+10分表示加10分,那么扣20分怎样表示?(个别回答,学生点评)

练习:见书本P5练习(学生独立完成,教师巡视,个别指导)

四、延伸拓展,巩固内化

例3:(1)一个月内,小明体重增加2千克,小华体重减少一千克,小强体重没变化,写出他们这个月的体重增长值(减少值呢)?(小组讨论,代表发言,教师点评)

(2)20xx年下列国家的商品进出口总额比上年的变化情况是:

美国减少6.4%,德国增长1.3%

法国减少2.4%,英国减少3.5%

意大利增长0.2%, 中国增长7.5%

写出这些国家20xx年商品进出口总额的增长率。(学生独立思考,教师点评)

(3)一潜水艇所在高度为-50米,一条鲨鱼在潜水艇上方10米处,鲨鱼所在的高度是多少?

(4)向北走-20米所表示的意思是什么?

(5)某银行职员在一天内经办了五笔业务:取出10000元,存进25000元,取出5000元,存进8000元。求该职员在一天内使银行变化了多少元?

(6)在一次数学竞赛中,成绩在120分以上为优秀120分到119分为合格,100分以下的不合格。老师将他班上的十位竞赛成绩简记为:-10、-5、0、-28、+10、20、-3、+15、+8、-23,则这十位同学中优秀的有几名?

(7)判断下列各题:

①正数就是自然数

②既不是正数也不是负数的数不存在

③带正号的数为正数带负号的数为负数

④零是最小的整数

⑤-a是负数

练习:见书本P6(独立完成,教师巡视,适时指导,得出结论)

五、布置作业,当堂反馈

见书本P7 《当堂反馈》

初中数学教学设计 篇45

随着科学技术的发展,教育资源和教育需求也随之增长和变化。我校进行了初中数学分层教学课题研究,而分层次备课是搞好分层教学的关键,教师应在吃透教材、大纲的情况下,按照不同层次学生的实际情况,设计好分层次教学的全过程。本文将结合本人的教学经验,对分层教学教案设计进行初步探讨。

1教学目标的制定

制定具体可行的教学目标,先要分清哪些属于共同目标,哪些属于层次目标。并在知识与技能、过程与方法、情感态度与价值观三个方面对不同层次的学生制定具体的要求。

2教法学法的制定

制定教法学法应结合各层次学生的具体情况而定,如对A层学生少讲多练,注重培养其自学能力;对B层学生,则实行精讲精练,注重课本上的例题和习题的处理;对C层学生则要求要低,浅讲多练,弄懂基本概念,掌握必要的基础知识和基本技能。

3教学重难点的.制定

教学重难点的制定也应结合各层次学生的具体情况而定。

4教学过程的设计

4.1情境导向,分层定标。教师以实例演示、设问等多种方法导入新课。要利用各种教学资料创设恰当的学习情境为各层学生呈现适合于本层学生水平学习的内容。

4.2分层练习,探讨生疑。学生对照各自的目标分层自学。教师要鼓励学生主动实践,自觉地去发现问题、探讨问题、解决问题。

4.3集体回授,异步释疑。“集体回授”主要是针对人数占优势的B层学生,为解决具有共性的问题而组织的一种集体教学活动。教师为那些来不及解决的、不具有共性的问题分先后在层内释疑即“异步释疑”。

5练习与作业的设计

教师在设计练习或布置作业时要遵循“两部三层”的原则。“两部”是指练习或作业分为必做题和选做题两部分;“三层”是指教师在处理练习时要具有三个层次:第一层次为知识的直接运用和基础练习;第二、三两层次的题目为选做题,这样可使A层学生有练习的机会,B、C两层学生也有充分发展的余地。

分层教学下教师不能再“拿一个教案用到底”,而要精心地设计课堂教学活动,针对不同层次的学生选择恰当的方法和手段,了解学生的实际需求,关心他们的进步,改革课堂教学模式,充分调动学生的学习主动性,创造良好的课堂教学氛围,形成成功的激励机制,确保每一个学生都有所进步。

初中数学教学设计 篇46

讲评目标:

1、通过讲评,进一步巩固本单元知识点。

2、通过对典型错误的剖析、矫正、帮助学生掌握正确的思考方法和解题策略。

学习目标:

认真细致进行错例分析,用心思考,积极交流,总结经验,查漏补缺,体会数学方法和思想在解题中的应用。

教学重点、难点:

典型错误的剖析与矫正。

讲评过程:

一、整体回顾、介绍本次考试情况

1、本次考试平均分87.3分,及格率94.1%,优秀率68.6%,最高分110分,最低分21分。

2、根据本次成绩对前五名和进步比较大的学生进行表扬和鼓励。成绩前五名:李xx110分,翁x110分,张xx110分,杨x,王x,石xx,赵xx,时xx,沈xx,王xx107分。进步比较大的前五名学生:xxx。

二、教师分析学生在答题中存在的问题

1、部分学生对基础知识掌握不扎实,没有养成良好的学习习惯表现在不认真审题,不细心答题,如第6小题结果没有化简,第16小题没有注意x与y的顺序,第五大题的应用题,有的同学没有按题目的要求解,等。

2、部分学生计算的能力不强,表现为计算速度慢,计算的准确率低,不能灵活的使用运算律及一些运算方法。如第1小题判断四个数能不能成比例的技巧,解比例时的一些运算方法,等。

3、不能运用所学知识灵活解决实际问题,分析问题、解决问题的能力有待提高。例如,解决实际问题的.第2题,有部分学生按边长和数量成反比例关系进行计算,解决实际问题的第3题,有的同学先算面积,然后再用比例尺算实际面积,有半数以上的学生对于附加题无从下手,等。

三、学生自我分析试卷

学生的有一些问题是因为一时的疏忽做错;有一些是自己的知识不够牢固,经过自己的学习是可以自己解决的;有一些问题经过学生自己的再思考是可以自己解决的。象这一类的问题肯定可以学生自己处理好,那么就不需要老师来帮忙,只要给以时间和信心就可以了。

四、小组内互帮互助学习

当学生的问题自己解决掉自己能解决的之后,这时转入学生的互帮互助阶段,在小组内由学生提出不会的问题由会做的同学进行讲解。在这个阶段由学生给学生讲解达到学会的目的。组内都不会的问题就由组长记录并交给老师。

五、老师组织讲解

根据各小组的统计,根据各组情况由多到少(不会的小组数)的顺序来解决。经过了两次纠正(自纠和互纠),学生的问题基本解决,剩下的问题再由老师组织,让会做的小组给同学们讲解。讲解题思路,老师适当补充、引导、评价。

六、老师检查学生的掌握情况

学生自己的学习和相互帮助有没有成效要靠自觉,老师可以检查,拿出一部分比较有意义的,需要老师来讲解的问题检查学生,顺便让学生说出老师要说的话,然后有必要就补充、评价。让学生说出每一道题的考察内容解题技巧。

七、当堂检测

1、用2、4、8、4、写出比例式:( )。

2、行驶的路程一定,则车轮的周长和它的转数成( )比例。

3、一种精密零件长5毫米,把它画图上长6厘米,则比例尺是( )

4、若5X-7Y=0,X:Y=( )

5、在比例尺是1:200的图上,一个长方形的长是4㎝,宽是3㎝,这个长方形的实际面积是( )平方米。

6、一间房子要用方砖铺地,用边长3分米的方砖,需要86块。如果改用边长是2分米的方砖要( )块,当堂检测:

1、用2、4、8、4、写出比例式:( )。

2、在A×B=C中,当A一定时,B和C 成( )比例。

3、一种精密零件长5毫米,把它画图上长6厘米,则比例尺是( )

4、若5X-7Y=0,X:Y=( ) 5、在比例尺是1:200的图上,一个长方形的长是4㎝,宽是3㎝,这个长方形的实际面积是( )平方米。