返回首页
文学网 > 短文 > 教学教案 > 正文

反比例教案

2025/09/17教学教案

文学网整理的反比例教案(精选8篇),供大家参考,希望能给您提供帮助。

反比例教案 篇1

教学目标:

1、通过正比例和反比例的对比练习,加深对正比例和反比例意义的理解,提高判断能力。

2、通过讨论与交流,体会正、反比例的知识与日常生活的密切联系,并利用正、反比例的意义解决实际问题。

教学重点:

进一步掌握正、反比例关系的意义。

教学难点:

正确应用比例知识解答基本的正、反比例应用题。教具学具:课件

教学过程:

一,分层次设计练习。

(一)、第一层次,基本性应用练习的设计

1、判断下面每题中的两种量成什么比例关系。

(1)、一个因数一定,积和另一个因数; 积一定,一个因数和另一个因数。

(2)、平行四边形的面积一定,它的底和高。

(3)、货物的总吨数一定,每次运货的吨数和次数。

(4)、每袋茶叶的千克数一定,茶叶的总千克数和袋数。

(5)、拖拉机每天耕地的公顷数一定,耕地总面积和天数。问:判断两种相关联的量成什么比例,我们关键是看它们的什么?

2、揭题

我们可以应用比例知识解答相应的应用题,这节课,我们联系正、反比例应用题。出示:正、反比例应用题(练习课)

3、根据已知条件,将题目补充完整,使之成为用正或反比例解答的应用题,并列式。(口答)

(1)、同学们做广播操,每行站15人,站了12行,?

(2)、100克海水可以晒出3克盐,照这样计算,?

4、对比练习:

(1)解放军战士刘刚从兵营骑马去马场,每小时行60千米,要3小时到达。如果每小时行72千米,几小时可以到达马场?

(2)解放军战士刘刚从兵营骑马去马场,3小时行180千米,照这样计算,5小时行多少千米?

(1)读题

(2)师:现在我们运用比例知识来解答这两道题,首先看第一题,请同学们找一找数量之间有怎样的关系式?两种相关联的量成什么比例关系? 逐步出示数量关系式——对应关系——列出等式。

(3)按照第一题的讨论方法思考第二题。

(4)比较:正、反比例应用题解题过程有什么相同的地方?解题方法有什么不同?

(5)小结。板书: 判断比例关系

找出对应数值

列出等式解答

5、只列式不计算:(用比例知识解,写清解设??)

(1)读一本故事书,小红每天读25页,要读12天;如果要10天读完,每天应读多少页?

(2)用同样的砖铺地,铺18平方米要用618块砖;如果铺24平方米,要用多少块砖?

(3)一间房子要用方砖铺地,需要用面积是9平房分米的方砖96块;如果改用面积是4平房分米的方砖要多少块?

(4)安装一条下水管道,15天安装了120米;照这样计算,20天能安装多少米?

(5)100克蜂蜜里含有克葡萄糖;照这样计算,千克蜂蜜里含有多少千克葡萄糖?

(二)、第二层次,综合性应用练习的设计。

1、解决生活中的问题

把米长的竹竿直立在地上,量得它的影长是米,

(1)同时量得学校旗杆的影长是米,学校旗杆高多少米?

(2)量出自己身边一个物体的高度,你能不能求出它的影长?

2、知识间的联系

两个底面半径相等的圆柱,第一个圆柱的高是第二个圆柱的高的。第二个圆柱的体积是60立方分米,第一个圆柱的体积是多少?

问:“ 第一个圆柱的高是第二个圆柱的'高的 ”还可以怎么说? 思考:当两个圆柱底面积相等时,

(1)圆柱体积与高成什么比例?

(2)两个圆柱体积的比与对应高的比有怎样的关系?为什么?

你能有几种方法解答?

说明:按照分数与比之间的联系,有些应用题可以用分数和比例知识采用不同的方法解答。

3、变式训练,加深拓宽

(1)选择正确的解法:仪器厂现有5台机器,每天可生产1800个零件;如果用8台同样的机器,每天可生产零件多少个? X=1800X5 :5= X:8 同桌讨论:

(1)为什么选择B?

(2)用A解为什么是错误的?

(3)它是什么关系的应用题?

(2)如果将上题改成“??如果再增加8台这样的机器??”,求每天可生产零件多少个?

(3)改上题问句为“每天可多生产零件多少个?”

(4)假如把上题条件再改为“??用8台这样的机器,每天可多生产零件多少个?”

(三)、第三层次,创造性应用练习的设计。

1、一辆汽车从甲地开往乙地,按每小时40千米的速度,要行驶小时;实际3小时行驶了150千米,这样行驶完全程要几小时? 学生先独立思考列式,然后指名反馈。同桌学生讨论各个算式。师生集体讨论。

2、在含有铅375克和锡 237克的合金中,增加铅多少克,可使铅与锡的比为5:3?

二、拓展练习

1、4人小组活动。并做好记录。

找一找生活中还有哪些成正、反比例的例子,与同伴交流。最后由小组汇报,全班交流。

2、学以致用。

(一)、判断.

1.一个因数不变,积与另一个因数成正比例.

2.长方形的长一定,宽和面积成正比例.

3.大米的总量一定,吃掉的和剩下的成反比例.

4.圆的半径和周长成正比例.

5.分数的分子一定,分数值和分母成反比例.

6.铺地面积一定,方砖的边长和所需块数成反比例.

7.铺地面积一定,方砖面积和所需块数成反比例.

8.除数一定,被除数和商成正比例.

(二)、选择.

1.把一堆化肥装入麻袋,麻袋的数量和每袋化肥的重量.

A.成正比例 B.成反比例 C.不成比例

2.和一定,加数和另一个加数.

A.成正比例 B.成反比例 C.不成比例

3.在汽车每次运货吨数,运货次数和运货的总吨数这三种量中,成正比例关系是,成反比例关系是.

A.汽车每次运货吨数一定,运货次数和运货总吨数. B.汽车运货次数一定,每次运货的吨数和运货总吨数. C.汽车运货总吨数一定,每次运货的吨数和运货的次数.

(三)、思考. 如果,和 成比例,则 ∶ =∶

四、总结

你有什么收获?总结规律:如:涉及加减关系、平方关系、立方关系不成比例等。

反比例教案 篇2

教学内容:教材第53~54页练习十第4~13题,练习十后的思考题。

教学要求:使学生进一步掌握正、反比例关系的意义,能正确应用比例知识解答基本的正、反比例应用题,并沟通不同解法之间的联系,进一步提高学生判断、分析和推理等思维能力。

教学重点:进一步掌握正、反比例关系的意义。

教学难点:正确应用比例知识解答基本的正、反比例应用题。

教学过程:

一、基本训练

1.揭示课题。

我们已经学习了正、反比例关系的意义和正、反比例应用题,根据成正、反比例量的关系,可以应用比例的知识解答相应的应用题。这节课,我们练习正、反比例应用题。(板书课题)

2.基本训练。

小黑板出示练习十第4题,让学生口答并说明理由。结合第(1)题判断说明:在一个乘法表示的式子里(板书:ab=c),如果积一定,另两个量就成反比例;如果一个因数一定,根据乘、除法的关系,另两个量就成正比例。

二、基本题练习

1.做练习十第5题。

(1)学生读题。

提问:按过去的算术解法,第(1)题要先求什么数量,第(2)题要先求什么数量?用比例的知识怎样解答呢,请大家自己做一做。指名两人板演,其余学生做在练习本上。集体订正。

(2)提问:第(1)题是怎样想的?第(2)题是怎样想的,提问:正、反比例应用题解题过程有什么相同的地方?解题方法有什么不同?为什么?

2.练习小结。

解答正、反比例应用题,都要先判断两种相关联的量成什么比例,找出两种相关联量的对应数值,再列等式解答。解题时,正比例应用题要根据比值一定列等式解答;反比例应用题要根据乘积一定列等式解答。

三、综合练习

1.做练习十第11题。

让学生默读题目。提问:第一个圆柱的高是第二个圆柱高的 还可以怎样说?(第一个圆柱的高和第二个圆柱高的比是4 :5,或者第一个圆柱的高看做4份,第二个圆柱的高就是这样的5份)请大家思考两个问题,当两个圆柱底面积相等时,(1)圆柱体积与高成什么比例?(2)两个圆柱体积的比与对应高的比有怎样的关系?为什么?想一想,你能用几种方法解答,自己在练习本上列出式子.指名学生口答式子,老师板书(包括用分数应用题的方法解答)。让学生根据不同的式子,说说各是怎样想的。说明:按照分数与比之间的联系,有些应用题可以 根据数量之间的联系,用分数和比例知识,采用不同的方法解答。

2.做练习十第13题。

(1)提问:这是一道什么应用题?可以怎样列式解答?(老师板书)这样解答是怎样想的.?(把树苗总棵数看做单位1,单位1的94%是470棵,所以列方程解)

(2)把树苗总数看做单位l,成活棵数是94%,你还能用比例知识解答吗?指名一人板演,其余学生做在练习本上。集体订正,让学生说明列式理由。

四、讲解思考题

学生默读题目。提问:增加铅以后,铅与锡的比是5 :3,有怎样的关系式?根据这样的关系式可以怎样解答呢?请大家课后想一想、做一做。

五、课堂小结

通过练习,你进一步明确了哪些内容? 指出:过去我们学过的先求单一量和先求总数量的应用题,可以用比例知识来解答。解答正、反比例应用题,要先判断成什么比例,找出数量之间对应数值,然后根据比值相等或乘积相等的等量关系,列等式解答。解答应用题,还可以根据数量之间的联系,用不同的方法做。

六、布置作业

课堂作业:练习十第8、9、10题

家庭作业:练习十第6、7、12题。

反比例教案 篇3

教学内容

根据教科书自选内容。

教学目标

1.通过练习,使学生进一步理解并掌握反比例的意义,会正确判断两种相关联的量是否成反比例,并能解决简单的实际问题。

2.进一步培养学生分析问题、解决问题的能力。

3.结合实例,培养学生仔细分析、主动探索的良好的学习习惯。

教学重点

正确理解反比例的意义,并能作出正确的判断。

教学难点

能根据反比例的意义,解决相关的'实际问题。

教学过程

一、学习准备,揭示课题

1.谈话引入

上节课我们学了什么?今天,我们进行练习(板书:反比例练习)。通过练习,达到以下两个目标:①进一步理解反比例的意义,并能正确判断两个相关联的量是否成反比例;②能根据反比例的意义,解决实际问题。

2.你知道哪些有关反比例的知识

板书:意义、字母表示:xy=k(一定)

二、基本练习

1.观察下面三个表

(1)表1中的两种量是怎样变化的?哪种量是一定的?每天烧煤量和烧的天数成什么比例?为什么?

(2)表2中的两种量是怎样变化的?哪种量是一定的?用去的煤和剩下煤的吨数成比例吗?为什么?

(3)表3中的两种量是怎样变化的?哪种量是一定的?平行四边形的底和平行四边形的高成什么比例?为什么?

2.判断

判断下面各题中的两种量是否成比例。如果成比例,成什么比例?

(1)平行四边形的面积一定,它的底和高。

(2)一筐桃平均分给猴子,猴子的只数和每只猴子分的个数。

(3)报纸的单价一定,订阅的份数与总价。

(4)小刚跳高的高度和他的身高。

(5)C=4a

三、解决问题

1.巩固练习

一辆汽车从甲地开往乙地,每时行70 km,5时到达。如果要4时到达,每时需要行驶多少千米?

(1)学生读题,理解题意。

(2)会列式解答吗?试试看。还可以怎么解?(引导学生用反比例知识解答)

2.用比例知识解答

(1)同学们做广播操,每行站20人,正好站18行。如果每行站24人,可以站多少行?

(2)用同样的砖铺地,铺18 m2要用618块砖。如果铺24 m2,要用多少块砖?

学生独立分析、解答,教师巡视,并加以指点。

根据这两道题组织学生讨论正比例关系和反比例关系的相同点和不同点。

讨论后全班交流,教师引导学生归纳并板书。

相同点:都有两种相关联的量,一种量变化,另一种量也随着变化。

不同点:正比例是相对应的两个数的比值(商)一定。反比例是相对应的两个数的积一定。

四、变式提高练习

按规律填数。

(1)(1,36),(2,18),(3,12),(4,),(5,)

(2)15,210,315,4(),()25

(3)81,27,(),3,1,()

五、全课小结

同学们,今天我们学习了什么?你有什么收获?还有哪些疑问?

六、拓展练习

根据自己的生活经验,各构建一道生活中用正比例和反比例解决的问题,再解决,并与同学交流你构建问题的思考方法和解决问题的方法。

反比例教案 篇4

[设计意图]通过多种形式的练习,加强了学生对用数据说明成反比例的量和反比例关系的学习。使不同层次的学生从中体会到成功的快乐。

一、导入:

同学们,通过上节课的学习,我们已经学会了两个成反比例的量和它们的关系,今天我们一起来回顾复习一下成正比例的量和成反比例的量。

二、练习:

1、 判断

(1)一个因数不变,积与另一个因数成正比例。( )

(2)长方形的长一定,宽和面积成正比例。( )

(3)大米的总量一定,吃掉的和剩下的成反比例。( )

(4)圆的半径和周长成正比例。( )

(5)分数的分子一定,分数值和分母成反比例。( )

(6)铺地面积一定,方砖的边长和所需块数成反比例。( )

(7)铺地面积一定,方砖面积和所需块数成反比例。( )

(8)除数一定,被除数和商成正比例。( )

2、选择

(1)把一堆化肥装入麻袋,麻袋的数量和每袋化肥的重量.( )

A.成正比例 B.成反比例 C.不成比例

(2)和一定,加数和另一个加数.( )

A.成正比例 B.成反比例 C.不成比例

(3)在汽车每次运货吨数,运货次数和运货的总吨数这三种量中,成正比例关系是( ),成反比例关系是( ).

A.汽车每次运货吨数一定,运货次数和运货总吨数.

B.汽车运货次数一定,每次运货的吨数和运货总吨数.

C.汽车运货总吨数一定,每次运货的吨数和运货的`次数.

3、判断题:自主练习第3题

学生判断各题中的两个量是不是成反比例。并说说理由。

重点引导学生运用反比例的意义进行判断。

4、印刷厂用6000张纸装订练习本。

每本的页数

(1)先填写上表。

(2)思考每本的页数与装订的本数有什么关系?

6、自主练习第2题

这是一道用抽象形式巩固反比例意义的题目。学生先思考,根据X和成反比例,确定X和的乘积一定,再根据第一组数据找到X和的乘积,然后利用这个乘积和每组中的已知数据,求出另一数据。

三、你知道吗?(47页相关知识)

介绍反比例图像,学生了解反比例关系也能用图像表示。由于理解难度较大,只作了解,不做学习要求。

教学反思:

本节课课堂练习。课上要重视学生掌握的情况,正确判断的同时,还要说理清楚。学生对一些不是很熟悉的关系如:车轮的直径一定,所行使的路程和车轮的转数成何比例?出粉率一定,面粉重量和小麦的总重量成何比例?判断时会较为困难,说理也不是很清楚。所以教师在补充这些练习时,应该有前瞻性,引导学生对以前所学的知识进行相关的复习,然后再进行相关形式的练习,我想对学生的后继学习必然有所帮助。

四、课堂小结:

这节课我们研究了什么问题?你有什么收获?

(引导学生进行总结,能用自己的话说出学习主要内容。)

教学反思:

本节课首先通过复习,巩固了正比例的意义。通过旧知识引出新知识“反比例的意义”,过渡自然,知识做到了连贯性。然后启发学生主动、自觉地去观察、分析、概括、发现规律。通过知识的对比,加强了知识的内在联系,并通过区别不同的概念,巩固了知识。学生的全面参与,有效地培养了总结、区别、沟通的能力。再加以练习的及时,使学生加深概念的理解。

反比例教案 篇5

课前准备

教师准备多媒体课件

教学过程

谈话导入

师:谁能用比的知识说一说我们班男女同学的人数情况?

(指名汇报)

师:今天我们就一起来整理和复习比和比例的有关知识。

回顾与整理

1.(1)举例说一说什么是比,什么是比例,什么是比例尺以及它们的应用。

预设

生1:两个数相除又叫作两个数的比,如5÷2,可以写成5∶2。

生2:表示两个比相等的式子叫作比例,如8∶4=24∶12。

生3:图上距离和实际距离的比,叫作这幅图的比例尺,如一幅地图的比例尺是。比例尺可分为数值比例尺和线段比例尺。

生4:配制农药会应用到比的知识;地图上一般都有比例尺。

……

(2)说一说比与比例有什么区别。

比例

各部分名称

0.9 ∶ 0.6=1.5

前项后项比值

基本性质

比的前项和后项同时乘或除以相同的数(0除外),比值不变。

在比例里,两个内项的积等于两个外项的积。

(3)出示教材83页“回顾与交流”2题。

学生独立完成,思考比、分数、除法之间的关系,并全班交流。

预设

生1:除法算式中的被除数相当于分数的分子,相当于比的前项;除法算式中的除数相当于分数的分母,相当于比的后项;除号相当于分数的分数线,相当于比的`比号。

生2:除法算式的商相当于分数的分数值,相当于比的比值。

强调:因为0不能作除数,所以所有分数的分母及比的后项都不能为0。

反比例教案 篇6

教学内容:教材第42~44页例4~例6,“练一练”,练习八第4—7题。

教学要求:

1.使学生认识反比例关系的意义,理解、掌握成反比例量的变化规律及其特征,能依据反比例的意义判断两种量成不成反比例关系。

2.进一步培养学生观察、分析、综合和概括等能力,让学生掌握判断两种相关联的量成不成反比例的方法,培养学生判断、推理的能力。

教学重点:认识反比例关系的意义。

教学难点:掌握成反比例量的变化规律及其特征。

教学过程:

一、复习旧知

1.正比例关系的意义是什么?怎样用字母表示这种关系?

判断两种相关联量成不成正比例的关键是什么?

2.下面哪两种量成正比例关系?为什么?

(1)时间一定,行驶的速度和路程。

(2)数量一定,单价和总价。

3.说一说工作效率、工作时间和工作总量之间的数量关系。(学生回答后老师板书)在什么条件下,其中两种量成正比例?

4.引入新课。

如果工作总量一定,工作效率和工作时间之间会怎样变化呢,变化又有什么规律呢?这两种量又成什么关系呢?这就是今天要学习的反比例关系。(板书课题)

二、教学新课

1.教学例4。

出示例4。让学生计算,在课本上填表,并观察思考能发现什么?指名口答,老师板书填表。让学生按学习正比例的方法观察表里内容,相互之间讨论,发现了什么。

指名学生口答讨论的结果,得出:

(1)每天运的吨数和需要的天数是两种相关联的量,(板书:两种相关联的量)需要的天数随着每天运的吨数的变化而变化。

(2)每天运的吨数缩小,需要的天数反而扩大,每天运的吨数扩大,需要的天数反而缩小。

(3)可以看出它们的变化规律是:每天运的吨数和天数的积总是一定的。(板书:每天运的吨数和天数的积一定)因为每天运的吨数和天数的积都是240。提问:这里的240是什么数量?谁能说出这里的数量关系式?想一想,这个式子表示的是什么意思?(把上面的板书补充成:运的总吨数一定时,每天运的吨数和天数的积一定)

2.教学例5。

出示例5。

请同学们按照刚才学习例4的方法,自己学习例5,仔细想想你发现了些什么?学生观察思考后,指名学生口答从表里发现了些什么,再提问:这两种相关联量变化的规律是什么?(板书:每袋重量和袋数的积一定)乘积8000是什么数量,这种数量关系用式子怎样表示?[板书:每袋重量×袋数=糖果总重量(一定)]这个式子表示什么意思?(把上面板书补充成:糖果总重量一定时,每袋重量和袋数的积一定)

3.概括反比例的意义。

(1)综合例4、例5的共同点。

提问:请你比较一下例4和例5,说一说,这两个例题有什么共同的地方?

(2)概括反比例意义。

例4、例5里两种相关联的量,它们是什么关系的量呢?请同学们看第43页倒数第二节。说明:像例4、例5里这样两种相关联的量,一种量变化,另一种量也随着变,变化时两种量中相对应的两个数的积一定。这样两种相关联的量就叫做成反比例的量,它们之间的关系叫做反比例关系。迫问:两种相关联的量成不成反比例的关键是什么?(乘积是不是一定)提问:如果用x和y表示两种相关联的量,用k表示它们的乘积,那么上面这种关系式可以怎样写呢?【板书:x×y=k(一定)】指出:这个式子表示两种相关联的量x和y,y随着x的`变化而变化,它们的乘积k是一定的。这时就说x和y成反比例关系。所以,两种量成反比例关系,我们就用x×y=k(一定)来表示。

4.具体认识。

(1)提问:例4里有哪两种相关联的量?这两种量成反比例关系吗?为什么,

例5里的两种量成反比例关系吗?为什么?

(2)提问:看两种相关联的量成不成反比例,关键要看什么?

(3)做练习八第4题。

让学生读题思考。指名依次口答题里的问题。[结合板书;每天装配的台数×天数=一批计算机的总台数(一定)]

(4)判断。

现在回过来看开始写的关系式:工作效率×工作时间=工作总量,当工作总量一定时,工作效率和工作时间成什么关系?为什么?指出:根据上面所说的反比例的意义,要知道两个量成不成反比例关系,只要先看这两种量是不是相关联的量,再看两种量变化时乘积是不是一定。如果两种相关联的量变化时乘积一定,它们就是成反比例的量,相互之间的关系就是反比例关系。

5.教学例6。

出示例6,学生读题、思考。提问:怎样判断成不成反比例?哪位同学说说每本的页数和装订的本数成不成反比例?为什么?【板书;每本的页数×本数=纸的总页数(一定)】请同学们看书上例6是怎样判断的,看看我们说得对不对。追问:判断两种量成不成反比例要怎样想?其中关键是看什么?

三、巩固练习

用刚才我们说的判断方法来做几道题。

1.做“练一练”第l题。

指名学生口答,说明理由。(可以写出数量关系式看一看)

2.做“练一练”第2题。

指名口答,说说理由。思考时可以引导看数量关系式。

3.做练习八第5题。

让学生先在书上判断。指名口答,要求说出数量关系式判断。

4.下题两种相关联量成不成反比例?为什么?

一根铁丝,剪成每段2米,可以剪成5段;如果剪成4段,平均每段x米。

5.做练习八第6题。

各人先在书上写各成什么比例。指名口答,要求说明理由。

6.做练习八第7题。

先让学生默读题目。提问:题里有怎样的关系式?(板书:圆柱底面积×高=体积)指名学生口答.

四、课堂小结

这节课学习的是什么内容?反比例关系的意义是什么?用怎样的式子表示x和y这两种相关联的量成反比例?判断两种量是不是成反比例,关键是什么?

五、课堂作业

练习八第7题。

反比例教案 篇7

[设计意图]通过多种形式的练习,加强了学生对用数据说明成反比例的量和反比例关系的学习。使不同层次的学生从中体会到成功的快乐。

一、导入:

同学们,通过上节课的学习,我们已经学会了两个成反比例的量和它们的关系,今天我们一起来回顾复习一下成正比例的量和成反比例的量。

二、练习:

1、 判断

(1)一个因数不变,积与另一个因数成正比例。( )

(2)长方形的长一定,宽和面积成正比例。( )

(3)大米的总量一定,吃掉的和剩下的成反比例。( )

(4)圆的半径和周长成正比例。( )

(5)分数的分子一定,分数值和分母成反比例。( )

(6)铺地面积一定,方砖的边长和所需块数成反比例。( )

(7)铺地面积一定,方砖面积和所需块数成反比例。( )

(8)除数一定,被除数和商成正比例。( )

2、选择

(1)把一堆化肥装入麻袋,麻袋的数量和每袋化肥的重量.( )

A.成正比例 B.成反比例 C.不成比例

(2)和一定,加数和另一个加数.( )

A.成正比例 B.成反比例 C.不成比例

(3)在汽车每次运货吨数,运货次数和运货的总吨数这三种量中,成正比例关系是( ),成反比例关系是( ).

A.汽车每次运货吨数一定,运货次数和运货总吨数.

B.汽车运货次数一定,每次运货的吨数和运货总吨数.

C.汽车运货总吨数一定,每次运货的吨数和运货的次数.

3、判断题:自主练习第3题

学生判断各题中的两个量是不是成反比例。并说说理由。

重点引导学生运用反比例的意义进行判断。

4、印刷厂用6000张纸装订练习本。

每本的'页数

(1)先填写上表。

(2)思考每本的页数与装订的本数有什么关系?

6、自主练习第2题

这是一道用抽象形式巩固反比例意义的题目。学生先思考,根据X和成反比例,确定X和的乘积一定,再根据第一组数据找到X和的乘积,然后利用这个乘积和每组中的已知数据,求出另一数据。

三、你知道吗?(47页相关知识)

介绍反比例图像,学生了解反比例关系也能用图像表示。由于理解难度较大,只作了解,不做学习要求。

教学反思:

本节课课堂练习。课上要重视学生掌握的情况,正确判断的同时,还要说理清楚。学生对一些不是很熟悉的关系如:车轮的直径一定,所行使的路程和车轮的转数成何比例?出粉率一定,面粉重量和小麦的总重量成何比例?判断时会较为困难,说理也不是很清楚。所以教师在补充这些练习时,应该有前瞻性,引导学生对以前所学的知识进行相关的复习,然后再进行相关形式的练习,我想对学生的后继学习必然有所帮助。

四、课堂小结:

这节课我们研究了什么问题?你有什么收获?

(引导学生进行总结,能用自己的话说出学习主要内容。)

教学反思:

本节课首先通过复习,巩固了正比例的意义。通过旧知识引出新知识“反比例的意义”,过渡自然,知识做到了连贯性。然后启发学生主动、自觉地去观察、分析、概括、发现规律。通过知识的对比,加强了知识的内在联系,并通过区别不同的概念,巩固了知识。学生的全面参与,有效地培养了总结、区别、沟通的能力。再加以练习的及时,使学生加深概念的理解。

反比例教案 篇8

三维目标

一、知识与技能

1.能灵活列反比例函数表达式解决一些实际问题.

2.能综合利用物理杠杆知识、反比例函数的知识解决一些实际问题.

二、过程与方法

1.经历分析实际问题中变量之间的关系,建立反比例函数模型,进而解决问题.

2. 体会数学与现实生活的紧密联系,增强应用意识,提高运用代数方法解决问题的能力.

三、情感态度与价值观

1.积极参与交流,并积极发表意见.

2.体验反比例函数是有效地描述物理世界的重要手段,认识到数学是解决实际问题和进行交流的重要工具.

教学重点

掌握从物理问题中建构反比例函数模型.

教学难点

从实际问题中寻找变量之间的关系,关键是充分运用所学知识分析物理问题,建立函数模型,教学时注意分析过程,渗透数形结合的思想.

教具准备

多媒体课件.

教学过程

一、创设问题情境,引入新课

活动1

问 属:在物理学中,有很多量之间的变化是反比例函数的关系,因此,我们可以借助于反比例函数的图象和性质解决一些物理学中的问题,这也称为跨学科应用.下面的例子就是其中之一.

在某一电路中,保持电压不变,电流I(安培)和电阻R(欧姆)成反比例,当电阻R=5欧姆时,电流I=2安培.

(1)求I与R之间的函数关系式;

(2)当电流I=0.5时,求电阻R的值.

设计意图:

运用反比例函数解决物理学中的一些相关问题,提高各学科相互之间的综合应用能力.

师生行为:

可由学生独立思考,领会反比例函数在物理学中的综合应用.

教师应给“学困生”一点物理学知识的引导.

师:从题目中提供的信息看变量I与R之间的反比例函数关系,可设出其表达式,再由已知条件(I与R的一对对应值)得到字母系数k的值.

生:(1)解:设I=kR ∵R=5,I=2,于是

2=k5 ,所以k=10,∴I=10R .

(2) 当I=0.5时,R=10I=100.5 =20(欧姆).

师:很好!“给我一个支点,我可以把地球撬动.”这是哪一位科学家的名言?这里蕴涵着什么 样的原理呢?

生:这是古希腊科学家阿基米德的名言.

师:是的.公元前3世纪,古希腊科学家阿基米德发现了著名的“杠杆定律”: 若两物体与支点的距离反比于其重量,则杠杆平衡,通俗一点可以描述为;

阻力×阻力臂=动力×动力臂(如下图)

下面我们就来看一例子.

二、讲授新课

活动2

小伟欲用撬棍橇动一块大石头,已知阻力和阻力臂不变,分别为1200牛顿和0.5米.

(1)动力F与动力臂l有怎样的函数关系?当动力臂为1.5米时,撬动石头至少需要多大的力?

(2)若想使动力F不超过题(1)中所用力的一半,则动力臂至少要加长多少?

设计意图:

物理学中的很多量之间的变化是反比例函数关系.因此,在这儿又一次借助反比例函数的图象和性质解决一些物理学中的问题,即跨学科综合应用.

师生行为:

先由学生根据“杠杆定律”解决上述问题.

教师可引导学生揭示“杠杆乎衡”与“反比例函数”之间的关系.

教师在此活动中应重点关注:

①学生能否主动用“杠杆定律”中杠杆平衡的条件去理解实际问题,从而建立与反比例函数的关系;

②学生能否面对困难,认真思考,寻找解题的途径;

③学生能否积极主动地参与数学活动,对数学和物理有着浓厚的兴趣.

师:“撬动石头”就意味着达到了“杠杆平衡”,因此可用“杠杆定律”来解决此问题.

生:解:(1)根据“杠杆定律” 有

Fl=1200×0.5.得F =600l

当l=1.5时,F=6001.5 =400.

因此,撬动石头至少需要400牛顿的力.

(2)若想使动力F不超过题(1)中所用力的一半,即不超过200牛,根据“杠杆定律”有

Fl=600,

l=600F .

当F=400×12 =200时,

l=600200 =3.

3-1.5=1.5(米)

因此,若想用力不超过400牛顿的一半,则动力臂至少要如长1.5米.

生:也可用不等式来解,如下:

Fl=600,F=600l .

而F≤400×12 =200时.

600l ≤200

l≥3.

所以l-1.5≥3-1.5=1.5.

即若想用力不超过400牛顿的一半,则动力臂至少要加长1.5米.

生:还可由函数图象,利用反比例函数的性质求出.

师:很棒!请同学们下去亲自画出图象完成,现在请同学们思考下列问题:

用反比例函数的知识解释:在我们使用橇棍时,为什么动力臂越长越省力?

生:因为阻力和阻力臂不变,设动力臂为l,动力为F,阻力×阻力臂=k(常数且k>0),所以根据“杠杆定理”得Fl=k,即F=kl (k为常数且k>0)

根据反比例函数的性质,当k>O时,在第一象限F随l的增大而减小,即动力臂越长越省力.

师:其实反比例函数在实际运用中非常广泛.例如在解决经济预算问题中的应用.

活动3

问题:某地上年度电价为0.8元,年用电量为1亿度,本年度计划将电价调至0.55~0.75元之间,经测算,若电价调至x元,则本年度新增用电量y(亿度)与(x-0.4)元成反比例.又当x=0.65元时,y=0.8.(1)求y与x之间的函数关系式;(2)若每度电的成本价0.3元,电价调至0.6元,请你预算一下本年度电力部门的纯收人多少?

设计意图:

在生活中各部门,经常遇到经济预算等问题,有时关系到因素之间是反比例函数关系,对于此类问题我们往往由题目提供的信息得到变量之间的函数关系式,进而用函数关系式解决一个具体问题.

师生行为:

由学生先独立思考,然后小组内讨论完成.

教师应给予“学困生”以一定的帮助.

生:解:(1)∵y与x -0.4成反比例,

∴设y=kx-0.4 (k≠0).

把x=0.65,y=0.8代入y=kx-0.4 ,得

k0.65-0.4 =0.8.

解得k=0.2,

∴y=0.2x-0.4=15x-2

∴y与x之间的函数关系为y=15x-2

(2)根据题意,本年度电力部门的纯收入为

(0.6-0.3)(1+y)=0.3(1+15x-2 )=0.3(1+10.6×5-2 )=0.3×2=0.6(亿元)

答:本年度的纯收人为0.6亿元,

师生共析:

(1)由题目提供的信息知y与(x-0.4)之间是反比例函数关系,把x-0.4看成一个变量,于是可设出表达式,再由题目的条件x=0.65时,y=0.8得出字母系数的值;

(2)纯收入=总收入-总成本.

三、巩固提高

活动4

一定质量的二氧化碳气体,其体积y(m3)是密度ρ(kg/m3)的`反比例函数,请根据下图中的已知条件求出当密度ρ=1.1 kg/m3时二氧化碳气体的体积V的值.

设计意图:

进一步体现物理和反比例函数的关系.

师生行为

由学生独立完成,教师讲评.

师:若要求出ρ=1.1 kg/m3时,V的值,首先V和ρ的函数关系.

生:V和ρ的反比例函数关系为:V=990ρ .

生:当ρ=1.1kg/m3根据V=990ρ ,得

V=990ρ =9901.1 =900(m3).

所以当密度ρ=1. 1 kg/m3时二氧化碳气体的气体为900m3.

四、课时小结

活动5

你对本节内容有哪些认识?重点掌握利用函数关系解实际问题,首先列出函数关系式,利用待定系数法求出解 析式,再根据解析式解得.

设计意图:

这种形式的小结,激发了学生的主动参与意识,调动了学生的学习兴趣,为每一位学生都创造了在数学学习活动中获得成功的体验机会,并为程度不同的学生提供了充分展示自己的机会,尊重学生的个体差异,满足多样化的学习需要,从而使小结不流于形式而具有实效性.

师生行为:

学生可分小组活动,在小组内交流收获, 然后由小组代表在全班交流.

教师组织学生小结.

反比例函数与现实生活联系非常紧密,特别是为讨论物理中的一些量之间的关系打下了良好的基础.用数学模型的解释物理量之间的关系浅显易懂,同时不仅要注意跨学科间的综合,而本学科知识间的整合也尤为重要,例如方程、不等式、函数之间的不可分割的关系.

板书设计

17.2 实际问题与反比例函数(三)

1.

2.用反比例函数的知识解释:在我们使 用撬棍时,为什么动 力臂越长越省力?

设阻力为F1,阻力臂长为l1,所以F1×l1=k(k为常数且k>0).动力和动力臂分别为F,l.则根据杠杆定理,

Fl=k 即F=kl (k>0且k为常数).

由此可知F是l的反比例函数,并且当k>0时,F随l的增大而减小.

活动与探究

学校准备在校园内修建一个矩形的绿化带,矩形的面积为定值,它的一边y与另一边x之间的函数关系式如下图所示.

(1)绿化带面积是多少?你能写出这一函数表达式吗?

(2)完成下表,并回答问题:如果该绿化带的长不得超过40m,那么它的宽应控制在什么范围内?

x(m) 10 20 30 40

y(m)

过程:点A(40,10)在反比例函数图象上说明点A的横纵坐标满足反比例函数表达式,代入可求得反比例函数k的值.

结果:(1)绿化带面积为10×40=400(m2)

设该反比例函数的表达式为y=kx ,

∵图象经过点A(40,10)把x=40,y=10代入,得10=k40 ,解得,k=400.

∴函数表达式为y=400x .

(2)把x=10,20,30,40代入表达式中,求得y分别为40,20,403 ,10.从图中可以看出。若长不超过40m,则它的宽应大于等于10m。