积变化的规律教学反思
文学网整理的积变化的规律教学反思(精选8篇),供大家参考,希望能给您提供帮助。
积变化的规律教学反思 篇1
有效教学是预设与生成、封闭与开放的统一体。教师在教学中应该“提倡生成”,并能够“驾驭生成”,让学生的问题带着我们的课堂自由飞翔。
一、和谐课堂,生成问题
提出一个问题比解决一个问题更重要,给学生营造一个和谐的数学课堂,让学生的思维尽情释放!课堂教学不仅是知识传递的过程,也是师生情感交融,人际交往、思想共鸣的过程,创设一种师生心理相融、民主交往的良好的课堂气氛无疑是课堂问题的最好催化剂。只有学生不怕了,学生才会站起来提出他们脑中一直盘旋着的问题。不怕,包括“不怕老师”,对老师的权威敢于提出质疑,敢于表达自己心中的想法;“不怕教材”,对教材的一些观点能够提出自己的看法,即使可能观点存在着错误性;“不怕同学”,很多学生的心理有一种疑问:“我的问题的提出会不会遭到同学们的耻笑?”;“不怕自己”,打断老师的课堂,提出自己的问题是需要多么大的勇气?!学生所能做的就是战胜自己胆怯的心,把信心成功的刻入自己的心里。只有这样课堂才会活跃,学生的问题会接踵而至。由于在平时的教学活动中,我适时鼓励学生敢于在课堂上张扬自己的个性,不怕说错,就怕你不说。在本节课上,学生大胆发言,有一个新的知识点生成出一个又一个知识点。
二、精心预设方能为生成导航
传统教学中,教师思考最多的是教师如何地牵、如何地引、如何地讲清楚、讲明白。教师扮演着不可替代的、绝对权威的角色,教师成了学生学习结果的惟一的评判者。在教师的眼里,学生是知识的接受者,只要认真听、认真看、认真记,顺着教师预先设计的教学思路学习就可以了。因此,所有的教学过程都在教师的控制之中,甚至问题答案都是教师设计好的,这种教学看起来学生是“动”起来了,“参与”了,其实质是学生顺着教师的设计、顺着教师的教学思路、顺着教师的期望,进行教师心中有数的“表演”。最终是学生完成教师预定的教学任务。这种只重预设,忽视生成的理念是传统备课的一大弊端,必须引起我们高度重视和关注。教学过程不可能都是预设的,由于学生存在着差异,因此,问题的答案也不应该是惟一的,教学应该是“预设”和“生成”的有机整合,忽视了教学的生成性,就忽视了学生的差异,忽视了学生的发展。 “凡事预则立,不预则废”,没有预设的生成往往是盲目的,低效的,甚至是无价值的。生成,不是对预设的否定,而是对预设的挑战精彩的生成源于高质量的预设。
苏霍姆林斯基说过“教育的技巧并不在于我能预见到课的所有细节,在于根据当时的具体情况,巧妙地在学生不知不觉之中做出相应的变动。”在本节课上,由于课前我进行了充分的预设,当学生运用已发现的规律去解决新的'问题是时,我及时地加以肯定,并适时地加以引导。在老师的肯定与鼓励中,孩子们由此生成出更多的数学问题,并能自己去发现。其实在教学中我们只要到:心中有案,行中无案,寓有形的预设于动态的教学中,真正溶入互动的课堂,不断捕捉、判断、重组课堂教学中从学生那里涌现出来的各种信息,随时把握课堂教学中闪动的亮点,样使的教学更具有针对性,为即时“生成”提供更宽阔的舞台,用智慧将教学演绎得更加精彩!
数学课堂上的生成是真实而美丽的,稍纵即逝而可遇不可求的!这就要求我们教师要有拨乱反正的胆识,要有取舍扬弃的智慧,及时捕捉一些有用的问题,顺势引导,让有价值的资源渐入佳境,别有洞天;让看似平常的资源,峰回路转,柳暗花明;
积变化的规律教学反思 篇2
今天教学了积的变化规律,昨天布置了预习作业:
计算、再观察比较下列算式:30*24=720 (30*2)*24= (30*4)*24= 30*(24*5)= 后面三个算式等号左边与第一个算式左边比,什么发生了什么变化,算出后三题的积再与第一题的积比一比,你有什么发现? 30*24=720 (30÷2)*24= (30÷5)*24= 30*(24÷6)= 后面三个算式等号左边与第一个算式左边比,什么发生了什么变化,算出后三题的积再与第一题的积比一比,你有什么发现?学生在课始交流计算结果与自己的人发现时,习惯于表述成:一个因数不变,另一个因数扩大几倍,积也扩大相同的倍数;一个因数不变,另一个因数缩小几倍,积也缩小相同的倍数。
为了验证大家的发现,我们首先让大家用书中的例题验证,再让大家各举一个例子验证得出积得变化规律。但遗憾的是在后面的练习中学生还是习惯于直接计算积却不用所学的积得变化规律去求积,在我的追问下好的学生想到根据记得变化规律直接用原来的.积乘几求到现在的积。
我也反思我的教学中是否有导致学与用剥离的现象,可能在开始的教学中教师只注重学生得出规律的结果反而削弱了学生对规律本身的理解与实际应用,于是在课即将结束前我出示了题目:根据275*46=12650 直接写出275*92= 的结果并说明解题思路,到此学生才全部理解了记得变化规律的有用性。虽然是后知后觉但毕竟是真正有了“知觉”了。
积变化的规律教学反思 篇3
教学内容:苏教版义务教育课程标准实验教科书数学四年级(下册)P83例题,P83-84“想想做做”。
教学目标:
1、使学生借助计算器的计算,探索并掌握“一个因数不变,另一个因数乘几,得到的积等于原来的积乘几”的变化规律。
2、使学生在利用计算器探索规律的过程中,经历观察、比较、猜想、验证和归纳等一系列的数学活动,体验探索和发现数学规律的基本方法,进一步获得探索规律的经验,发展思维能力。
3、使学生在参与数学学习活动的过程中,学会与他人交流,体会与他人合作交流的.价值,逐步形成良好的与他人合作的习惯和意识。
4、使学生在发现规律的过程中,体验数学活动的探索性和创造性,感受数学结论的严谨性和确定性,获得成功的乐趣,增强学习数学的兴趣和自信心。
教学过程:
一、游戏引入:
用计算器玩游戏
要求:在1-9中任意选一个数,然后用计算器把这个数乘3,再乘127,算出结果。只要一报出结果,老师马上能知道,一开始在1-9中任意选择的是哪个数。
【意图:计算器作为探索的工具并以游戏方式载入一是有利于激活学生熟练运用计算器的能力,同时对游戏中隐含的规律产生好奇,为后继进一步运用计算器探索规律做好心理上的准备】
二、揭示课题:
1、刚才我们用计算器玩了个小游戏,今天课上我们还要用到计算器,我们要用它来探索规律。(板书课题:用计算器探索规律)
2、看了这个课题,现在你最想了解的是什么?通过交流让学生感受到三个方面:①什么规律? ②怎样研究? ③有什么用?
【意图:一开始提出探索的目标有利于学生明确探索的内容和方向,把重点集中到探索和发现规律上来,本课的着力点自然地凸现了出来。】
三、探索规律
(一)建立猜想
1、用计算器计算:36×30的积。
2、36、30在这个乘法算式中叫做什么?1080又叫做什么?
3、猜想:如果其中的一个因数不变,另一个因数乘一个数,得到的积可能会有什么变化呢?比如,一个因数36不变,把另一个因数30乘2,或者把30乘10,积会有什么样的变化呢?再比如,一个因数30不变,另一个因数36乘8,或者乘100,积又会有什么样的变化呢?能不能来猜一猜?
积变化的规律教学反思 篇4
教材分析
《积的变化规律》是九年义务教育课程标准实验教科书小学数学四年级上册第三单元的内容。本课例以一组乘法算式为载体,引导学生探索当一个因数不变时,另一个因数与积的变化规律。在学生已经掌握了乘法运算的基本技能的基础上,在乘法运算中探索积的变化规律。通过这个过程的探索,学生将会经历研究问题——归纳发现规律——解释说明规律——举例验证规律四个层次的学习过程。学生将会用到观察、计算、自主探索、合作交流等学习手段,并最终发现规律,归纳与验证规律,从而有效的培养学生探索与推理的能力,让学生体会事物间是密切相关的,受到辩证思想的启蒙教育。
学情分析
本课内容是在学生已经掌握了乘法运算的基本技能的基础上,利用乘法运算,培养学生的推理能力。学生通过对算式的观察,自主的去探索规律、验证规律,并使用规律。本课在愉快的环境中进行去学习,鼓励学生积极发言,积极主动地探索新知,不断提高学生的分析推理能力,让学生体会成功的喜悦,激发学习兴趣,增强自信心。
教学目标
1、知识与技能:让学生探索并掌握一个因数不变,另一个因数乘(或除以)几,积也乘(或除以)几的变化规律。
2、过程与方法:使学生经历积的变化规律的发现过程,初步获得探索和发现数学规律的基本方法和经验。
3、情感态度价值观:通过学习活动的`参与,培养学生的探究能力、合作交流能力和归纳总结能力,使学生获得成功的乐趣,增强学习的兴趣和自信心。
教学重点和难点
教学重点:发现并运用积的变化规律。
教学难点:积的变化规律的探究策略。
教学过程
一、激发兴趣,导入新课
二、探究活动,发现规律。
1、引导学生观察以上这组算式的特点,想一想、说一说你的发现
《观特点》
(1) 引导学生观察因数的变化特点和积的变化特点。
(我们纵向看,这组算式什么没变?什么变了?那当一个因数不变时,另一个因数和积是怎么变的?有没有规律呢?)
(2) 学生独立思考,小组合作交流。
(3) 全班交流,课件引导
师给三个算式标上序号,如果把①式作为标准,②式与①式比,因数和积各是怎样变化的?
《找规律》
通过观察比较,你能说说你发现的规律了吗?
师:积的变化是随着因数的变化而变化的,这就是我们今天要研究的内容:积的变化规律。(板书课题)
《写算式》
运用以上规律与①式对比,你能接着往下写两道算式验证一下吗?试试看,一定行!200×8=1600 8×40=320 (要口算,你们是怎么想的)
2、同学们再看一组题,它又藏着什么秘密呢?
20×4=
10×4=
5×4=
(1) 引导用同样的学法观察第二组算式,说你发现了什么规律(学法:观特点、找规律、写算式)
“一个因数不变,另一个因数除以几,积也除以几。”
(2)运用以上规律,你能根据15×12=180直接答出下面两题的得数吗
15×12=180 15×6= 15×3=
(写完后和同桌交流你是怎么根据规律写下得数的,算一算对吗)
3、整体概括变化规律
让学生回忆,再读一读这两个规律,数学讲究简洁美,能说得再简单些吗?
“一个因数不变,另一个因数乘(或除以)几,积也乘(或除以)几”
(评析:通过引导学生观察、讨论、交流、概括,激发学生积极探索的兴趣和热情,使学生了解知识的形成过程;鼓励学生合作学习,对积的变化规律进行整理,培养学生的合作交流能力和归纳总结能力;让不同层次的学生完成相应的问题,使学生获得成功的乐趣,增强学习的兴趣和自信心。)
三、运用规律,解决问题
1、第一关:小试牛刀
完成教科书第58页的做一做。
2、第二关:再展雄风
完成教科书练习九的第五题
3、第三关:随机应变
完成教科书练习九的第1、4题
第一题谁来读题,能利用刚才学的规律来解决吗?方法多样,说说方法
第四题,如果用两种方法,让学生说说方法,哪种简便。
4、第四关:终极对决
完成教科书练习九第二题,(如果没有用我们学的规律,可出示百宝箱)
四、全课小结,拓展延伸
积变化的规律教学反思 篇5
《积的变化规律》教学反思本节课的课题是积的变化规律,是在学习了三位数乘两位数的的基础上探索积的变化规律。在讲新知识之前,让学生先明确关系:因数X?因数=积。引导学生思考:若改变其中的一个因数不变,改变另一个因数,积灰发生怎样的变化?教师作出正确的指引,可以节约课堂时间。随后给出两组算式(教材例题),让学生通过自主思考,自主探索,发现和归纳出积的积的变化规律,再让学生分别用三位数乘两位数的方法和运用规律求得数的方法,对积的`变化规律进行验证,让学生认识到数学的严谨性,最后进行针对性习题巩固。
在练习设计上,难度层次分明。先是运用规律计算有规律算式,进而运用规律解决实际问题。但是在本节课的教学实践上发现还有一些环节有待进一步完善:
在引入方面,学生更能接受把旧知识向新知识过度的方式的学法。
在验证环节上,要根据学生的实际情况设计题目难度,本课上验证环节应降低难度,计算太难会导致重点发生偏离,无法突破。在进行一些探索活动的设计时还应更大胆放手,让学生成为学习的主人,使课堂成为学生展示个性的舞台。
积变化的规律教学反思 篇6
今天教学了积的变化规律,昨天布置了预习作业:计算、再观察比较下列算式30*24=720 (30*2)*24= (30*4)*24= 30*(24*5)= 后面三个算式等号左边与第一个算式左边比,什么发生了什么变化,算出后三题的积再与第一题的积比一比,你有什么发现? 30*24=720 (30÷2)*24= (30÷5)*24= 30*(24÷6)= 后面三个算式等号左边与第一个算式左边比,什么发生了什么变化,算出后三题的积再与第一题的积比一比,你有什么发现?学生在课始交流计算结果与自己的人发现时,习惯于表述成:一个因数不变,另一个因数扩大几倍,积也扩大相同的倍数;一个因数不变,另一个因数缩小几倍,积也缩小相同的倍数。为了验证大家的发现,我们首先让大家用书中的例题验证,再让大家各举一个例子验证得出积得变化规律。但遗憾的是在后面的练习中学生还是习惯于直接计算积却不用所学的积得变化规律去求积,在我的追问下好的学生想到根据积的变化规律直接用原来的`积乘几求到现在的积。我也反思我的教学中是否有导致学与用剥离的现象,可能在开始的教学中教师只注重学生得出规律的结果反而削弱了学生对规律本身的理解与实际应用,于是在课即将结束前我出示了题目:根据275*46=12650 直接写出275*92= 的结果并说明解题思路,到此学生才全部理解了积的变化规律的有用性。虽然是后知后觉但毕竟是真正有了“知觉”了。
积变化的规律教学反思 篇7
教材分析
《积的变化规律》是人教版四年级上册第三单元的例题、
本节课是在学生已经学习了三位数乘两位数和使用计算器进行计算的基础上,引导学生借助计算器探索积的一些变化规律,掌握这些规律,为学生进一步加深对乘法运算的.理解以及今后自主探索和理解小数乘除法的计算方法做好准备。
教材首先出示2×6 =12、20×6=120、200×6=1200 ,让学生依据给出的乘法算式,探索当一个因数不变,另一个因数乘一个数,得到的积会有什么变化,引导学生作出猜想。再出示20×4=80,10×4=40,5×4=20,引导学生观察,发现规律,提出猜想。
学情分析
该内容是在学生已经学习了三位数乘两位数和使用计算器进行计算的基础上,引导学生借助计算器探索积的一些变化规律,掌握这些规律,为学生进一步加深对乘法运算的理解以及今后自主探索和理解小数乘除法的计算方法做好准备。
教学目标
一、知识与技能:
(1) 使学生探索并掌握一个因数不变,另一个因数乘几,积也随着乘几的变化规律。
二、过程与方法:
(1)经历观察、比较、猜想、验证和归纳等一系列的数学活动,体验探索和发现数学规律的基本方法,进一步获得一些探索数学规律的经验,发展思维能力。
三、情感态度价值观:
(1)通过学习活动的参与,培养学生合作交流的能力,并在探索活动中感受数学结论的严谨性与正确性,获得成功的体验,增强学习数学的兴趣和自信心。
教学重点和难点
1.教学重点:
使学生探索并掌握一个因数不变,另一个因数乘几(或除以几),积也随着乘几(或除以几)的变化规律。
2、教学难点:在探索和发现规律上,能更多的体验一般策略和方法,发展数学思考。
积变化的规律教学反思 篇8
一、准确把握起点,合理的运用知识迁移
本节课的变化规律是第五单元的教学内容,前边在第三单元中学生已经学习了“积的变化规律”,为这节课的教学打好了知识基础。我抓住并利用了这一知识基础:“我们都知道乘法和除法有着密切的关系,既然乘法中有这样的规律,在除法中是否也存在着类似的规律呢?”一句话引起了大家的思考,学生很自然的由乘法中的变化规律类推出了除法中的变化规律,既准确地找到了新知的切入点,合理的运用了知识的正迁移,又为后边学习活动的开展奠定了一个探索研究的基调——这些大胆的猜测是否正确呢?需要我们进一步的验证。这就将整节课的落脚点定位在了培养学生解决实际问题的能力上,而非仅仅是知识点的掌握上。
二、自学并经历探索研究的全过程
学生自学后,让学生经历了三次验证过程,看似有些重复,但细品起来,每次的侧重点都有所不同:第一次是使学生知道例举法是一种行之有效的研究方法,使用此方法时应尽可能多的举例,这样才有可能避免偶然性,提高正确率;第二次是让学生有意识的经历挫折,我们的猜测不总是正确的,可以通过实验来修正猜测,得出正确结论;第三次是提醒学生当研究思路出现偏差时,应学会及时调整,积极寻找新的思路继续研究,直至得出结论。三个侧重点层层递进,紧紧围绕着培养学生的探究能力展开。
在这里,知识的'掌握和运用不是最终目标(其实学生在这种积极主动地研究状态下、在经历“做”的过程中,自然理解掌握了被除数、除数、商这三者的变化规律,且会印象深刻),而引领学生经历研究问题的一般过程,并在过程中培养学生认真观察、大胆推测、勇于实践、科学严谨、不轻言放弃等良好的学习品质和数学素养,是教师的出发点和落脚点。这正是新课标所倡导的数学教育理念:“使学生经历数学活动过程,获得对数学的理解的同时,在思维能力、情感态度与价值观诸方面得到发展”。
总之,本节课在教学设计时牢牢地抓住了两点:一是利用好新旧知识之间的联系和乘法中积的变化规律的迁移,引起学生的学习情趣和激情,提出猜测,展开教学;二是不仅仅将课堂教学的重点落在三个规律上,而是落脚到通过教学活动,培养学生的数学品质上,将这种“猜测、验证得出结论”的数学研究方法深入到每个学生之中,真正让学生成为一名数学知识的猜测者、研究者、发现者,从而获得学习数学的乐趣。