返回首页
文学网 > 短文 > 教学教案 > 正文

六年级数学上册教学教案

2025/09/04教学教案

文学网整理的六年级数学上册教学教案(精选8篇),供大家参考,希望能给您提供帮助。

六年级数学上册教学教案 篇1

一、复习分数除法的意义和计算法则

1、这一章我们学习了分数除法的有关知识.请大家回忆一下分数除法有几种类型?

(1)分数除以整数,例如5/7 ÷5;

(2)一个数除以分数,它又包括整数除以分数,例如20÷4/5 ;和分数除以分数,例如 2/3 ÷ 6/7。

(3)做第52页“整理和复习”的第2题。

2、分数除法的意义

(1)第52页“整理和复习”的第1题:要把这道乘法算式改写成两道除法算式,应该怎么办呢?(引导学生根据乘、除法的关系进行改写,然后让学生将改写的算式填写在书上)

(2)让学生说说是怎样题改写成两道分数除法算式的。

(3)分数除法的意义是什么呢?(使学生明确,分数除法的意义与整数除法的意义相同,都是:已知两个因数的积与其中一个因数,求另一个因数的运算)

3、分数除法的计算法则

(1)分数除以整数应该怎样计算?一个数除以分数应该怎样计算?

(2)引导学生概括出分数除法的统一计算法则:除以一个数(0除外),等于乘这个数的倒数。

(3)完成P52“整理和复习”第2题。

(4)P53练习十三第2题。

二、推理训练

1、男生占全班人数的3/5 ,女生占全班人数的( )。

2、一堆煤,用去了4/7 ,还剩下( )。

3、今年比去年增产 1/8,今年相当于去年的( )。

三、对比训练:

1、一步分数应用题

① 张大爷养了200只鹅,500只鸭,鹅的只数与鸭的只数的几分之几?

② 张大爷养了200只鹅,鹅的只数是鸭的只数的2/5 ,养了多少只鹅?

③ 张大爷养了200只鹅,鸭的只数是鹅的只数的5/2 ,养了多少只鸭?

(1)比较相同点和不同点

引导学生进行比较,使学生更清楚地认识到,在结构上,这三道应用题都含有同样的数量关系,即:鹅的只数,鸭的只数, 鹅的.只数是鸭的几分之几;不同的是已知和未知发生了变化。在解题思路上,都要弄清以谁作标准,正确判定把哪一种数量看作单位“1”;不同的是需要根据已知、未知的变化确定该用什么方法解答。

(2)比较完后,学生将三道题的解答过程写在练习本上。

2、出示题组:

① 上海到汉口的水路长1125千米,一艘轮船从上每开往汉口,已经行了3/5,离汉口还有多少千米?

② 一艘轮船从上海开往汉口,已经行了3/5,离汉口还有450千米,上海到汉口的水路长多少千米?

(1)学生自己画线段图,分析,解答。

(2)对比:两题有什么异同?你是怎样分析的,如何区别的?

3、出示题组:

① 停车场有8辆大客车,小汽车的辆数比大客车多1/6,小汽车有多少辆?

② 停车场有8辆大客车,大客车的辆数比小汽车少1/7,小汽车有多少辆?

③ 停车场有21辆小汽车,大客车的辆数比小汽车少1/7,大客车有多少辆

④ 停车场有21辆小汽车,小汽车的辆数比大客车多1/6,大客车有多少辆?

(1)学生独立画线段图,分析,解答。

(2)对比:1、2两题有什么异同?3、4两题呢?你是怎样分析的,如何区别的?

(3)解答稍复杂的分数乘除法应用题有规律吗?规律是什么?

引导学生归纳出:

㈠ 分析“分率句”,判断单位“1”是哪个数量?

㈡ 画出线段图,找出“量”和“率”的对应关系。

㈢ 确定已知单位“1”用乘法,求单位“1”用除法或用方程

六年级数学上册教学教案 篇2

教学目标:

知识与技能

1.理解分数乘整数的意义。

2.通过主动参与教学过程,理解分数乘整数的计算法则的算理,能正确计算。

过程与方法

使学生经历解决问题的过程,体验演绎推理、归纳总结的学习方法。

情感态度与价值观

1.感受数学与实际生活之间的联系,激发学习兴趣。

2.培养学生动手动脑的学习习惯,体会数学知识之间内在联系的逻辑之美。

教学重点:

理解分数乘整数的意义,探究计算法则。

教学难点:

正确计算及约分方法。

教学过程:

一、以旧引新,唤醒认知

(一)列式计算,说说你是怎样想的? 5个12相加是多少?10个23的和是多少? (概括:整数乘法的意义:求几个相同加数的和的简便运算)

(二)口答

(三)感受分数乘整数的意义

21个相加太麻烦了,有没有简单的表示方法?(学生会想到用乘法表示成 ×21)然后让学生说一说 ×21表示的含义。 揭题:怎样计算 ×21呢?今天我们就来学习分数乘法——分数乘整数。

二、出示问题,探索新知

1、自主学习红点1。

(1)出示窗1:小鸟风筝的尾巴是用5根布条做成的,小鱼风筝的尾巴是用6根布条做成的,每根布条长都是 米。学生提出用乘法计算的数学问题。 出示红点1问题:做小鸟风筝的尾巴一共需要多少米的布条?指名口头列式。

(2)自学提示: ×5表示什么意义?两个小朋友分别是怎样计算的?学生自学课本47页。

(3)交流、质疑。

(4)比较这两种方法的'联系和区别。 计算5个 相加是多少,一种方法是加法,另一种方法是乘法。 但结果是相同的。你喜欢哪种方法? 教师指出,用乘法计算比较简便,其中连加的步骤在计算时可以省略。 板书简便的写法: ×5= = (米)

2、自主学习红点2。

(1)出示问题:做小鱼风筝的尾巴,一共需要多少米的布条? 学生尝试独立解决。指名板演。集体评议。

(2)比较计算过程,分类梳理:a先计算再约分;b先约分再计算。讨论:哪种算法更简便? 6× = = =3(米) 比较两种先约分再计算的方法: ×6= =3(米) ×6= ×6=3(米) (3)小试牛刀(突破难点):用自己喜欢的方法计算。 6× = ×13= 评议谈体会。强调:分数乘整数,通常先约分再计算比较简便。

3、归纳概括: 一个分数乘整数表示什么?(求几个相同加数的和。) 分数乘整数怎样计算?(用分子和整数相乘,分母不变 ) 应注意什么?(能约分的要先约分)

三、分层练习,强化认知 .巩固分数乘整数的意义

1、自主练习第1、2题:看图写算式。集体订正,说说乘法算式的意义和计算过程。

2、计算擂台。自主练习第3题,巩固分数乘整数的算理和算法。

3、明辨是非。

4、结合实际,解决问题。

(1)一个正方体的礼品盒,底面积是 1/9平方米,要想将这个礼品盒包装起来,至少需要多少包装纸?

(2)美术馆要进行美术展览,有5张画是边长7/10 米的正方形的,如果为这几幅画配上镜框,需要木条多少米?

四、总结

本节课学习了那些内容?通过学习你有那些收获? 分数与整数相乘,要用分数的分子与整数相乘,分母不变。计算时能约分的可以先约分再计算出结果。

六年级数学上册教学教案 篇3

教学目标:

1.使学生通过自主探索,理解分数乘整数的意义与整数乘法相同,初步理解分数乘整数的计算法则。

2.使学生进一步增强运用已有知识经验探索并解决问题的意识,体验探索学习的乐趣。

教学重点:

分数乘整数的意义和计算法则。

教学难点:

分数乘整数的计算方法以及算法的优化。

教学方法:

自主合作探究。

教具准备:

多媒体

教学过程:

一、复习引入

1.同学们,我们已经学会了分数的加法和减法,下面口算。

2.今天我们来学习分数乘法。板书

谁能编一道分数乘法算式(择几道板书黑板一侧)

分数乘法有很多,今天先研究其中一种:分数乘整数。

看了今天的课题,可能有同学马上想知道分数乘法怎么算呢?其实,每一个新知识的产生都与原有的旧知密切相关,对于分数乘整数来说,当然也是如此。下面我们来讨论!

二、探究

1.理解意义。

出示例题1:做一朵绸花用 米绸带。

(1)小芳做了3朵这样的绸花,一共用了几分之几米绸带?

课件: + + =(米)

(2)小华做7朵这样的绸花,一共用了几分之几米绸带?

课件: + + + + + + =(米)

(3)学校庆国庆活动一共要做15朵这样的绸花,你能用加法计算出几分之几米绸带?

+ + + + + + + + + + + + + + =?

这么多米加起来,你有什么感觉?有没有什么好办法?有没有什么好办法?

导入:如果把这道加法算式改写成乘法,你特别需要知道什么?

板书: ×3= 7×= ×15=

谁能说说 ×3表示什么意思?7×呢?

前面大家所说的(黑板一侧板书的)乘法算式,谁能说说他们的意思?对比一下,你们觉得是分数加法简便,还是分数乘法简便?

2.探究算法。

现在我们来看分数乘整数怎样计算。我们先来研究×3, ×3=怎么算呢?请大家尝试解决。指名板演典型算法。

×3= =

×3=++=

……

交流:第二种按照加法计算,不简便,重点体会第二种和加法有着联系:×3=+ + = = = (教师板书),符合加法计算结果,是正确的,也是简便的。同时借助直观图观察验证。

练习:×7,与原来加法结果比较,完全正确。

谁能试着总结一下分数乘整数的计算方法:分母不变,分子和整数相乘,所得积做分子。

继续研究:×30

提示:这道题与前面几题相比可能有些新情况,你看出来了嘛?先试试看,再同桌交流。

指名板演新情况:都有相同点?(约分),不同是什么?(主要是约分的区别)

讨论:约分的先后序。(先乘后约,还是先约后乘),体会到先约后乘的简便。

练习:先判断可不可以约分?怎样约分?

总结注意事项:能约分的先约分再乘。

三、练习

填一填:练习第一、二题。

算一算:完成3第三、七题。

四、总结

本节课学习了那些内容?通过学习你有那些收获?还有那些疑问?

五、作业

练习八第2题、第4题。

六年级数学上册教学教案 篇4

一、教学内容

解决问题的练习课。(教材第39~40页练习八第4、8~10题)

二、教学目标

1.复习“已知一个数的几分之几是多少,求这个数”“已知比一个数多(少)几分之几的数是多少,求这个数”两类分数除法应用题,使学生熟练掌握这两类问题的解决方法。

2.提高学生解决实际问题的能力。

三、重点难点

重难点:熟练掌握这两类分数除法应用题的解题思路和方法。

教学反思

一、基础练习

1.只列式,不计算。(课件出示题目)

(1)一条公路,已经修了300 m,是全长的1/3。这条公路全长多少米?

(2)一条公路,已经修了300 m,比全长少2/3。这条公路全长多少米?

点名学生回答,并说一说分别属于什么类型的应用题?

2.师:这两类应用题的单位“1”是已知的还是未知的?可以用什么方法解答?

引导学生回顾这两类应用题的解题思路和方法。

二、指导练习

(一)已知一个数的几分之几是多少,求这个数

教学教材第39页练习八第4题。

(1)学生读题,理解题意,明确应用题类型。

(2)师:第(1)题和第(2)题分别把什么看作单位“1”?

学生独立思考,点名学生回答。

(3)引导学生分析题中的数量关系。

六年级数学上册教学教案 篇5

设计理念:

数学最终是要为生活服务的,回归生活的数学才是有用的数学。本课内容和日常生活密切联系,学了就可以学以致用,可以让学生真正体会到数学的价值。

教学目标:

1.在了解生活中有关打折优惠措施的基础上,能利用百分数的知识,根据实际情况选择最佳的方案和策略,解决实际问题,深入理解折扣的意义。

2.通过小组合作学习、分析比较,培养学生运用所学知识解决实际问题的`能力、合情思考能力。

3.激发学生对数学的兴趣,使学生能够辩证、全面地思考、对待实际生活中的问题, 用数学知识解决实际问题。

教学重点:

在了解生活中有关打折优惠措施的基础上,利用百分数的知识,根据不同的实际情况,通过分析比较选择最佳的方案和策略。

教学难点:

1、多种方案的计算。

2、合情推理。

教学准备:

多媒体课件一套。

教学过程:

一、创设情境,复习打折计算方法。

1.谈话导入。

2、为学生创设到快餐厅看菜单的情境,引导学生从合算的角度选择套餐。

出示,如下图。

A套餐

原价:12.5元

现价:10.00元

B套餐

原价:11.8元

现价:10.00元

C套餐

原价:10.80元

现价:10.00元

(1)如果你去吃快餐,你选哪一种最合算?为什么?

(2)A套餐相当于打几折?

(3)B套餐也打8折,应付多少元?

二、分析比较,初用打折技能。

实际生活中的打折多种多样,要反复计算、比较,才能够选择出最好的购买方法。

1.创设情境。

现在许多餐厅可以自己带饮料消费,餐厅的饮料可挺贵,要想合算我们不妨去超市逛一逛,买一些饮料再去吃饭。

甲商场 买大送小

乙商场 一律九折

丙商场 满30元一律八折

2.了解超市的优惠政策。

师:请你举例说一说你是怎么理解这些优惠措施的?

生:买大送小就是买一瓶大的送一瓶小的,前提是必须买大瓶的饮料。

打九折就是买100元钱的饮料现在只要付90元钱。

满30元打八折就是买饮料的总价必须达到30元才能打八折,不到30 元不打折。

六年级数学上册教学教案 篇6

教学目标

1. 使学生结合实例,理解比的意义,知道比的前项和后项,会正确地读、写两个数的比,会求比值。了解比和分数、除法之间的联系,会把比改写成分数的形式。

2. 在解决实际问题的过程中,了解比在日常生活中的广泛应用,体会数学与生活的联系,培养对数学学习的兴趣。

教学重点

理解比的意义,比和分数、除法之间的联系。

教学过程

一、 创设问题情境,引入比

电脑出示三幅长方形的画(标出每一幅的长和宽)。

谈话:这里有三幅不同形状的画,你们觉得哪幅画的形状看起来最舒服、最美观?(学生都认为第二幅比较美观)三幅画画的都是美丽的海滨,为什么同学们都认为第二幅比较美观呢?(第一幅和第三幅画要么太长,要么太窄,长和宽的比例不合适)这三幅画长和宽的长度不同,所以给人的感觉就不一样,你知道可以怎样来表示每幅画长和宽的关系吗?(第一幅画长是宽的2倍,宽是长的1/2……)

提问:还可以怎样表示它们的关系?

过渡:是的,我们还可以用比来表示每一幅画长和宽的关系。今天这节课我们就来认识比。

二、 自主活动,认识比

1. 用比表示两个同类量的相除关系。

(1)讲解:像第一幅画长是宽的2倍,也可以表示为:长和宽的比是2比1,记作2 ∶ 1,“∶”是比号。宽是长的1/2也可以表示为:宽和长的比是1 ∶ 2。你能说一说怎样用比表示第二幅画、第三幅画长和宽的关系吗?

学生分别用比表示另外两幅画的长和宽的关系。

(2)出示一瓶××牌洗洁液,用实物投影放大洗洁液的使用说明。

谈话:在日常生活中,我们经常用比表示两个数量之间的关系。如:这瓶洗洁液,上面的使用说明就是用比来表示的。

指说明中1∶4的图,提问:这里浅色部分和深色部分分别表示什么?你知道1 ∶ 4是表示什么意思吗?(表示洗洁液和水的比是1 ∶ 4,就是1份洗洁液要加4份水的意思,洗洁液的体积是水的1/4)

再问:那么水和洗洁液的比是几比几?表示什么意思?

师生共同讨论1 ∶ 8和1 ∶ 1的含义。

2. 用比表示两个不同类量的相除关系。

谈话:通过刚才的学习,同学们对比有了初步的认识。下面我们再看一幅图(出示图:一堆梨,下面标有2千克,共3元;一堆苹果,下面标有3千克,共6元)。

提问:根据图中的信息,你知道梨的单价是多少元吗?

根据学生回答,板书:单价=总价÷数量。

讲解:像这样总价和数量之间的关系也可以用比来表示,梨的总价和数量的比是3 ∶ 2,表示总价除以数量。

提问:你能用比来表示苹果的总价和数量之间的关系吗?

这里的6 ∶ 3表示什么意思?(表示总价除以数量)

3. 理解比的意义。

谈话:根据上面的例子,你能说一说什么叫两个数的比吗?

小结:两个数相除又叫做两个数的比。

4. 自学课本。

提问:关于比,你还想了解哪些知识?下面请同学们带着这些问题自学课本第53页,再和小组里的同学互相说一说,你知道了什么?

反馈:通过自学,你又了解了哪些知识?

师生共同讨论下面的问题:

(1)比由哪几部分组成,分别叫什么?比的后项能为0吗?为什么?

(2)什么叫比值?怎样求比的比值?

(3)比和除法、分数有什么联系?

(4)比还可以写成怎样的形式?

小结:(略)

三、 巩固练习,深化理解

1. 完成“练一练”第1、2题。

学生完成填空后,让学生说一说每个比所表示的意思。

2. 完成“练一练”第3题。

学生改写后,再读一读,并分别指出每一个比的'前项和后项。

3. 小强和爸爸身高的比。

出示:小强的身高是1米,他爸爸的身高是 173厘米。写出小强和他爸爸身高的比。

学生练习后,组织交流,并说一说为什么小强和他爸爸身高的比不能写成1 ∶ 173。

4. 糖水的甜度。

出示:两杯糖水,并标出糖和水质量的比,第一杯是1 ∶ 20,第二杯是1 ∶ 25。

提问:你知道哪杯水甜吗?为什么?

出示:第三杯中糖4克,水100克。

谈话:这杯糖水和刚才的哪一杯一样甜?先想一想,再和同桌说一说你是怎样比较的。

提问:根据第一杯糖和水质量的比是1 ∶ 20,你能说出第一杯中糖和糖水质量的比吗?

四、 课堂总结

提问:今天我们共同学习了什么?你们有什么收获?还有什么问题吗?

五、 课外延伸

出示课始的三幅画,谈话:还记得我们一开始出示的三幅画吗?为什么大家都认为第二幅比较美观呢?你能算出这幅画长和宽的比值吗?(学生算出长和宽的比值大约是0.618)其实呀,这里面还藏着许多奥秘呢,同学们想了解吗?

课件播放短片,介绍黄金比。

谈话:其实,在我们的身边就有很多的黄金比,如我们经常见到的长方形纸的长和宽的比,等等。同学们如果有兴趣,可以在课后再去研究。

六年级数学上册教学教案 篇7

教学内容:教材第20-21页例2、第21页“做一做”及第23页练习五第4-7题。

教学目标:

1、使学生能根据方向和距离,在示意图中确定物体的具体位置。

2、使学生在解决问题的过程中,培养空间观念和解决问题的能力。

3、在问题情境中感受根据距离和方向确定位置的价值。

教学重点:正确标出物体的准确位置。

教学难点:掌握确定位置的方法。

教学准备:多媒体课件,绘图工具:直尺、铅笔、卡纸等。

教学过程:

一、复习导入

1.确定物体位置,必须要哪些条件?

2.观察下图,说一说。(课件出示)

二、自主学习探究新知

1.创设情境问题,展开问题探讨。

师:同学们,台风登陆后方向发生了改变,正向B市移动,C市也将有大到暴雨。如何利用A市这一观测点,很快画出B市和C市的位置图呢?

生:要知道两座城市的方向和距离,才能画出准确位置。

2.出示下列文字:

B市位于A市北偏西30°方向、距离A市200 km。C市在A市正北方,距离A市300 km。请你在例1的图中标出B市、C市的位置。

3.教师板书课题:这节课我们就来进一步学习确定位置。

标出B市和C市的位置。

(1)师:那物体位置平面图该怎么画呢?我们应该先画什么,再画什么?又该注意些什么呢?请小组同学互相说说。

(2)交流汇报。

生:绘制平面图的方法:找准参照点(中心点),了解B市和C市在参照点的哪个方向和它们之间的距离,还要确定每厘米格子表示的距离。老师进行引导:你们打算怎样在图上表示出B市距离A市200千米,C市距离A市300千米?

生:因为图上1厘米代表实际距离100千米,所以只需要在图上画出B市距离A市2厘米,C市距离A市3厘米就可以了。

(3)动手绘制B市和C市位置平面图。

(4)展示各位学生绘制的平面图,交流绘图体会,点评绘图效果。

(5)评价绘制的正确性,如果平面图有问题,说一说问题是什么,应该怎样确定位置。

订正后交流:你们认为在确定这点在图上的位置时,应注意什么?怎样确定?

这里要重点关注以下几点:以谁为参照点?北偏西30°是以哪条边为起始边?向哪个方向旋转?旋转多少度?如何表示“距A市200 km”?鼓励学生用自己喜欢的方式表示。

(6)教师小结:绘制平面图时,一般先确定角度,再确定图上的距离。

(7)说说你在绘图过程中遇到了哪些困难,你又是怎么克服的。

三、巩固提高

1.完成教材第21页“做一做”。

2.选一选:课件呈现题目。

3.课件呈现题目。

四、课堂小结

在绘图过程中,你有什么收获?

【板书设计】

确定物体位置的两个条件:方向和距离

方法步骤

1、确定方向;

2、量出角度;

3、选好单位长度;

4、确定距离;

5、画出物体的位置;

6、标出名称。

【教学反思】

兴趣是最好的老师,所以在每一次课堂教学设计时,我总是想方设法以创设一系列生活情境为手段来激发学生的学习兴趣。本课我从学生感兴趣的探险入手,通过对已知方向的判断和理解,使学生认识到准确的方向,培养了学生的空间观念,发展了学生自主探究的能力和思维。

六年级数学上册教学教案 篇8

设计说明

本节课复习的是百分数知识在实际生活中的应用,常见的百分率是小学数学中的重要基础之一。

本节课在教学设计上有如下特点:

1.创设情境,在具体的情境中复习百分数的意义。

在数学教学中,适时地给学生营造一个生活情境,不仅可以吸引学生的注意力,而且有利于学生发现问题,探索新知。复习中,通过创设情境,激发学生的学习兴趣,让学生结合具体情境,体会百分数与生活的密切联系,进一步理解百分数的意义,并在列表对比中,明确百分数与分数的区别和联系。

2.巧用图示,有序地复习百分数、分数、小数的互化方法。

思维导图在教学中备受关注,因为它可以帮助学生理清思考过程,把知识要点清晰地呈现在学生眼前。引导学生有序地复习百分数、分数、小数的互化方法时,结合学生的回答,把三者之间互化的方法用图示表示出来,使学生直观地了解并轻松掌握三者之间的互化方法以及相互间的可逆关系。

3.重视迁移,培养学生类推的能力。

根据百分数与分数的密切关系,百分数问题在解题思路和方法上与分数基本相同这一特点,联系分数知识复习、理解百分数问题中的数量关系,使学生能够正确解答百分数问题。这样设计,可以帮助学生沟通分数、百分数之间的内在联系。

课前准备

教师准备 PPT课件

教学过程

⊙情境激趣

(出示课件)一件绒衣的成分如下:

羊绒:14.8%

超细羊毛:73.5%

天丝:11.7%

读出这件绒衣成分的相关数据,并说出这些数据的意义。

设计意图:通过具体情境,调动学生复习的积极性,激发学生的复习热情,为高效复习作铺垫。

⊙复习百分数的相关知识

1.复习百分数的意义。

(1)什么叫百分数?它的意义是什么?(板书:百分数)

(像14.8%、73.5%、11.7%…这样的数叫做百分数。百分数表示一个数是另一个数的百分之几。百分数也叫做百分率或百分比)

(2)百分数和分数在意义上有什么不同?

(结合学生的回答,用课件展示,列表对比)

2.复习百分数、分数、小数的互化方法。

(1)百分数、分数、小数的互化方法是什么?

①小数与分数的互化方法。(结合学生的回答,课件展示)

②小数与百分数的互化方法。(结合学生的回答,课件展示)

③百分数与分数的互化方法。(结合学生的回答,课件展示)

(2)巩固练习。

①把下面各数化成百分数。

0.625= 0.2= 0.6= 3=

②把下面的分数化成百分数。

= = =

③把下面的百分数化成小数或整数。

42%= 108%= 5.4%= 200%=

3.复习百分数应用题。

(1)复习常见的百分率问题。

(课件出示教材116页12题)

取小麦500 g,烘干后,还有428 g。计算出这种小麦的烘干率和含水率。

烘干率=×100%

含水率=×100%

(解决问题,然后复习其他常见的百分率)

(2)复习百分数乘、除法应用题。

[课件出示教材113页3题第(3)、(4)、(5)小题]

①一件衬衣原价125元,现在降价20%。现在售价是多少元?[125×(1-20%)=100(元)]

②一件衬衣降价20%后,售价为100元。这件衬衣原价是多少元?[100÷(1-20%)=125(元)]

③一件衬衣售价为100元,一条长裤的价钱是这件衬衣的150%,这条长裤的价钱又是一双皮鞋的。这双皮鞋售价是多少元?

长裤:100×150%=150(元)

皮鞋:150÷=180(元)

(3)小结。

解百分数乘、除法应用题的关键是找准单位“1”,解题思路与分数乘、除法应用题的解题思路一样:单位“1”已知,求比较量用乘法计算;单位“1”未知,求单位“1”用除法计算。

设计意图:在系统复习百分数的相关知识的基础上,重点复习应用百分数知识解决问题的思路和解题方法,使学生利用百分数乘、除法解决问题的能力得到进一步提高。

⊙巩固练习

完成教材114页5题。

⊙课堂总结

通过本节课的复习,你都进一步理解了哪些知识?

⊙布置作业

教材116页13题。

板书设计

百分数(一)

1.百分数的意义

2.百分数、分数、小数的互化

3.百分数应用题