《平面向量》说课稿
文学网整理的《平面向量》说课稿(精选7篇),供大家参考,希望能给您提供帮助。
《平面向量》说课稿 篇1
尊敬的各位评委、各位老师:
大家好!
今天我说课的题目是《平面向量的数量积》。下面我将从四个方面阐述我对本节课的分析和设计。
第一部分:教学内容分析:
1、教材的地位及作用:
将平面向量引入高中课程,是现行数学教材的重要特色之一。由于向量既能体现“形”的直观位置特征,又具有“数”的良好运算性质,是数形结合和转换的桥梁。而这一切之所以能够实现,平面向量的数量积功不可没。《平面向量的数量积》是高一数学下册第五章第六节的内容。平面向量数量积是中学数学的一个重要概念。它的性质很多,应用很广,是后面学习的重要基础。本课是第一课时,学生对概念的理解尤为重要。
2、教学目标的设定:
(1)知识目标:
平面向量数量积的定义及初步运用。
(2)能力目标:
通过对平面向量数量积定义的剖析,培养学生分析问题发现问题能力,使学生的思维能力得到训练。
(3)情感目标:
通过本节课的学习,激发学生学习数学的兴趣,体会学习的快乐。
3、教学重点:平面向量的`数量积定义。
4、教学难点:平面向量的数量积定义及平面向量数量积的运用。
第二部分:教法分析:
采用启发引导式与讲练相结合,并借助多媒体教学手段,使学生理解平面向量数量积的定义,理解定义之后引导学生推导数量积的性质,通过例题和练习加深学生对平面向量数量积定义的认识,初步掌握平面向量数量积定义的运用。
《平面向量》说课稿 篇2
各位专家:
你们好!
今天我说课的课题是《平面向量的概念》,这是江苏省职业学校文化课教材《基础模块·下册》第七章平面向量中的第一节的内容,我将尝试运用新课改的理念、中职学生的认知特点指导本节课的教学,新课标指出,学生是教学的主体,教师的教要本着从学生的认知规律出发,以学生活动为主线,在原有知识的基础上,建构新的知识体系。下面我将以此为基础从教材分析、学情分析、教法学法、教学过程、教学评价等五个环节,向各位专家谈谈我对本节课教材的理解和教学设计。
一、 教材分析:
1、教材的地位和作用
向量是高中阶段学习的一个新的矢量,向量概念是《平面向量》的最基本内容,它的学习直接影响到我们对向量的进一步研究和学习,如向量间关系、向量的加法、减法以及数乘等运算,还有向量的坐标运算等,因此为后面的学习奠定了基础.
结合本节课的特点及学生的实际情况我制定了如下的教学目标及教学重难点:
2、教学目标
(1) 知识与技能目标
1)识记平面向量的定义,会用有向线段和字母表示向量,能辨别数量与向量;
2)识记向量模的定义,会用字母和线段表示向量的模.
3)知道零向量、单位向量的概念.
(2) 过程与方法目标
学生通过对向量的学习,能体会出向量来自于客观现实 ,提高观察、分析、抽象和概括等方面的能力,感悟数形结合的思想.
(3)情感态度与价值观目标
通过构建和谐的课堂教学氛围,激发学生的学习兴趣,使学生勇于提出问题,同时培养学生团队合作的精神及积极向上的学习态度.
3、教学重难点
教学重点:向量的定义,向量的几何表示和符号表示,以及零向量和单位向量
教学难点:向量的几何表示的理解,对零向量和单位向量的理解
二、学情分析
(1)能力分析:对于我校的学生,基础知识较薄弱,虽然他们的智力发展已到了形成运演阶段,但并不具备较强的抽象思维能力、概括能力及数形结合的思想.
(2)认知分析:之前,学生有了物理中的矢量概念,这为学习向量作了最好的铺垫。
(3)情感分析:部分学生具有积极的学习态度,强烈的探究欲望,能主动参与研究.
三、教法学法
教法:启发教学法,引探教学法,问题驱动法,并借助多媒体来辅助教学
学法:在学法上,采用的是探究,发现,归纳,练习。从问题出发,引导学生分析问题,让学生经历观察分析、概括、归纳、类比等发现和探索过程.
四、教学过程
课前:
为了打造高效课堂,以生为本我选择生本式的教学方式,以穿针引线的方式设计了前置性作业。其中包括一些向量的基本概念,并提出:
1、你学过的其他学科中有没有可以称为向量的?
2、向量的.特点是什么?有几种描述向量的表示方法?
3、零向量的特点是什么?
【设计意图】目的是通过课前的预习明确自己需要在本节课中解决的问题,带着问题听课,我会在上课前就学生的完成情况明确主要的教学侧重点,真正打造高效课堂。
课上教学过程:
1、 创设情境
数学的学习应该是与学生的生活融合起来,从学生的生活经验和已有的知识背景出发,让他们在生活中发现数学,探究数学,认识并掌握数学,由生活的实例引入,在对比于物理学中的速度、位移等学生已有的知识给出本章研究的问题平面向量
【设计意图】形成对概念的初步认识,为进一步抽象概括做准备。
2、 形成概念
结合物理学中对矢量的定义,给出向量的描述性概念。对于一个新学的量定义概念后,通常要用符号表示它。怎样把我们所举例子中的向量表示出来呢?
采取让学生先尝试向量的表示方法,自觉接受用带有箭头的线段(有向线段)来表示向量。明确为什么可以用有向线段表示向量,引导学生总结出向量的表示方法,强调印刷体与手写体的区别。结合板书的有向线段给出向量的模。
单位向量、零向量的概念
【即时训练】
为了使学生达到对知识的深化理解,从而达到巩固提高的效果,我特地设计了一组即时训练题,通过学生的观察尝试,讨论研究,教师引导来巩固新知
3、 知识应用
本阶段的教学,我采用的是教材上的两个例题,旨在巩固学生对平面向量的观念,提高学生的动手实践能力,掌握求模的基本方法,提升识图能力.
4、 学以致用
为了调动学生的积极性,培养学生团队合作的精神,本环节我采用小组竞争的方式开展教学,小组讨论并选派代表回答,各组之间取长补短,将课堂教学推向高潮,再次加强学生对向量概念的理解。
5、课堂小结
为了了解学生本节课的学习效果,并且将所学做个很好的总结。设置问题:通过本节课的学习你有哪些收获?(可以从各种角度入手)
【设计意图】通过总结使学生明确本节的学习内容,强化重点,为今后的学习打下坚定的基础
6、 布置作业
出选做题的目的是注意分层教学和因材施教,为学有余力的学生提供思考的空间.
以上几个环节环环相扣,层层深入,并充分体现教师与学生的交流互动,在教师的整体调控下,学生通过动眼观察,动脑思考,层层递进,亲身经历了知识的形成和发展过程,以问题为驱动,使学生对知识的理解逐步深入。而最后的实际应用又将激发学生的学习兴趣,带领学生进入对本节课更深一步的思考和研究之中,从而达到知识在课堂以外的延伸。
以上就是我对本节课的设计和说明,请各位领导,老师批评指正
《平面向量》说课稿 篇3
尊敬的各位评委、各位老师:
大家好!
今天我说课的题目是《平面向量的数量积》。下面我将从四个方面阐述我对本节课的分析和设计。
第一部分:教学内容分析:
1、教材的地位及作用:
将平面向量引入高中课程,是现行数学教材的重要特色之一。由于向量既能体现“形”的直观位置特征,又具有“数”的良好运算性质,是数形结合和转换的桥梁。而这一切之所以能够实现,平面向量的数量积功不可没。《平面向量的数量积》是高一数学下册第五章第六节的内容。平面向量数量积是中学数学的一个重要概念。它的性质很多,应用很广,是后面学习的重要基础。本课是第一课时,学生对概念的理解尤为重要。
2、教学目标的设定:
(1)知识目标:
平面向量数量积的定义及初步运用。
(2)能力目标:
通过对平面向量数量积定义的剖析,培养学生分析问题发现问题能力,使学生的思维能力得到训练。
(3)情感目标:
通过本节课的学习,激发学生学习数学的兴趣,体会学习的.快乐。
3、教学重点:平面向量的数量积定义。
4、教学难点:平面向量的数量积定义及平面向量数量积的运用。
第二部分:教法分析:
采用启发引导式与讲练相结合,并借助多媒体教学手段,使学生理解平面向量数量积的定义,理解定义之后引导学生推导数量积的性质,通过例题和练习加深学生对平面向量数量积定义的认识,初步掌握平面向量数量积定义的运用。
《平面向量》说课稿 篇4
【研究点】
在课堂教学中引导学生开展数学交流,培养学生的数学交流能力。
在数学课堂教学和课外辅导中,常常会有这样的情形:学生觉得上课听得懂,但一下课做作业就不知如何下笔;学生对于自己所掌握的知识说不出,对于自己不懂的地方提不出问题;或者是对于作业学生会做,但讲不清为什么这样做,而职中学生数学成绩差的主要原因就在于学生不会进行交流合作,这表明我们的课堂教学中缺乏数学交流,我们的学生数学交流的能力很低。
所谓数学交流能力就是学生将自己在学习基础知识、掌握基本技能过程中“想到的”“说”给别人“听”,对数学问题发表看法,讲清道理,相互促进,相互提高的能力。数学交流是多向的,有师生间的交流,学生间的交流,组际间的交流,学生与教材间的交流,甚至还有学生与社会间的交流等。听、说、读、写是交流的主要方式。
对于本堂课,我主要从教材分析、教法分析、学法指导、教学过程等进行阐述。
【教材分析】
1、地位作用:
本节内容是第十五章《空间向量和立体几何Ⅱ》第三节内容,学生在一年级已学了平面向量和立体几何Ⅰ的基础内容,此章是综合前面两章的提高部分内容。这节内容要求学生能学会应用空间向量解决平面直线、空间直线中的问题。本小节的内容分两个层次,第一层次是用空间直线的方向向量、平面的法向量判定空间直线、平面间的位置关系;第二个层次是能利用直线的方向向量和平面的法向量求空间直线与直线、平面与平面及直线与平面间的夹角。
2、学情分析:学前班的学生相对基础要好一点,学生的学习主动性较好,有一定的学习兴趣。所以在教学中可以尝试让学生进行数学交流,学生的合作学习能力还可以。但由于教材的编排原因,前后知识的协接不是很好,要求学生对第一、二册基础掌握扎实,这一点学生做得不是很好。我是今年才接这个班,并且在开学初开始让学生尝试合作交流的模式,所以说还是属于刚开始阶段。还有许多的不成熟的地方。
根据教材、考试大纲对学生的要求,结合学生现有的知识水平和存在的问题,我将本节课的教学目标定为:
3、教学目标:
知识目标:掌握空间直线的方向向量和平面的法向量的概念
能力目标:能利用直线的方向向量和平面的法向量判定空间直线、平面间的位置关系。
情感目标:引导学生开展数学交流、鼓励学生反思自己的认识和解决问题的方法。
3、重点与难点:利用直线的方向向量和平面的法向量判定平面与平面、直线与平面的位置关系
【教法设计】
为了实现上述教学目标,结合教材特点,本课采用的主要教学方法有“学案导学法”、“合作交流法”等。通过交流已学过的平面向量和立体几何中的相关知识,过渡到空间向量应用于立体几何,引导学生讨论两者之间的关系,教学中,启发、诱导贯穿始终,充分调动学生的学习积极性,培养学生合作交流的能力。
【学法指导】
空间向量这一节课内容抽象,要求学生有一定的空间想象能力和分析推理能力,学生接受起来有一定的困难。因此,设计学案,让学生能主动预习、复习,参与问题的讨论、交流,积极探究,善于思考,协作学习,便于学生掌握知识,培养学生的合作交流能力。
【教学过程】
在课堂结构上,我根据学生的认知水平和知识的衔接关系,设计了四个主要的程序是:
(1)预习交流
(2)新授→形成概念、交流探究、巩固训练
(3)课堂练习、小结→强化重点,提高认识
(4)布置作业→复习巩固等四个层次的学法。
1、预习交流
学生将课前讨论完成的学案进行交流,教师引导学生评析纠错,查漏补缺。设计目的:通过课前的练习可以进一步明确学生现在掌握知识、应用知识的能力及存在的知识缺陷和解题思路的清晰与否,为本堂课后面要实施的'教学环节抛砖引玉。
2、新授
先讲解空间直线的方向向量和平面的法向量的概念,并演示说明。同时出示空间直线与直线、直线与平面、平面与平面的位置关系图示(1)~(9),引导学生交流讨论用平行向量、方向向量来判定线、面等的位置关系。对于线面、面面相交的问题这个难点问题,师生共同探讨,推导其关系。然后出示例题,学生交流探讨,进行巩固练习。
设计目的:让学生在合作交流中学习新知识,充分体现学生的主体地位,激发学生学习的兴趣。
3、归纳小结、反馈练习
用向量判断线、面间的位置关系,前提要找出对应的平面向量或法向量,然后利用向量之间的关系证明线面间的关系或进行夹角的计算。
由于本堂课的内容比较抽象,学生进行应用有一定的困难,故练习的设置降低难度,依照例题进行巩固练习,提高放在下一课时进行。
4、布置作业
书本第103页第2小题,第104页第1题
【板书设计】
根据需要把黑板设计成三大块,在左边设置投影,中间偏左书写本节课的重要知识点。右边进行例题重点步骤板演和学生练习,结合投影,使学生根据板书达到规范格式,巩固知识的目的。
《平面向量》说课稿 篇5
说课内容:普通高中课程标准实验教科书(人教A版)《数学必修4》第二章第四节“平面向量的数量积”的第一课时---平面向量数量积的物理背景及其含义。
下面,我从背景分析、教学目标设计、课堂结构设计、教学过程设计、教学媒体设计及教学评价设计六个方面对本节课的思考进行说明。
一、 背景分析
1、学习任务分析
平面向量的数量积是继向量的线性运算之后的又一重要运算,也是高中数学的一个重要概念,在数学、物理等学科中应用十分广泛。本节内容教材共安排两课时,其中第一课时主要研究数量积的概念,第二课时主要研究数量积的坐标运算,本节课是第一课时。
本节课的主要学习任务是通过物理中“功”的事例抽象出平面向量数量积的概念,在此基础上探究数量积的性质与运算律,使学生体会类比的思想方法,进一步培养学生的抽象概括和推理论证的能力。其中数量积的概念既是对物理背景的抽象,又是研究性质和运算律的基础。同时也因为在这个概念中,既有长度又有角度,既有形又有数,是代数、几何与三角的最佳结合点,不仅应用广泛,而且很好的体现了数形结合的数学思想,使得数量积的概念成为本节课的核心概念,自然也是本节课教学的重点。
2、学生情况分析
学生在学习本节内容之前,已熟知了实数的运算体系,掌握了向量的概念及其线性运算,具备了功等物理知识,并且初步体会了研究向量运算的一般方法:即先由特殊模型(主要是物理模型)抽象出概念,然后再从概念出发,在与实数运算类比的基础上研究性质和运算律。这为学生学习数量积做了很好的铺垫,使学生倍感亲切。但也正是这些干扰了学生对数量积概念的理解,一方面,相对于线性运算而言,数量积的结果发生了本质的变化,两个有形有数的向量经过数量积运算后,形却消失了,学生对这一点是很难接受的;另一方面,由于受实数乘法运算的影响,也会造成学生对数量积理解上的偏差,特别是对性质和运算律的理解。因而本节课教学的难点数量积的概念。
二、 教学目标设计
《普通高中数学课程标准(实验)》 对本节课的要求有以下三条:
(1)通过物理中“功”等事例,理解平面向量数量积的含义及其物理意义。
(2)体会平面向量的数量积与向量投影的关系。
(3)能用运数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系。
从以上的背景分析可以看出,数量积的概念既是本节课的重点,也是难点。为了突破这一难点,首先无论是在概念的引入还是应用过程中,物理中“功”的实例都发挥了重要作用。其次,作为数量积概念延伸的性质和运算律,不仅能够使学生更加全面深刻地理解概念,同时也是进行相关计算和判断的理论依据。最后,无论是数量积的性质还是运算律,都希望学生在类比的基础上,通过主动探究来发现,因而对培养学生的抽象概括能力、推理论证能力和类比思想都无疑是很好的载体。
综上所述,结合“课标”要求和学生实际,我将本节课的教学目标定为:
1、了解平面向量数量积的物理背景,理解数量积的含义及其物理意义;
2、体会平面向量的数量积与向量投影的关系,掌握数量积的性质和运算律,
并能运用性质和运算律进行相关的运算和判断;
3、体会类比的数学思想和方法,进一步培养学生抽象概括、推理论证的能力。
三、课堂结构设计
本节课从总体上讲是一节概念教学,依据数学课程改革应关注知识的发生和发展过程的理念,结合本节课的知识的逻辑关系,我按照以下顺序安排本节课的教学:
即先从数学和物理两个角度创设问题情景,通过归纳和抽象得到数量积的概念,在此基础上研究数量积的性质和运算律,使学生进一步加深对概念的理解,然后通过例题和练习使学生巩固概念,加深印象,最后通过课堂小结提高学生认识,形成知识体系。
四、 教学媒体设计
和“大纲”教材相比,“课标”教材在本节课的内容安排上,虽然将向量的夹角在“平面向量基本定理”一节提前做了介绍,但却将原来分两节课完成的内容合并成一节,相比较而言本节课的教学任务加重了许多。为了保证教学任务的完成,顺利实现本节课的教学目标,考虑到本节课的实际特点,在教学媒体的使用上,我的设想主要有以下两点:
1、制作高效实用的电脑多媒体课件,主要作用是改变相关内容的呈现方式,以此来节约课时,增加课堂容量。
2、设计科学合理的板书(见下),一方面使学生加深对主要知识的印象,另一方面使学生清楚本节内容知识间的逻辑关系,形成知识网络。
平面向量数量积的物理背景及其含义
一、 数量积的概念 二、数量积的性质 四、应用与提高
1、 概念: 例1:
2、 概念强调 (1)记法 例2:
(2)“规定” 三、数量积的运算律 例3:
3、几何意义:
4、物理意义:
五、 教学过程设计
课标指出:数学教学过程是教师引导学生进行学习活动的过程,是教师和学生间互动的过程,是师生共同发展的过程。为有序、有效地进行教学,本节课我主要安排以下六个活动:
活动一:创设问题情景,激发学习兴趣
正如教材主编寄语所言,数学是自然的,而不是强加于人的。平面向量的数量积这一重要概念,和向量的`线性运算一样,也有其数学背景和物理背景,为了体现这一点,我设计以下几个问题:
问题1:我们已经研究了向量的哪些运算?这些运算的结果是什么?
问题2:我们是怎么引入向量的加法运算的?我们又是按照怎样的顺序研究了这种运算的?
期望学生回答:物理模型→概念→性质→运算律→应用
问题3:如图所示,一物体在力F的作用下产生位移S,
(1)力F所做的功W= 。
(2)请同学们分析这个公式的特点:
W(功)是 量,
F(力)是 量,
S(位移)是 量,
α是 。
问题1的设计意图在于使学生了解数量积的数学背景,让学生明白本节课所要研究的数量积与向量的加法、减法及数乘一样,都是向量的运算,但与向量的线性运算相比,数量积运算又有其特殊性,那就是其结果发生了本质的变化。
问题2的设计意图在于使学生在与向量加法类比的基础上明了本节课的研究方法和顺序,为教学活动指明方向。
问题3的设计意图在于使学生了解数量积的物理背景,让学生知道,我们研究数量积绝不仅仅是为了数学自身的完善,而是有其客观背景和现实意义的,从而产生了进一步研究这种新运算的愿望。同时,也为抽象数量积的概念做好铺垫。
活动二:探究数量积的概念
1、概念的抽象
在分析“功”的计算公式的基础上提出问题4
问题4:你能用文字语言来表述功的计算公式吗?如果我们将公式中的力与位移推广到一般向量,其结果又该如何表述?
学生通过思考不难回答:功是力与位移的大小及其夹角余弦的乘积;两个向量的大小及其夹角余弦的乘积。这样,学生事实上已经得到数量积概念的文字表述了,在此基础上,我进一步明晰数量积的概念。
2、概念的明晰
已知两个非零向量
与
,它们的夹角为
,我们把数量 ︱
︱·︱
︱cos
叫做
与
的数量积(或内积),记作:
·
,即:
·
= ︱
︱·︱
︱cos
在强调记法和“规定”后 ,为了让学生进一步认识这一概念,提出问题5
问题5:向量的数量积运算与线性运算的结果有什么不同?影响数量积大小的因素有哪些?并完成下表:
角
的范围0°≤
<90°
=90°0°<
≤180°
·
的符号
通过此环节不仅使学生认识到数量积的结果与线性运算的结果有着本质的不同,而且认识到向量的夹角是决定数量积结果的重要因素,为下面更好地理解数量积的性质和运算律做好铺垫。
3、探究数量积的几何意义
这个问题教材是这样安排的:在给出向量数量积的概念后,只介绍了向量投影的定义,直到讲完例1后,为了证明运算律的第三条才直接以结论的形式呈现给学生,我觉得这样安排似乎不太自然,还不如在给出向量投影的概念后,直接由学生自己归纳得出,所以做了调整。为此,我首先给出给出向量投影的概念,然后提出问题5。
如图,我们把│
│cos
(│
│cos
)叫做向量
在
方向上(
在
方向上)的投影,记做:OB1=│
│cos
问题6:数量积的几何意义是什么?
这样做不仅让学生从“形”的角度重新认识数量积的概念,从中体会数量积与向量投影的关系,同时也更符合知识的连贯性,而且也节约了课时。
4、研究数量积的物理意义
数量积的概念是由物理中功的概念引出的,学习了数量积的概念后,学生就会明白功的数学本质就是力与位移的数量积。为此,我设计以下问题 一方面使学生尝试计算数量积,另一方面使学生理解数量积的物理意义,同时也为数量积的性质埋下伏笔。
问题7:
(1) 请同学们用一句话来概括功的数学本质:功是力与位移的数量积 。
(2)尝试练习:一物体质量是10千克,分别做以下运动:
①、在水平面上位移为10米;
②、竖直下降10米;
③、竖直向上提升10米;
④、沿倾角为30度的斜面向上运动10米;
分别求重力做的功。
活动三:探究数量积的运算性质
1、性质的发现
教材中关于数量积的三条性质是以探究的形式出现的,为了很好地完成这一探究活动,在完成上述练习后,我不失时机地提出问题8:
(1)将尝试练习中的① ② ③的结论推广到一般向量,你能得到哪些结论?
(2)比较︱
·
︱与︱
︱×︱
︱的大小,你有什么结论?
在学生讨论交流的基础上,教师进一步明晰数量积的性质,然后再由学生利用数量积的定义给予证明,完成探究活动。
2、明晰数量积的性质
3、性质的证明
这样设计体现了教师只是教学活动的引领者,而学生才是学习活动的主体,让学生成为学习的研究者,不断地体验到成功的喜悦,激发学生参与学习活动的热情,不仅使学生获得了知识,更培养了学生由特殊到一般的思维品质。
活动四:探究数量积的运算律
1、运算律的发现
关于运算律,教材仍然是以探究的形式出现,为此,首先提出问题9
问题9:我们学过了实数乘法的哪些运算律?这些运算律对向量是否也适用?
通过此问题主要是想使学生在类比的基础上,猜测提出数量积的运算律。
学生可能会提出以下猜测: ①
·
=
·
②(
·
)
=
(
·
) ③(
+
)·
=
·
+
·
猜测①的正确性是显而易见的。
关于猜测②的正确性,我提示学生思考下面的问题:
猜测②的左右两边的结果各是什么?它们一定相等吗?
学生通过讨论不难发现,猜测②是不正确的。
这时教师在肯定猜测③的基础上明晰数量积的运算律:
2、明晰数量积的运算律
3、证明运算律
学生独立证明运算律(2)
我把运算运算律(2)的证明交给学生完成,在证明时,学生可能只考虑到λ>0的情况,为了帮助学生完善证明,提出以下问题:
当λ<0时,向量
与λ
,
与λ
的方向 的关系如何?此时,向量λ
与
及
与λ
的夹角与向量
与
的夹角相等吗?
师生共同证明运算律(3)
运算律(3)的证明对学生来说是比较困难的,为了节约课时,这个证明由师生共同完成,我想这也是教材的本意。
在这个环节中,我仍然是首先为学生创设情景,让学生在类比的基础上进行猜想归纳,然后教师明晰结论,最后再完成证明,这样做不仅培养了学生推理论证的能力,同时也增强了学生类比创新的意识,将知识的获得和能力的培养有机的结合在一起。
活动五:应用与提高
例1、(师生共同完成)已知︱
︱=6,︱
︱=4,
与
的夹角为60°,求
(
+2
)·(
-3
),并思考此运算过程类似于哪种运算?
例2、(学生独立完成)对任意向量
,b是否有以下结论:
(1)(
+
)2=
2+2
·
+
2
(2)(
+
)·(
-
)=
2—
2
例3、(师生共同完成)已知︱
︱=3,︱
︱=4, 且
与
不共线,k为何值时,向量
+k
与
-k
互相垂直?并思考:通过本题你有什么收获?
本节教材共安排了四道例题,我根据学生实际选择了其中的三道,并对例1和例3增加了题后反思。例1是数量积的性质和运算律的综合应用,教学时,我重点从对运算原理的分析和运算过程的规范书写两个方面加强示范。完成计算后,进一步提出问题:此运算过程类似于哪种运算?目的是想让学生在类比多项式乘法的基础上自己猜测提出例2给出的两个公式,再由学生独立完成证明,一方面这并不困难,另一方面培养了学生通过类比这一思维模式达到创新的目的。例3的主要作用是,在继续巩固性质和运算律的同时,教给学生如何利用数量积来判断两个向量的垂直,是平面向量数量积的基本应用之一,教学时重点给学生分析数与形的转化原理。
为了使学生更好的理解数量积的含义,熟练掌握性质及运算律,并能够应用数量积解决有关问题,再安排如下练习:
1、 下列两个命题正确吗?为什么?
①、若
≠0,则对任一非零向量
,有
·
≠0.
②、若
≠0,
·
=
·
,则
=
.
2、已知△ABC中,
=
,
=
,当
·
<0或
·
=0时,试判断△ABC的形状。
安排练习1的主要目的是,使学生在与实数乘法比较的基础上全面认识数量积这一重要运算,
通过练习2使学生学会用数量积表示两个向量的夹角,进一步感受数量积的应用价值。
活动六:小结提升与作业布置
1、本节课我们学习的主要内容是什么?
2、平面向量数量积的两个基本应用是什么?
3、我们是按照怎样的思维模式进行概念的归纳和性质的探究?在运算律的探究过程中,渗透了哪些数学思想?
4、类比向量的线性运算,我们还应该怎样研究数量积?
通过上述问题,使学生不仅对本节课的知识、技能及方法有了更加全面深刻的认识,同时也为下
一节做好铺垫,继续激发学生的求知欲。
布置作业:
1、课本P121习题2.4A组1、2、3。
2、拓展与提高:
已知
与
都是非零向量,且
+3
与7
-5
垂直,
-4
与 7
-2
垂直求
与
的夹角。
在这个环节中,我首先考虑检测全体学生是否都达到了“课标”的基本要求,因此安排了一组教材中的习题,目的是让所有的学生继续加深对数量积概念的理解和应用,为后续学习打好基础。其次,为了能让不同的学生在数学领域得到不同的发展,我又安排了一道有一定难度的问题供学有余力的同学选做。
六、教学评价设计
评价方式的转变是新课程改革的一大亮点,课标指出:相对于结果,过程更能反映每个学生的发展变化,体现出学生成长的历程。因此,数学学习的评价既要重视结果,也要重视过程。结合“课标”对数学学习的评价建议,对本节课的教学我主要通过以下几种方式进行:
1、 通过与学生的问答交流,发现其思维过程,在鼓励的基础上,纠正偏差,并对其进行定
性的评价。
2、在学生讨论、交流、协作时,教师通过观察,就个别或整体参与活动的态度和表现做出评价,以此来调动学生参与活动的积极性。
3、 通过练习来检验学生学习的效果,并在讲评中,肯定优点,指出不足。
4、 通过作业,反馈信息,再次对本节课做出评价,以便查漏补缺。
《平面向量》说课稿
作为一名教职工,总归要编写说课稿,借助说课稿我们可以快速提升自己的教学能力。快来参考说课稿是怎么写的吧!下面是小编精心整理的《平面向量》说课稿,仅供参考,希望能够帮助到大家。
《平面向量》说课稿 篇6
尊敬的各位专家、评委:
上午好!
今天我说课的课题是人教A版必修4第二章第三节《平面向量的基本定理及其坐标表示》。
我尝试利用新课标的理念来指导教学,对于本节课,我将以“教什么,怎么教,为什么这样教”为思路,从教材分析、目标分析、教法学法分析、教学过程分析和评价分析五个方面来谈谈我对教材的理解和教学的设计,敬请各位专家、评委批评指正。
一、教材分析
教材的地位和作用
1、向量在数学中的地位
向量在近代数学中重要和基本的数学概念,是沟通代数,几何与三角函数的一种工具,它有着极其丰富的实际背景,又有着广泛的实际应用,具有很高的教育价值。
2、本节在全章的地位
平面向量基本定理揭示了平面向量的基本关系和基本结构,足以进一步研究向量问题的基础,是进行向量运算的基本工具,是解决向量或利用向量解决问题的基本手段。
3、平面向量基本定理具有十分广阔的应用空间
平面向量基本定理蕴含一种十分重要的数学思想——转化思想。
二、目标分析
(一)、教学目标
1、知识与技能目标
了解平面向量基本定理的条件和结论,会用它来表示平面上的任意向量,为向量坐标化打下基础。
2、过程与方法目标
通过对平面向量基本定理的学习过程。让学生体验数学定理的产生,形成过程,体验定理所蕴含的数学思想方法。
3、情感,态度和价值观目标
通过对平面向量基本定理的运用,增强学生向量的应用意识,让学生进一步体会向量是处理几何问题有力的工具之一。
(二)、教学的重点和难点
1、重点:对平面向量定理夫人探究
2、难点:对平面向量基本定理的理解及运用
三、教法、学法分析
(一)、教法
在教法上采取三主教学法:教师主导,学生主体,思维主线
1、教学手段
使用多媒体辅助教学,使书本的图形动起来,加强了教学的主观性
2、学情分析
前几节课已经学习了向量的基本概念和基本运算,学生对向量的物理背景有了初步的了解,都为学习这节课做了充分的准备。
(二)学法
教师通过启发,激励来体现教师的主导作用,引导学生全员,全过程参与。
四、教学过程分析
(一)教学过程设计
创设情境,提出问题
数形几何,探究规律
揭示内涵,理解定理
例题练习,变式演练
归纳小结,深化认知
布置作业,巩固提高
1、创设情境,提出问题
如果e1,e2是同一平面内的两个不共线的向量,a是这一平面内的任意向量,那么a与e1,e2之间有什么关系呢?怎探求这种关系呢?
2、数形几何,探究规律
平面向量基本定理
如果e1,e2是同一平面内两个不共线的向量,那么对于这一平面内的任一向量,a,存在一对实数R1,R2使得a=R1e1+R2e2
3、揭示内涵,理解定理
(1)、为什么基底e1,e2必须不共线?
(2)、基底e1,e2是否可以选择?
(3)、定理中R1,R2的值是否唯一?
(4)、定理的价值何在?
4、例题练习,变式演练
如图4,在□ABCD中,AB=a,AD=b
试用a,b分别表示AC,BD
如图5,如果E,F分别是BC,DC的中点,试用a,b分别表示BF,DE
如图6,如果O是AC,BD的交点,G是DO的中点,试用a,b表示AG
5、小结归纳,回顾反思。
小结归纳不仅是对知识的简单回顾,还要发挥学生的主体地位,从知识、方法、经验等方面进行总结。
(1)、课堂小结
①、向量的坐标表示
a、对于向量a=(x,y)的理解
a=xe1+ye2(e1,e2分别是x轴,y轴正方向上的单位向量);
若向量a的起点是原点,则(x,y)就是其终点的`坐标。
b、向量AB的坐标
一个向量的坐标等于表示此向量的有向线段的终点的坐标减去起点的坐标。即如果A(x1,y1),B(x2,y2),则有AB=(x2—x1,y2—y1)。
c、注意要把点的坐标与向量的坐标区别开来。相等的向量坐标是相同的,单起点和终点的坐标却可以不同。
②、平面向量共线的坐标表示
a、a=(x1,y1),b=(x2,y2),其中(b≠0),a//b的充要条件a=与x1y2—x2y1=0在本质上市相同的,只是形式上的差异。
b、要记准公式坐标特点,不要用错公式。
c、三点共线的判断方法
判断三点是否共线,先求每两点对应的向量,然后再按两向量共线进行判断。
(2)、反思
我设计了三个问题
①、通过本节课的学习,你学到了哪些知识?
②、通过本节课的学习,你最大的体验是什么?
③、通过本节课的学习,你掌握了哪些技能?
(二)、作业设计
作业分为必做题和选做题,必做题是对本节课学生知识水平的反馈,选做题是对本节课内容的延伸与连贯,强调学以致用。通过作业设置,使不同层次的学生都可以获得成功的喜悦,看到自己的潜能,从而激发学生饱满的学习兴趣,促进学生的自主发展、合作探究的学习氛围的形成。
我设计了以下作业:
必做题:课本97页第二题,98页第六题
——巩固作业的设计是保证了全体学生对平面向量基本定理的巩固应用。
选做题:用向量法证明三角形的中位线平行于第三边切等于第三边的一半
——创新作业的设计,体现了向量的工具性,使得学生对于用向量的方法证明几何命题有了初步的体验。
(三)、板书设计
板书要基本体现课堂的内容和方法,体现课堂进程,能简明扼要反映知识结构及其相互关系:能指导教师的教学进程、引导学生探索知识;通过使用幻灯片辅助板书,节省课堂时间,使课堂进程更加连贯。
五、评价分析
学生学习的结果评价固然重要,但是更重要的是学生学习的过程评价。我采用了及时点评、延时点评与学生互评相结合,全面考查学生在知识、思想、能力等方面的发展情况,在质疑探究的过程中,评价学生是否有积极的情感态度和顽强的理性精神,在概念反思过程中评价学生的归纳猜想能力是否得到发展,通过巩固练习考查学生对本节是否有一个完整的集训,并进行及时的调整和补充。
以上就是我对本节课的理解和设计,敬请各位专家、评委批评指正。
谢谢!
《平面向量》说课稿 篇7
各位评委老师:
大家好!我今天说课的课题是《平面向量的加法、减法和数乘向量》、
下面我从教材分析、学情分析、教学目标及重难点等六个方面进行说明、
一、教材分析:
我选用的教材是由江苏教育出版社出版,马复教授主编的“江苏省职业学校文化课教材《数学》(基础模块·下册)”、
《平面向量》具有数形双重性,不仅能方便地解决一些平面几何问题,而且能帮助我们找到解析几何中一些点的坐标之间的代数关系;平面向量的运算巧妙地把量的大小与方向结合到一起,为几何图形的角度计算提供了一个很好的代数工具;平面向量是《电工基础》中交流电电路分析和《工程力学》中力的分析、计算的主要工具、
《平面向量》安排在第七章,前承三角函数,后启直线与圆的方程、第1节通过实例引入了向量的有关概念,为《平面向量的加法、减法和数乘向量》的学习奠定了基础、本节介绍了是平面向量的三种运算,为进一步学习向量知识提供了准备、
二、学情分析:
我班学生是中职电子专业一年级学生,他们已初步了解了矢量的合成;学习了向量的有关概念;运用到了数形结合的方法;通过一学期的共同努力,学生已具有一定的自主学习与合作学习相结合的意识;但他们动手能力不够强,数学表达和交流的能力欠缺、
三、教学目标:
结合教材和学情,我确定本节的教学目标为:
(1)理解平面向量的加法、减法和数乘向量的相关运算,并理解其代数、几何意义,掌握各类运算的代数式运算的特点、
(2)通过动手作图,进一步渗透数形结合的思想;通过学生探究,培养学生的合作意识、
重点:向量加法两个运算法则,用代数式、三角形法则和平行四边形法则求和向量,把减法运算转化为加法运算,用运算律进行向量的数乘运算、
难点:把向量的.减法运算转化为加法运算,向量数乘的几何意义、
四、教法学法:
根据教材和学生的具体学情,本节主要借助情境激趣、启发引导等形式组织教学,并借助探究、小组合作、练习等方法组织学生学习、
五、教学过程:
为达成本节目标,将本节内容分解成4个课时,五个任务、
安排了新课导入、任务落实、思考交流等七个环节来实施教学、
具体步骤如下:
1、首先,复习向量的有关概念,温故而知新、再创设问题情境导入新课、
【通过位移的变化引出向量的加法,初步体会向量相加的概念、】
2、第2个环节是任务落实,目的是让学生通过反复练习,在“做中学,学中做”,从而突出了重点、突破了难点、
任务1是“会用向量加法的三角形法则求和向量”
板书向量加法的定义,并结合图形讲解向量加法的定义,从代数形式和几何形式两方面强调向量加法的三角形法则(首尾相接,自始至终)、
【板书能突出重点;借助图形直观理解向量加法的三角形法则(首尾相接,自始至终),渗透数形结合的思想、】
然后,通过试试看引出向量加法的交换律,让学生类比实数加法的运算律,迁移出向量加法的运算律,并结合图形讲解、
【让学生初步体验向量加法的三角形法则(首尾相接,自始至终);借助图形,理解向量加法的运算律,培养学生观察、类比能力、】
接着通过2组例题“用向量加法的三角形法则作不共线向量和共线向量的和向量”,进一步感知、应用向量加法的三角形法则、
【学生通过动手操作,体验了“首尾相接,自始至终”,理解向量的加法运算;通过模仿练习,检测学习效果,让学生享受到成功的喜悦、】
课堂上部分学生平移时没有注意“大小不变,方向不变”;作反向向量的和向量时出现了“搞不清和向量是哪一个”的现象,我在黑板上用不同颜色的粉笔标出向量,强调“首尾相接,自始至终”、
任务2是“会用向量加法的平行四边形法则求和向量”
通过拉伸弹簧的实验,迁移到向量加法的平行四边形法则,教师动手作图并让学生模仿,强调“加向量共起点,和向量是以它们作为邻边的平行四边形的共起点的对角线所在向量”,初步体会向量加法的平行四边形法则、
然后,通过一组例题“用向量加法的平行四边形法则作不共线向量的和向量”,让学生通过动手操作,理解向量加法的平行四边形法则,培养学生动手能力、
接着让学生解决教材上的思考交流、通过学生思考、交流,教师启发引导,得出平行四边形法则和三角形法则的区别和联系,比较得出用代数式求两个和向量的特点、
任务3是“会用向量减法的三角形法则求差向量”
通过相反向量和向量的加法运算引出向量的减法运算;板书向量减法的定义,并结合图形讲解,从代数形式和几何形式两方面强调向量减法的三角形法则(共起点,连终点,指向被减)、
【借助图形直观理解向量减法的三角形法则(共起点,连终点,指向被减),渗透数形结合的思想、】
然后,通过学生观察作业评讲中的图形和向量减法的几何图形,并类比实数的加减运算,迁移出向量的减法是向量加法的逆运算、这里,我要求学生解决教材上的思考交流、
【借助图形直观感知,培养学生识图能力;理清向量加减运算的关系,培养学生类比和迁移能力、】
例4是用向量减法的三角形法则作不共线向量的差向量,并让学生用向量加法验向量减法、
【学生通过动手操作,体验了“共起点,连终点,指向被减”,提高了动手能力;借助向量加法验向量减法,一方面检查作图正确性,另一方面深化对向量加减法的理解、】
通过模仿练习,检测学习效果,让学生享受到成功的喜悦、
这样,对“把向量的减法运算转化为加法运算”这个难点进行了突破、
例5是借助平行四边形,巩固向量减法的三角形法则,同时复习向量加法的平行四边形法则,提高学生识图能力、
模仿练习是通过学生自评,互评和师评的方式完成,充分体现学生的主体作用和教学评价的多样化、
任务4是“形成向量数乘的概念,会作数乘向量”
通过质点运动问题,从加法的特例(即几个相同的向量相加)入手,师生共同归纳出向量数乘的概念,结合图形让学生直观理解数乘向量的大小和方向;并用试试看进一步辨析数乘向量的概念,加深学生对数乘向量的大小和方向的理解、
然后,通过一组例题“在方格纸中作数乘向量”,进一步感知、应用向量数乘的概念、
【学生通过动手操作,体验了数乘向量的大小和方向,提高了动手能力;对“数乘向量的几何意义”这个难点进行了突破、】
课堂上不少学生在作“”时无处下手,小组交流时有学生提出,其实就是作两个向量的差向量;我当即肯定了他们,并提醒学生“共起点,连终点,指向被减”、
任务5是“会用运算律进行向量数乘运算”
借助填空的形式,师生共同探究出数乘向量满足的运算律、
【体现了从特殊到一般的数学思想、】
接着,通过一组例题让学生在“做中学,学中做”,会用运算律进行向量数乘运算、
课堂上不少学生出现了“解:=”和向量的书写错误,我用实物投影反应在屏幕上,让学生纠错,进一步树立解题规范的思想、
3、思考交流:目的是【通过学生小组合作,深化对向量共线以及向量数乘的大小和方向的理解,培养学生数学交流和表达的能力、】
4、问题解决:【借助平行四边形,巩固向量加法、减法和数乘运算,培养学生识图和综合应用知识的能力、】
5、课堂检测:目的是【检测本节重点内容的掌握情况,以便查漏补缺、】
6、通过师生共同小结,构建完整的知识体系,培养学生归纳能力、
7、作业布置:【巩固所学内容,并对所学内容的检测与反馈、】
这是我的板书设计:
六、教学反思:
用口诀让学生理解向量的加减运算法则;任务1中让学生观察图形发现向量加法满足的运算律,与课堂检测前后呼应;任务3中设计巧妙,突破了“把向量的减法运算转化为加法运算”这个重点和难点、
存在问题:对合作探究的能力上把握不够准确,导致在导入环节所花时间与预设有所出入、
改进的措施:在以后的教学中,还需在学情把握上多下功夫、
我的说课到此结束,谢谢各位评委老师!