《商不变的规律》教学设计
文学网整理的《商不变的规律》教学设计(精选5篇),供大家参考,希望能给您提供帮助。
《商不变的规律》教学设计 篇1
【教学目标】
1、知识与技能
学生通过观察,能够发现并总结商的变化规律、会灵活运用商的变化规律。
培养学生用数学语言表达数学结论的能力。
2、过程与方法
使学生经历引导学生思考发现商的变化规律的过程,灵活运用商的变化规律。
3、情感态度与价值观
培养学生初步的抽象、概括能力及善于观察、勤于思考、勇于探索的良好习惯。
【教学重点】
探究商不变的规律和运用规律进行一些除法运算。
【教学难点】
引导学生自己发现并总结商的变化规律。
【教学方法】
启发式教学、自主探索、合作交流、讨论法、讲解法。
【课前准备】
多媒体
【课时安排】
1课时
【教学过程】
(一)故事导入
师:同学们,喜欢看《西游记》吗?最喜欢西游记里的什么人物?谁最贪吃?
一天,孙悟空拿来一些饼,猪八戒想去抢,孙悟空说:“我分给你吧,我给你8块饼,平均分2天吃完,怎么样?”猪八戒说:“太少了!”孙悟空灵机一转说:“那我就给你80块饼,平均分20天吃完。”猪八戒笑着说:“太好了!太好了!这回每天我可以多吃些了!”
提问:你认为小猪说的有道理吗?同桌交流。
师;相信同学们学了今天的知识就会明白其中的道理。
(二)探究新知
1、探索商不变的规律。
(1)观察下面两组算式,你发现了什么?你能照样子再写一组吗?
8÷2=480÷20=4800÷200=4
48÷24=224÷12=26÷3=2
小组比赛:比一比看谁写得又对又快。
(2)根据算式找出规律。
8÷2=4
80÷20=4
800÷200=4
出示自学提纲,学生自主观察探究。
①从上到下观察,被除数和除数是按照什么规律变化而商不变的?
②再从下到上观察,被除数和除数是按照什么规律变化而商不变的?
(3)汇报交流:从上到下观察,你发现了什么?
8÷2=4
(8×10)÷(2×10)=4
(8×100)÷(2×100)=4
被除数和除数同时乘10或乘100……商不变。
从下到上观察,你发现了什么?
800÷200=4
(800÷10)÷(20÷10)=4
(800÷100)÷(200÷100)=4
被除数和除数同时除以10或100……商不变。
2、尝试用自己的语言说出其中的规律。
学生交流后师小结:
被除数和除数同时乘或者除以相同的数,商不变。
讨论:这个“相同的数”,可以是0吗?为什么?
3、验证规律。
每人举出一组有这种规律的算式进行验证。
4、试一试。
用不同的方法计算350÷50。
师:我们男女生进行比赛吧。
汇报交流:
师:你能解释一下他们这样计算的理由吗?
5、回顾故事,总结提升。
师:刚才的故事中,小猴子是运用什么规律教育贪吃的小猪的呢
生交流:商不变的规律。
(三)课堂练习
谈话:同学们,你们学得怎么样了?我们一起到智慧乐园挑战一下自己吧!有没有信心呢?
1、想一想,算一算。
45÷3=88÷8=65÷5=
450÷30=880÷80=650÷50=
4500÷300=8800÷800=6500÷500=
2、用商不变的规律进行简算。
200÷25
400÷25
(四)拓展提高
根据476÷17=28,你能写出多少个商是28的算式?
全班比赛:看谁写得最多。
学生比赛后集体交流。
(五)课堂总结
师:通过学习,你有什么收获?
生交流:被除数和除数同时乘或除以一个相同的数(0除外),商不变。这就是商不变的`规律。
(六)板书设计
商不变的规律
8÷2=4
80÷20=4
800÷200=4
被除数和除数同时乘或除以一个相同的数(0除外),商不变。这就是商不变的规律。
【教学反思】
在教学《商不变的性质》时,尝试从学生感兴趣的实例引入,从学生的反应来看比我原来直接出现一些数学算式,让他们直接计算的效果更好。课的开始我首先给学生讲了一个小故事:一天,孙悟空拿来一些饼,猪八戒想去抢,孙悟空说:“我分给你吧,我给你8块饼,平均分2天吃完,怎么样?”猪八戒说:“太少了!”孙悟空灵机一转说:“那我就给你80块饼,平均分20天吃完。”猪八戒笑着说:“太好了!太好了!这回每天我可以多吃些了!”这个关键引导学生从被除数和除数之间的变化得出“商不变”的规律,期间教师扶得少,学生创造的多;学生学会的不仅仅是一条数学性质,更重要的是,学生在自主学习中,学会了独立思考,学会了进行合作,还学习了“像数学家一样进行研究、创造”。同学们学习积极性很高,人人参与互动学习,通过列式、比较、讨论,学生自己总结出了商不变的规律,培养了学生的学习能力,使学生真正成为学习的主人。
《商不变的规律》教学设计 篇2
教学内容:
北师大版数学第七册第65页商不变的规律。
教学目标:
1.使学生理解和掌握商不变的规律。
2.培养学生观察、比较、抽象、概括等能力。
3.通过体会"变"与"不变"的数学现象,引导学生感受辩证唯物主义的思想。
教学重点:
理解商不变的规律。
教学难点:
归纳商不变规律的过程。
教具准备:
投影片、卡片。
教学过程:
一、以疑激趣,导人新课(口算:投影片出示)
(1)24÷12=
(2)24000÷12000=引导学生大胆猜测第(2)题的结果。教师因势利导,让学生思考它与第(1)题有什么关系,这节课就来研究这个问题。
二、探索发现规律
1.观察算式,说出各部分的名称。24÷12=2被除数除数商
2.观察算式,分类整理。学生口算下列各题(卡片):
(24×2)÷(12×2)=
(24÷4)÷(12÷4)=
(24÷3)÷(12÷3)=
(24×10)÷(12×10)=
(24-8)÷(12-8)=
(24÷6)÷(12÷6)=
(24×2)÷(12÷2)=
(24×3)÷(12×2)=
(24×5)÷(12×5)=
思考:与24÷12=2相比,上面哪些算题的商没有变化?再根据商的变化情况给这些题目分类。
重点引导学生观察"商不变"的这组题目,再次提出问题:商不变,谁在变?(被除数、除数在变)你能根据被除数、除数的变化情况,再一次把这组题目进行分类吗?为什么这样分类?组织学生在小组讨论后,分成下面两类:
第一类:(24×2)÷(12×2)=2
(24×5)÷(12×5)=2
(24×10)÷(12×10)=2
第二类:(24÷3)÷(12÷3)=2
(24÷4)÷(12÷4)=2
(24÷6)÷(12÷6)=2
教师陈述:被除数、除数都乘几,可以说被除数、除数都扩大了几倍;被除数、除数都除以几,可以说被除数、除数都缩小了几倍。板书:扩大缩小
3.观察算式,发现规律
(1)引导学生小组讨论:以24÷12=2为标准,分别观察上面两组题目的被除数、除数是怎样变化的?
(2)学生讨论汇报:
生1:我发现被除数、除数都扩大2倍,商没有变。追问:"都"是什么意思?
生2:"都"的意思是被除数扩大2倍、除数也扩大2倍。
引导:被除数、除数都扩大2倍,可以这样说:被除数、除数同时扩大2倍。
生3:我发现被除数、除数同时扩大10倍,商不变。
生4:我发现被除数、除数同时缩小3倍,商不变。
组织学生用完整的话说出上面的规律,并与书上的规律比较。
板书:在除法里,被除数和除数同时扩大或缩小相同的倍数,商不变。
(3)组织学生举例验证,并板书课题:"商不变规律"。
(4)讨论:为什么(24一8)÷(12一8),(24×2)÷(12÷2),(24×3)÷(12×2)的.商发生变化呢?在“同时"、"相同的倍数"下面画着重号,引起学生重视。
三、反馈练习,深化认识
1.以"故事"激发兴趣,加深理解。师生一起欣赏一段录像故事《猴子分桃》。花果山风景秀丽,气候宜人,那儿住着一群猴子。有一天,猴王让小猴分桃子。猴王说:"给你6个桃子,平均分给3只小猴子"。小猴子一听,连连摇头,心想每只小猴才分到2个桃子呀,”不行,太少了!太少了!"小猴子喊了起来。猴王缓了口气说:"那好吧,给你60个桃子平均分给30只猴子怎么样啊?"小猴子得寸进尺,挠了挠头试探地说:"大王请开恩,再多给点行不行呀?这时猴王一准桌子显出慷慨的样子:"那好吧,给你600个桃子去平均分给300只小猴子,你总该满意了吧!"小猴子笑了,猴王也笑了。
引导:同学们也笑了,谁的笑是聪明的笑?为什么?
引导学生思考:24000÷12000等于多少?根据是什么?
2.口算。
3.根据31200÷2600=12很快说出下列各题的结果。
312÷26= 3120÷260= 15600÷1300= 312000÷26000= 156000÷13000=
4.抢答。
(1)在一道除法算式里,如果被除数除以5,除数也除以5,商( )。
(2)在一道除法算式里,如果被除数乘10,要使商不变,除数( )。
(3)在一道除法算式里,如果除数除以100,要使商不变,被除数( )。
5.已知48÷12=4,判断下列各式是否正确。如果不对,怎样改一下就对了。
(1)(48×5)÷(12×5)=4……( )
(2)(48×3)÷(12×4)=4……( ).
(3)(48÷4)÷(12÷4)=4……( )
(4)(48÷6)÷(12×6)=4……( )
(5)(48×3)÷(12÷3)=4……( )
(6)(48÷4)÷(12÷4)=4……( )
(7)(48×2)÷(12×2)=4……( )
(8)(48÷2)÷(12÷2)=4……( )
6.填空,看谁填得又对又快。
(1)90÷30=(90×口)÷(30×2)
(2)(40×5)÷(20○5)=2
(3)(1200÷口)÷(40005)=3
(4)(120004)÷(40004)=3
(5)(12000口)÷(4000口)=3
7.小游戏找朋友。
方法:一位同学手执32÷8=4的卡片,说:"愿意和我做朋友的请到台上来。对手执(32×4)÷(8÷4)的卡片反问:"你怎样改动一下,我们就可以成为好朋友?还可以怎么改呢?"在做过一些类似的
活动后小结:祝贺你们找到了这么多的好朋友,愿我们班成为一个团结协作的大集体。
四、课堂总结
提问:这节课我们一起研究了什么内容?你有什么收获?还有哪些疑问?
总结:同学们通过认真观察、思考、比较,在被除数、除数的变化申看到了商不变的规律,这种观察和思考问题的方法会使我们变得越来越聪明。
《商不变的规律》教学设计(通用11篇)
作为一无名无私奉献的教育工作者,总不可避免地需要编写教学设计,教学设计是一个系统化规划教学系统的过程。那么大家知道规范的教学设计是怎么写的吗?下面是小编为大家整理的《商不变的规律》教学设计,欢迎阅读,希望大家能够喜欢。
《商不变的规律》教学设计 篇3
〖教材分析〗
这个教材内容是在学生经历了“有趣的算式”、“乘法的结合律”、“乘法的分配律”三个探索与发现的学习过程后,教材再次以“探索与发现”为主题,其宗旨是让学生经历观察、对比被除数与除数的变化及对应的商的关系,从而发现“商不变的规律”的学习过程,感受探索与发现的成功与快乐,进一步掌握探索与发现的方法;并使学生在深刻理解了“商不变的规律”的内涵的基础上,引导学生运用知识解决计算中和实际中的问题。
〖教学目标〗
知识技能:理解和掌握商不变的规律,并能运用这一规律口算有关除法;培养学生观察、概括以及提出问题、分析问题、解决问题的能力。
情感态度:学生在参与观察、比较、猜想、概括、验证等学习活动过程中,体验成功,同时渗透初步的辩证唯物主义思想启蒙教育。
〖教学重点〗
使学生理解并归纳出商不变的规律。
〖教学难点〗
使学生会初步运用商不变的规律进行一些简便计算。
〖教学过程〗
一、创设情境,激发兴趣。
师:同学们,喜欢听故事吗?今天柯老师给你们讲一个故事。(课件演示故事内容)
猴子分桃
花果山风景秀丽,气候宜人,那儿住着一群猴子。有一天,猴王让小猴分桃子。猴王说:“给你8个桃子,平均分给2只小猴子。”小猴子一听,连连摇头,“不行,太少了!太少了!”“那就给你80个桃子,平均分给20只猴子。”小猴子喊道:“还少,还少。”“还少呀?那就给你800个桃子,平均分给200只猴子吧。” 小猴子得寸进尺,试探地说:“大王开恩,再多给点行不行呀?”猴王一拍桌子,显 出慷慨的样子:“那好吧,给你8000个桃子平均分给20xx只小猴子,这下你该满 意了吧。”小猴子笑了,猴王也笑了。
师:为什么小猴子笑了,猴王也笑了?
生1:因为猴子吃到了了更多的桃子了。
生2:因为无论怎样分,每个猴子吃到的个数都一样,都是4个。
师:是这样的'吗?你是怎么知道的呢?
生:8÷2=4 80÷20=4 800÷200=4 8000÷20xx=4
师:哦,原来是这样,你真聪明!为什么每只猴子每次分到的桃子都一样呢?这节课我们就一起来研究这个问题。
二、探索规律,概括性质。
(一)观察算式,发现规律。
(1)课件出示:
8÷2=4 80÷20=4 800÷200=4 8000÷20xx=4
(2)观察讨论:
A、从上往下看,被除数和除数有什么变化?商有什么变化?
(学生观察讨论后,代表汇报结论,师板书:被除数和除数都乘一个数,商不变。)
B、从下往上看,被除数和除数有什么变化?商有什么变化?
(学生观察思考,个别汇报结论,师板书:被除数和除数都除以一个数,商不变。)
C、你能举些例子说明你的发现吗?
(学生举例,各抒己见)
D、要使商不变,被除数和除数都乘0或除以0,可以吗?为什么?
( 生小组讨论,再代表汇报,举例说明)
师:真棒,能把把你的发现用一句话说给大家听听吗?
(学生尝试归纳发现的规律,师板书规律)
(二)教师小结,揭示课题。(板书课题)
三、反馈练习,深化认识。
(1)完成P74的试一试。
(2)填数。
20÷5=4
( 20 ×6 )÷( 5 × )=4
( 20 ÷ )÷( 5 ÷5 )=4
( 20 × )÷( 5×8 )=4
(3)在下面等式中的○里填上运算符号,在□里填上适当的数。
16÷8=2
(16÷ )÷(8○2)=2
(16○3)÷(8× )=2
(16÷ )÷(8÷ )=2
3、已知48÷12=4,判断下列各式是否正确。如果不对,怎样改一下就对了。
⑴(48×5)÷(12×5) =4 ( )
⑵(48×3)÷(12×4) =4 ( )
⑶(48÷6)÷(12×6) =4 ( )
⑷(48÷4)÷(12÷4) =4 ( )
4、抢答。
⑴在一道除法算式里,如果被除数除以5,除数也除以5,商( )。
⑵在一道除法算式里,如果被除数乘10,要使商不变,除数( )。
⑶在一道除法算式里,如果除数除以100,要使商不变,被除数( )。
四、课堂总结。
谁能用一句话说说这节课你的感受或收获。(思考半分钟后作答)
五、作业布置。
1、从上到下,先算出每组题中第一题的商,然后很快地写出下面两题的商。
72÷9= 36÷3= 80÷4=
720÷90= 360÷30= 800÷40=
7200÷900= 3600÷300= 8000÷400=
2、填空(在□中填数,在○中填运算符号)
200÷40=5
(200×4)÷(40×□)=5 (200÷2)÷(40÷□)=5
(200×3)÷(40○□)=5 (200÷4)÷(40○□)=5
(200×□)÷(40○□)=5
《商不变的规律》教学设计 篇4
教学目标:
1. 理解和掌握商不变的规律,并能运用这一规律口算有关除法,培养学生的观察、概括以及提出问题、分析问题、解决问题的能力。
2.学生在参与观察、比较、概括、验证等学习过程中,体验成功,收获学习的快乐。
教学重难点:
1重点:理解归纳出商不变的规律。
2.难点:会初步运用商不变的规律进行一些简便计算。
教学过程
一、创设情境,激发兴趣
导入:同学们想玩游戏吗?今天我们就一起玩一个自编除法的游戏。老师这有三个数字——8、2、0、,每个数字在一道算式中可以出现一次、两次或多次,也可以一次也不出现,但是要求每一道算式中的商必须等于4,限时一分钟,看谁写得多! 预测:
8÷2=4
80÷ 20=4
800÷ 200=4
8000÷ 20xx=4
88÷ 22=4
888÷ 222=4 8888÷ 2222=488888÷ 22222=4 880 ÷220=4 8800 ÷2200=488000÷ 22000=4
发现:我们无论编出多少道不同的算式,什么是不变的?(板书:商不变)
商不变,是什么在变呢?(板书:被除数和除数)
探究:被除数和除数究竟有怎样的变化,商却不变呢?这节课我们一起来研究商不变的规律(板书课题)
二、合作学习、探究规律
探究:请观察我们自己编的.一组算式,看看被除数和除数究竟是怎样变化的而商却不变?
要求:可以自己研究,也可以小组内共同探究。
交流:说出自己的发现。
预测1:学生对于“同时”、“相同”的用词不一定能用的准,理解不一定能非常透彻。
解决:让学生在自己充分的理解,叙述的基础上提炼出“同时”、“相同”一词。
预测2:对于“零除外”,有些同学可能会想到这一情况,但对于其原因不是很清楚。
解决:让学生实际举例,使其充分理解——零不能做除数。
三、应用规律,反馈内化
1.在○里填上运算符号,在 里填上适当的数。
(1)16÷ 8=(16× 2)÷ (8 ×□ )
(2)480÷80=(480÷10)÷(80○10)
(3)150÷25=(150○□ )÷(25○□)
2口算。
竞赛:一分钟内能完成几道题,并说说做的快的原因。
3简算
400÷25=你会算吗?怎样变成我们学过的形式在计算呢?
预测:400÷25=(400× 4)÷ ( 25× 4)=1600÷ 100=16 400÷25=(400÷5)÷(25÷5)=80÷5=16
四、总结延伸,应用拓展
今天我们一起研究了商不变的规律,请同学们大胆猜测一下,在乘法,加法、减法中会不会也有积、和、差不变的规律呢?请同学们利用课余时间与学习伙伴一起研究、思考。 教学反思:在小学阶段,商不变的规律是一个很重要的内容,给今后分数和比的性质打下了坚实的基础。但新教材却把商不变的规律及商的变化规律都放在一个例题中,大大增加了学习内容和理解难度,我将内容进行了分化,将商不变的规律单独作为一个完整的课时来讲,大胆创新,重点突出了商不变的规律,效果很好。 上完本节课有几点收获:
1、由学生感兴趣的游戏引入新课,能激发学生探究新知的欲望;
2、练习内容形式多样,由浅入深,让学生进一步内化商不变的规律;
3、在探究商不变的规律时,重视学生的自主探究、合作交流的培养,体现主导与主体间的关系;
4、揭示规律并非一步到位,而是分解揭示,首先让学生发现被除数和除数同时扩大相同的倍数,商不变,然后,再让学生发现被除数和除数同时缩小相同的数,商不变,最后提示学生0乘任何数都得0,0不能当做除数,然后总结出商不变的规律。然而也有不足之处:首先,在讲解完规律过渡到应用时,衔接不够自然;规律应用过程中,讲解简便运算后,总结不到位:由于在讲解练习题时,把握不熟练:在发动学生回答问题上不到位,以至于课堂气氛不够活跃,学生明明会的问题不敢回答,需要老师再三提示。在以后的教学工作中,我要扬长避短,精益求精,争取做到更好!
《商不变的规律》教学设计 篇5
教学内容:
苏教版数学第八册(修订本)第26页商不变的规律。
教学目标:
1.使学生理解和掌握商不变的规律。
2.培养学生观察、比较、抽象、概括等能力。
3.通过体会"变"与"不变"的数学现象,引导学生感受辩证唯物主义的思想。
教学重点:
理解商不变的'规律。
教学难点:
归纳商不变规律的过程。
教具准备:
投影片、卡片。
教学过程
一、以疑激趣,导人新课口算(投影片出示)
(1)24÷12=
(2)24000÷12000=引导学生大胆猜测第(2)题的结果。教师因势利导,让学生思考它与第(1)题有什么关系,这节课就来研究这个问题。
[评析:提出新颖的、有一定难度的、与新知联系密切的问题,让学生产生疑问、猜想,有效地激发学习动机。]
二、探索发现规律
1,观察算式,说出各部分的名称。24÷12=2被除数除数商
2,观察算式,分类整理。学生口算下列各题(卡片):
(24×2)÷(12×2)=
(24÷4)÷(12÷4)=
(24÷3)÷(12÷3)=