正方体的表面积教案
文学网整理的正方体的表面积教案(精选8篇),供大家参考,希望能给您提供帮助。
正方体的表面积教案 篇1
教学目标
1.理解长方体和正方体表面积的意义.
2.理解并掌握长方体和正方体表面积的计算方法.
3.培养和发展学生的空间观念.
教学重点
1.长方体、正方体表面积的意义和计算方法.
2.确定长方体每一个面的长和宽.
教学难点
1.长方体、正方体表面积的意义和计算方法.
2.确定长方体每一个面的长和宽.
教学用具
教具:长方体、正方体纸盒(可展开)、投影片、电脑动画软件.
学具:长方体、正方体纸盒、剪刀.
教学过程
一、复习准备.
(一)口答填空.
1.长方体有个面,一般都是,相对的面的相等;
2.正方体有个面,它们都是,正方形各面的相等;
3.这是一个,它的长厘米,宽厘米,高厘米,它的棱长之和是厘米;
4.这是一个,它的棱长是厘米,它的棱长之和是厘米.
(二)说一说长方体和正方体的区别?
教师:我们已经掌握了长方体和正方体的特征,它们的`表面都有6个面,今天就来研究它们表面的大小.(板书课题:)
二、学习新课.
(一)长方体和正方体表面积的意义.
1.教师提问:什么叫做面积?
长方体有几个面? 正方体有几个面?
(用手按前、后,上、下,左、右的顺序摸一遍)
2.教师明确:这六个面的总面积叫做它的表面积.
3.学生两人一组相互说一说什么是长方体的表面积,什么是正方体的表面积.
4.教师板书:长方体或正方体6个面的总面积,叫做它的表面积.
(二)长方体表面积的计算方法【演示课件长方体的表面积】
1.学生归纳:
上下两个面大小相等,它是由长方体的长和宽作为长和宽的;
前后两个面大小相等,它是由长方体的长和高作为长和宽的;
左右两个面大小相等,它是由长方体的高和宽作为长和宽的.
2.教师提问:想一想,长方体的表面积如何计算?(学生讨论)
老师板书:
上下面:长宽2
前后面:长高2
左右面:高宽2
3.练习解答例1.
例1.做一个长6厘米、宽5厘米、高4厘米的长方体纸盒,至少要用多少平方厘米硬纸板?
4.巩固练习.
一个长方体长4米,宽3米,高2.5米.它的表面积是多少平方米?
教师:如此题改为同样尺寸的无盖塑料盒求表面积如何办?
学生:应该少算上边的一面.
列式:43+42.52+32.52
(三)正方体表面积的计算方法【演示课件正方体的表面积】
1.教师提问:正方体的表面积如何求吗?
学生:棱长棱长6
2.试解例2.
一个正方体纸盒,棱长3厘米,求它的表面积.
=96
=54(平方厘米)
答:它的表面积是54平方厘米.
教师:如果这个盒子没有盖子,做这个盒子要用多少纸板该如何列式?
学生:少一个面.列式:
教师明确:说表面积是指六个面,实际问题中有的不是求长方体、正方体的表面积,
审题时要分清求的是哪几个面的和.
3.巩固练习:一个正方体的面积是1.2分米,求它的表面积.
三、巩固反馈.
1.一个长方体的长是6厘米,宽是4厘米,高是5厘米,这个长方体的表面积是多少平方厘米?
2.一个正方体的棱长是5厘米,它的表面积是多少平方厘米?
3.判断正误,并说明理由.
(1)长方体的三条棱分别叫它的长、宽、高.
(2)一个棱长4分米的正方体,它的表面积是: =48(平方分米)
(3)用四个同样大的正方体小木块拼成一个长方体,这个长方体的表面积,比原来四个正方体表面积的和小.
四、课堂总结.
什么是长、正方体的表面积?长、正方体的表面积如何计算?
五、课后作业 .
1.一个长方体的形状大小如下图:
它上、下两个面的面积分别是多少平方分米?
它前、后两个面的面积分别是多少平方分米?
它左、右两个面的面积分别是多少平方分米?
这个长方体的表面积是多少平方分米?
2.一个长方体铁盒,长18厘米,宽5厘米,高12厘米.做这个铁盒至少要用多少平方厘米铁皮?
六、板书设计
正方体的表面积教案 篇2
教学内容: 长方体和正方体的表面积
教学目标:
1、知识与技能:
1)、掌握表面积的定义:长方体或正方体六个面的总面积叫表面积。
2)、掌握长方体和正方体表面积的计算方法,并且会根据具体情况解决实际生活中有关长方体或正方体表面积的实际问题。(比如有五个面或四个面的长方体或正方体)
3)、培养学生的探索意识和创新实践能力,进一步发展学生的空间概念,培养学生自主参与的意识和能力,增强他们旺盛的求知欲望。
2、过程与方法:
1)知识产生的过程:在实际的生产和生活中,有很多需要求长方体和正方体的表面积或跟表面积有关的问题,如工业生产中需要的包装盒,装潢时对长方体或正方体进行外包装,建筑时要粉刷墙壁等。
2)掌握知识的过程:情景引入,感知计算长方体和正方体表面积的必要性——分组讨论计算长方体表面积的计算方法——全班总结长方体表面积的计算方法,选择最优方案——小组探讨正方体表面积的计算方法——自主练习,巩固知识——拓展延伸,形成能力。
3、情感态度与价值观:
1)培养学生观察分析、归纳和语言表达能力,发扬尝试、合作的协调精神,促进思维能力的发展。
2)在学习活动中,增强学生的学习兴趣和信心。
教学重难点:
1、重点:掌握长方体、正方体表面积的计算方法,并会解决有关的实际生活问题。
2、难点:根据给出的长方体的长或宽确定每个面的长和宽,这是本课的难点。
教具: 长方体和正方体各一个、若干长方形小纸片、
学具: 练习纸、长方体或正方体纸盒一个
教学过程:
一、实物引入、提示课题、明确目标
师:(用课件出示实物图,谈话导入新课,揭示学习目标)同学们,在我们的日常生活中有许多长方体、正方体纸盒(如牙膏盒、药盒等),工人师傅在制作这些纸盒时至少要用多少纸板呢?这就是我们这节课要研究的主要内容。板书课题,“长方体和正方体的表面积”,当你看了课题以后,你想知道什么? 生1:什么叫长方体、正方体的表面积?
生2:怎样计算长方体、正方体的表面积?
【从生活实际引入,还数学的原始本来面目,符合课程标准的要求,根据题目设问,既能达到以问促学的目的,又激发了学生的求知欲。既提出了研究问题,又使学生学有方向,学有目标】
二、演示操作、形成表象、建立概念
1.初步认识长方体的表面积。
师:我们先来研究什么是长方体、正方体的表面积。(教师利用课件出示长方体牙膏盒)请同学们仔细观察:沿着棱剪开(纸盒粘接处多余的部分要剪掉),再展开,你发现了什么?
生1:我发现原来的立体图形变成了平面图形。
生2:我发现长方体的外表展开后是由6个长方形组成的。
2.初步认识正方体的表面积。
师:同学们观察的很仔细!(再出示正方体药盒课件)按同样的方法剪开,再展开,你又发现了什么?
生1:我发现正方体展开后也变成了平面图形。
生2:我发现正方体的外表展开后是由6个正方形组成的。
3.认识长方体、正方体表面积的含义。
师:说得对!请你拿出学具袋中的长方体或正方体纸盒学具,也用同样的方法剪开,再展开,看看展开后的形状,然后在展开后的图形中,分别用“上”、“下”、“前”、“后”、“左”、“右”标明6个面。
师:从学生手中选一个长方体和一个正方体展开图贴在黑板上。问:通过观察课件和动手操作实物模型,谁知道什么叫做长方体或正方体的表面积? 生1:长方体或正方体的表面积就是指长方体或正方体物体表面的面积。 生2:长方体或正方体的表面积就是指长方体或正方体外表的面积,也就是上下、前后、左右六个面的面积和。
生3:简单地说就是长方体或正方体六个面的总面积,叫做它的表面积。
【电脑课件使原来用实物不好展示的部分得到充分展示,降低了观察上的难度,同时动静结合的画面使观察的重点更突出,有利于提高学生的专注能力,有利于调动学生的学习兴趣。通过观看剪开、展开的`实物课件及动手操作剪一剪、标一标、贴一贴的实物模型,让学生真正动眼、动手、动脑参与获取知识的过程。在看一看中充分感知,建立表象,在动手操作中展开思维,发现并归纳出表面积的含义,从而明确概念】
三、大胆猜想、动手测量、探索求法
师:既然长方体六个面的总面积叫做它的表面积,那么怎样求长方体的表面积呢?请你用长方体实物模型学具,想一想、量一量、算一算,先独立完成,有困难的合作完成。
师:生活中的长方体确实是各种各样的,找到解决实际问题的好方法才是最重要的。
【当学生理解表面积的概念后,急于知道长方体表面积的计算方法,如果把求法直接告诉学生或引导学生一步一步推导出表面积的公式,就不利于学生创新思维的发展。因此,教师让学生通过看实物图和平面展开图,想一想、量一量、算一算,大胆猜想,动手测量,探索尝试计算等。不仅学生自己主动参与了获取知识的过程,而且也自己探索到解决问题的方法,是培养学生创新能力的好方式】
四、迁移类推、自己发现、总结方法
师:长方体的表面积我们会计算了,那么正方体的表面积应该怎样计算?
【由于计算正方体的表面积是在计算长方体表面积的基础上进行教学的,所以教师设问:长方体的表面积我们会计算了,那么正方体的表面积应该怎样计算呢?教师没有讲,而是把迁移类推的机会留给了学生,让学生自己去发现,类推出正方体表面积的计算方法,可见教师用心良苦。不仅培养了学生的逻辑思维能力,而且培养了学生的再创造能力】
五、质疑问难、巧设练习、灵活应用
师:关于长方体和正方体的表面积怎样计算大家还有问题吗?请仔细阅读教材,有问题提出来。
师:出示长方体牙膏盒,能计算出它的表面积吗?
生:齐声回答“能!”过了一会说:不能。
师:为什么?
生;因为不知道每个面的长和宽各是多少?
师:对!要想求出牙膏盒的表面积需要量出几个数据?分别是长方体的什么?
生:需要量出3个数据,分别是长方体的长、宽、高。
师:请拿出学具袋中的牙膏盒,帮助工人师傅计算一下制作一个这样的牙膏盒至少需要多少纸板?
师:拿出你准备的长方体药盒,计算出制作一个这样的药盒至少需要多少纸板?测量后你发现了什么?(特殊长方体)
生:我发现长方体药盒的宽和高是相等的,所以是一个特殊的长方体。 师:请你从学具袋里拿出正方体药盒,求出它的表面积。制作100个这样的药盒至少需要多少纸板?
师:请拿出学具袋里的火柴盒,分别求出内匣和外壳的表面积。 这道题有点难,同学们可以共同研究一下解决的办法。
【数学学习,从理解知识到具体应用,解决实际问题,这是一次“飞跃”。因此,教师设计的练习题全都是学生熟悉的生活实际用品,让学生自己运用新知识解决实际问题。练习题的设计从一般长方体牙膏盒到特殊长方体药盒,最后到正方体药盒。争取做到面对不同的形体能具体问题具体分析,人人理解,个个掌握这些最基本的方法。求火柴盒的外壳与内匣一题,让学生在新的情况下,灵活应用长方体表面积的意义和计算方法解题,使学生在研究、讨论、探索的过程中发展智能。体会生活中的长方体表面积是变化的,只有活学活用才能真正解决生活中的实际问题,从而体会到生活中处处有数学】
六、归纳知识
板书设计:
长方体和正方体的表面积
长方体或正方体六个面的总面积,叫做它的表面积
长方体的表面积= 2(ab+bh+ah)
正方体的表面积=6a2
正方体的表面积教案 篇3
教学要求
1、根据正方体特征,推导出正方体表面积的计算方法。2、学会解决实际生活中有关长方体和正方体表面积的计算问题。3、培养学生思维的灵活性。
教学重点正方体表面积的计算方法。
教学用具教师准备:一个正方体纸盒和例3的实物模型、投影仪;学生准备:一个正方体纸盒。
教学过程
一、创设情境
1.看图并回答。(投影显示)
(1)什么是长方体的表面积?
(2)怎样计算这个长方体的表面积?
2.看看各自准备的正方体回答问题。
(1)什么是正方体的表面积?
(2)正方体6个面的面积怎样?
(3)如果给你正方体一条棱的长度,你能算出它的表面积是多少吗?
师:好,今天这节课我们就来学习正方体表面积的计算方法以及长方体和正方体表面积的`实际应用。(板书课题)
二、实践探索
1.小组合作学习----正方体表面积的计算。
①题中的棱长就是每个面的什么?
②你能算出这个正方体的表面积吗?
③小组合作,寻找计算方法。
3×3×6或者32×6
=9×6=9×6
=54(平方厘米)=54(平方厘米)
说明:上面两种做法都对,32表示2个3相乘。
2.教学计算长方体和正方体某几个面的面积。
在实际生产和生活中,有时还要根据实际需要计算长方体或正方体中某几个面的面积,如:投影显示例3,拿出实物模型。
(1)帮助学生分析题意。
①售米的木箱是什么体?
②“上面没盖”就是没有哪一个面?
③要求的问题,实际上是算哪几个面的面积之和?
(2)再让学生分小组讨论解答方法,只列式不计算。
(3)学生讲所列出的算式的含义,确定正确后算出结果,集体订正。
三、课堂实践
做第27页的“做一做”,先让学生列出解答的算式,并讲一讲自已是怎样想的,确定正确后算出结果。
四、课堂。
学生今天学习的内容。
五、课堂实践
做练习六的第5、6、7题。
正方体的表面积教案 篇4
教学目的:
使学生理解长方体和正方体的表面积的概念,在理解概念的基础上初步学会求长方体表面积的计算方法;发展学生的空间观念,培养学生概括、推理的能力。
教学过程:
一、复习导入
谈话:出示长方体,如果想把这件礼物包装一下,你觉得需要知道什么?
师:在生活中我们有时需要知道长方体或者正方体6个面的总面积,这就叫长方体或正方体的表面积。(板书:长方体或正方体的表面积)
师:要求出长方体或正方体的表面积,你觉得要知道什么?
二、新课教学
1、教学长方体的表面积
教师出示长方体透视图。
长方体有几个面?每个面是什么形状?面与面有什么特点?
说说各个面的长与宽。
提问:什么是长方体的表面积?想一想,要计算长方体的表面积必须先算出哪些面积?
出示例1
学生读题,找出条件和问题。
提问:求这个木箱的表面积是多少实际就是求什么?(六个面的面积)
那我们可以怎么想呢?
引导学生列出算式:8×5×2+8×4×2+5×4×2
提问:8×5×2、8×4×2、5×4×2分别求的什么?
学生回答,教师边在算式下标明上下、前后、左右,接着,让学生检查一下?有没有漏算或者重复计算的面,然后让学将完成例题。
提问:这道题还可以怎么列式呢?
同桌同学讨论,解答。教师巡视。
指名汇报算式:(8×5+8×4+5×4)×2。
提问:问什么先算3个面的面积和再乘以2?
学生用以长方体教具演示帮助学生回答,然后,将黑板上的原长方体的展开图的前、下、右面裁下,与左、上、后面进行重叠,帮助学生弄清道理。
提问:这两种计算方法有什么不同?又有什么联系?(第一种方法是先分别算出上下、前后、左右面的面积,然后再加起来。第二种方法,算出前面、右面、下面的面积再乘以2。第二种方法是第一种方法根据乘法分配律变成的。)
提问:哪一种方法更简便?(第二种)
教师:计算长方体的表面积,最关键的事要正确找出3组面中每个面的长和宽。
完成练一练第1题。
你还有什么方法?如果有两个面是正方形,那么其它四个面都是一样的。
2、立方体表面积计算
独立完成试一试,说说立方体表面积计算方法是怎样的?
三、课堂练习
完成练一练
四、全课
长方体或者正方体的6个面的总面积,叫做它的表面积。要计算长方体的表面积,关键是要准确找到每个面的长和宽。
五、布置作业
作业本
六、课外延伸:
1、用两个同样大的正方体小木块拼成一个长方体,这个长方体的表面积比原来两个小正方体表面积的和大还是小?为什么?
2、一个长方体的上下两个面都是正方形,表面积是224平方厘米,正好能截成体积相等的三个立方体,每个立方体的表面积是( )平方厘米。
正方体的表面积教案 篇5
教学内容
苏教版《义务教育课程标准实验教科书 数学》六年级(上册)第15页例4及随后的试一试练一练,完成练习四第1~5题。
教学目标
1. 使学生在具体的情境中,经历操作、讨论、交流、归纳的过程,理解长方体、正方体表面积的含义,探索并掌握长方体和正方体表面积的计算方法,能解决一些与表面积计算有关的简单实际问题。
2. 使学生在活动中进一步积累空间与图形的学习经验,初步体会长方体和正方体表面积计算在日常生活中的广泛应用,感受表面积计算方法的实际价值,增强空间观念,发展思维能力。
3. 使学生在探索和发现长方体和正方体表面积计算方法的过程中,培养对数学学习的兴趣,树立学好数学的信心。
教学过程
一、 创设情境
谈话:昨天,老师要求同学们从家里找一个长方体纸盒带到学校来,都带来了吗?(带来了)请大家先拿出自己带来的长方体纸盒,用尺量一量,你带来的长方体纸盒的长、宽、高分别是多少?把测量的数据记录在练习纸上,并按要求完成下面的填空。
出示练习四第1题的填空部分。
学生测量数据并完成填空,组织交流。
谈话:今天这节课,我们就来研究同学们手中的纸盒,讨论一下,你打算从哪个方面来研究这些纸盒。
反馈:你认为可以从哪个方面来进一步地研究这些纸盒?(学生可能想到:把这些纸盒分分类;看做这些纸盒需要多少硬纸板;这些纸盒内能装多少物品)
揭题:同学们提出了许多有价值的问题,这些问题都值得我们认真地去研究和发现。今天我们选择其中的一个来研究,就选做这些纸盒需要多少硬纸板来研究吧。
[说明:让学生测量自己带来的长方体纸盒的长、宽、高,为后续探索长方体表面积计算方法的活动提供了具体材料,有利于学生进一步展开自主的探索活动;让学生算一算长方体每个面的面积,为后面学生主动发现长方体表面积的简便算法做了必要的铺垫;讨论你打算从哪些方面来研究长方体的纸盒,为学生自主地提出问题提供了机会,也教给学生一些问题解决的方法;问题由学生自己提出,研究方向由学生自己确定,调动了学生参与学习活动的积极性和主动性。]
二、 自主探索
1. 探索长方体表面积的计算方法。
谈话:确定了研究和探索的方向,下面要思考的问题就应该是用怎样方法来解决这个问题。怎样计算做一个纸盒需要多少硬纸板呢?请同学们以自己带来的纸盒为例,按下面的要求开展研究活动。
出示活动要求:
(1) 独立思考,想办法求出做自己的这个纸盒需要多少硬纸板。
(2) 把自己的计算方法和小组内的同学交流。
(3) 小组讨论:怎样计算做一个长方体纸盒需要多少硬纸板?
学生按要求活动,教师参与学生的活动。
学生可能出现以下几种情况:(1) 把纸盒拆开,再计算每个面的面积。(2)先算出每个面的面积,再把6个面加起来。(3) 在计算6个面的面积时,发现计算的方法不够简便,改为分别求出3组相对的面的和,再相加。(4) 分别求出每组相对的面中一个面的面积,相加后再乘2。
[说明:探索长方体表面积的计算方法是本节课的教学重点,也是本节课最重要的环节。为了让学生扎实有效地参与到学习活动中来,本环节设计了三个层次的活动:一是让学生通过独立思考,找出计算做一个长方体纸盒需要多少硬纸板的方法。开放的活动要求,为学生提供了充足的探索空间,学生能够根据自己已有的经验和策略,找到自己能够理解的富有个性的解决问题的方法。二是让学生把自己的计算方法和小组内的同学交流,可以在小组内实现资源共享,计算方法不够简便的学生能及时得到他人的启发,主动修正自己的算法。三是让学生在小组内讨论怎样计算做一个长方体纸盒需要的硬纸板,有利于学生主动地把个别经验上升为更具有普遍意义的结论。]
引导:每个小组都完成自己的任务了吗?再请同学们在小组里把你们小组刚才的研究过程整理一下。看一看,你们小组的同学想出了几种求做一个长方体纸盒需要多少硬纸板的方法,在这些方法中,哪种方法是比较简便的,然后再讨论一下,你们准备用怎样的形式向大家汇报。
[说明:学生活动后,并没有马上组织学生反馈,而是让学生以小组为单位,对前面的小组活动进行整理和反思,目的是让学生对自己的活动过程和结果进行更深刻的再思考,有利于培养学生有条理地思考的习惯,提高下一环节反馈与交流的质量。]
反馈:哪个小组先上来,把你们的研究过程和结果向大家汇报一下?在一个小组汇报时,其他小组的同学要仔细地听,认真地想,如果有什么问题,可以向他们提问。
学生按小组带着自己的纸盒和计算过程,到实物展示台上汇报。[着重引导学生体会两点:(1) 求做这个长方体纸盒需要多少硬纸板,就是求长方体6个面的总面积;(2) 计算长方体6个面的总面积,先求出每组相对的面中一个面的面积,相加后再乘2比较简便。]
提问:求做一个长方体纸盒需要多少硬纸板,就是求什么?(长方体纸盒6个面的总面积;长方体纸盒的.表面积。)怎样计算比较简便?
小结并板书:长方体6个面的总面积,叫做它的表面积。
提问:刚才我们通过研究做一个长方体纸盒需要多少硬纸板,认识了什么是长方体的表面积,还总结了计算长方体表面积的计算方法,你有什么问题想问吗?
学生提出问题,师生共同帮助解答。
如果学生提出:做一个长方体纸盒还需要留出一些连接的地方,为什么不计算连接处所需要的纸?则引导通过交流体会一般情况下,我们只计算长方体的表面积,接头处所需要的纸,很多情况下是忽略不计的。所以,实际问题中经常出现至少需要用多少硬纸板这样的问题。
如果有学生提出:有些纸盒只有5个面怎么办?则让学生说一说怎样算,再告诉学生,应用长方体表面积计算方法解决问题时,经常会遇到这样的情况,下节课我们将专门研究这样的问题。
[说明:让学生提出自己感到困惑的问题,并对学生可能提出的问题进行充分预设,有利于培养学生质疑的习惯和意识,使学生的思维逐步走向深刻。]
2. 探索正方体表面积的计算方法。
出示:试一试。
提问:求做这个正方体纸盒至少要用多少平方分米的硬纸板,就是求什么?
再问:怎样求正方体的表面积?自己在下面试一试。
学生独立解题,教师巡视。
反馈:你是怎样算的?为什么可以这样算?
小结:通过刚才的学习,我们学会了求长方体、正方体表面积的方法,你能说说什么是长方体或正方体的表面积吗?
根据学生回答,完成板书:长方体(或正方体)6个面的总面积,叫做它的表面积。
三、 巩固练习
1. 完成练一练。
出示第15页的练一练。
提问:求长方体或正方体的表面积,就是求什么?
学生独立练习,并组织交流。
2. 完成练习四第2题。
出示题目(长6 cm、宽5 cm、高3 cm的长方体)。
提问:第一个问题要求的是什么?第二个问题呢?
学生练习后,提问:通过这道题的练习,你想到了什么?(求长方体的表面积,先求出每组相对的面中一个面的面积,再用三个面的面积和乘2,比较简便。)
3. 完成练习四第3、4题。
学生独立完成,再组织反馈。
4. 完成练习四第5题。
先让学生独立填表,再指名把填的结果拿到实物展示台上交流。着重让学生说一说:你是怎样判断每一个物体的形状的?计算第二个长方体的表面积时,你发现了什么?
四、 课堂总结
提问:通过本节课的学习,你有哪些收获?还有什么不懂的问题?
五、 课外延伸
出示练习四第6题。
提问:我们知道求长方体或正方体的表面积,就是求长方体或正方体6个面的总面积。怎样解决这里的问题呢?有兴趣的同学课后可以到生活中找一些这样的例子,再想一想怎样解决这样的问题,我们下节课将专门研究。
正方体的表面积教案 篇6
同学们好,下面我们来学习“长方体和正方体的表面积。”在没学新课之前你们回忆一下,长方体和正方体的面积怎样求?我们先来复习一下长方形和正方形面积公式,长方形的面积=长x宽,正方形的面积=边长x边长。
这是一个长方体,它是由六个长方形围成的,相对的两个面的面积相等。这是一个正方体,它是由六个正方形围成的,并且六个面都是相等的正方形,那么,什么叫长方体或正方体的表面积呢?
长方体或正方体六个面的总面积,叫做它的表面积。
下面我们来观察长方体,只要我们求出每个面的面积,再把它们相加就可以了。如果把长方体展开,会得到怎样的图形呢?
我们分别展开长方体的上下面、左右面、前后面,就变成这样一个平面图形,它的上面和下面是两个完全相等的长方形,请你们认真观察,这两个长方形的长和宽分别是长方体的哪条边?分别是长方体的长和宽,那么上下两个面的面积就等于长x宽x2。我们再来观察一下前后面,前后面也是完全一样的长方形,它的长和宽又分别是长方体的哪两条边呢?分别是长方体的长和高,同学们很快就能求出前后面的面积,前后面的面积等于长x高x2。最后再来观察一下左右两个面,它的长和宽又分别是长方体的哪两条边。分别是长方体中的高和宽,同学们很容易就能求出左右面的面积,左右面的面积等于高x宽x2。
现在老师把这个平面图形还原成长方体,你们再仔细观察一下,上面、前面、右面分别和长方体的哪两条边有关系,上面和长方体的长宽有关系.前面和长方体的长高有关系,右面和长方体的高宽有关系、我们只要求出上面、前面、右面的面积,用它们的和再乘2,就求出了长方体的表面积。所以,长方体的表面积=(长x宽十长x高十宽x高)x2,会求长方体的表面积,求正方体的表面积就简单多了,正方体是由六个完全一样的正方形围成的,每个正方形的边长又都是正方体的棱长。用棱长乘棱长先求出一个面的面积,再来乘6就可以了,所以正方体的表面积等于棱长x棱长x6,也可以写成棱长的平方x6。我们掌握了长方体和正方体表面积的求法,就可以解决生活中的实际问题了。
正方体的表面积教案 篇7
学习目标:
1、根据正方体的特征,总结正方体表面积的计算方法。
2、应用长方体、正方体表面积的计算方法,解决生活中的实际问题。
3、培养学习几何知识的兴趣。
教学重点:
正方体表面积的计算方法。
教学难点:
解决实际生活中有关长方体和正方体表面积的计算问题。
教具、学具准备:
一个正方体纸盒和例3的实物模型、投影仪;
学生准备:一个正方体纸盒
教学过程:
一、创设情境
1、课件出示长方体图
(1、)什么是长方体的表面积?
(2、)怎样计算这个长方体的表面积?
2、看看各自准备的正方体展开图回答:
(1)提问:正方体展开的图形中你有什么发现?谁知道正方体的表面积是什么?
(2)怎样求正方体的表面积?
(3)引入:如果给你正方体一条棱的长度,你能算出它的表面积是多少吗?
好,今天这节课我们就来学习正方体表面积的计算方法以及长方体和正方体表面积的实际应用。板书课题:正方体表面积
二、出示学习目标
三、探究新知
1、出示例题:一个正方体礼品盒,棱长1.2dm,包装这个礼品盒至少用多少平方分米的包装纸?
(1)要想知道包装这个礼盒至少要多少包装纸,也就是求什么? “至少”是什么意思?
(2)学生独立完成,指名板演,集体订正。
(3)汇报时让学生说一说第一步算出的是什么?第二步算出的是什么?
四、巩固练习
1、出示35页做一做。
(1)让学生独立完成,教师巡视(看学生是否注意到鱼缸上面没有盖,适时提醒)
(2)组织学生汇报答案,集体订正,订正。
在实际生产和生活中,我们再求物体表面积时,有时要根据实际,需要计算长方体或正方体中某几个面的面积,大家看这道题。
2、粮店售米用的`长方体木箱(上面没有盖),长1.2米,宽0.6米,高0.8米。
(1)制作这样一个木箱至少用木板多少平方米?
(2)如果把木箱放在地上,占地多少平方米?
(3)如果木箱外面四周都刷上油漆(底面不刷),刷油漆的面积一共有多少平方米?
(4)在木箱的四周贴上商标纸,宽度是0.2米,贴这个木箱要用商标纸多少平方米?
(1)帮助学生分析题意。
①售米的木箱是什么形状?
②“上面没盖”就是没有哪一个面?
③要求的问题,实际上是算哪几个面的面积之和?
(2)再让学生分小组讨论解答方法,只列式不计算。
(3)学生讲所列出的算式的含义,确定正确后算出结果,集体订正。
在实际生活中,我们经常会遇到像这种不需要算出长方体6个面的总面积的情况。你还能举出类似的例子吗?
如:1、给一个长方体罐头盒贴包装纸,求包装纸的面积。
2、教室刷涂料的面积()
3、制作抽屉需要的木板面积()
4、游泳池贴瓷砖的面积()
5、长方体木箱的占地面积()
6、楼层之间立柱表面刷油漆的面积()
7、制作铁皮通风管的用料()
小结:在生产和生活中,常常需要计算长方体或正方体中某几个面的面积之和,解答时,必须根据具体的情况进行分析,确定需要计算哪几个面的面积,其中有哪些面是相等的,再决定计算方法。
五、目标检测
1、中队委员把一个棱长46厘米的正方体纸箱的各面都贴上红纸,将它作为给希望小学募捐的“爱心箱”,他们至少需要多少平方厘米的红纸?
2、学校要粉刷新教室。已知教室的长是8米,宽是6米,高是3米,扣除门窗的面积是11.4平方米。如果每平方米需要花4元涂料费,粉刷这个教室需要花费多少元?
六、拓展延伸
把一个长方体分成两个小正方体,这两个小正方体的总表面积与这个长方体的表面积相等吗?
把下图的木块平均分成三块后,木块的表面积增加多少平方厘米?
15cm
七、总结:这节课,你有什么收获?
八、布置作业:练习六第9题
九、板书设计:
正方体的表面积
正方体6个面的总面积,叫做它的表面积
1.2×1.2×6
=1.44×6
=8.64(平方分米)
答:包装这个礼品盒至少用8.64平方分米的包装纸。
正方体的表面积教案 篇8
教学内容:P15例4、“试一试”“练一练”、练习四第1—5题
教学目标:
1、使学生理解并掌握长方体、正方体表面积的含义和计算方法,能运用长方体和正方体表面积的计算方法解决一些简单的实际问题。
2、使学生在活动中进一步积累探索有关图形问题的学习经验,发展空间观念和数学思考。
3、使学生进一步感受立体图形的学习价值,增强学习数学的兴趣。
教学重、难点:
理解并掌握长方体和正方体的表面积的计算方法。能运用长方体和正方体的表面积的计算方法解决一些简单的实际问题。
教学准备:
长方体模型、框架,长方体形状的纸盒等
教学过程:
一、复习准备
谈话:前两节课我们探索了长方体和正方体的基本特征,这节课我们继续学习有关长方体与正方体的知识。
出示长方体和正方体纸盒(与教材中例4和“试一试”同样大小的长方体和正方体)。
提问:长方体有几个面?这几个面之间有什么关系?它们可分为哪几组?正方体呢?
二、探究新知
1.探究长方体表面积的计算方法。
(1)出示问题:如果告诉你这个长方体纸盒的长、宽、高
你能算出做这个长方体纸盒至少要用多少平方厘米硬纸板吗?
追问:做这个长方体纸盒至少要用多少平方厘米硬纸板,与这个长方体的各个面有什么关系?可以怎样解决这个问题?
在交流中明确:求至少需要多少平方厘米硬纸板,只要算出这个长方体6个面的面积之和。
(2)启发:请你借助自己手中的长方体模型思考,根据长方体的特征,可以怎样计算这6个面的面积之和?
(3)指名回答是怎样列式的,并相机板书如下算式:
6×4×2+5×4×2+6×5×2; (6×4+5×4+6×5)×2
(4)比较小结:这两种方法都反映了长方体的什么特征?你认为计算长方体6个面的面积之和时,最关键的环节是什么? (要根据长方体的长、宽、高,正确找出3组面中相关面的长和宽)
(5)提出要求:用这两种方法计算长方体6个面的面积之和都是可以的。请你用自己喜欢的方法算出结果。
2.探究正方体表面积的计算方法。
(1)谈话:根据长方体的特征我们解决了做长方体纸盒至少需要多少硬板纸的问题。如果纸盒是正方体的,你还会解决同样的问题吗? (出示‘‘试一试’’)
(2)学生独立尝试解答。
(3)组织交流反馈,提醒学生根据正方体的特征进行思考。
3.揭示表面积的含义。
谈话:刚才我们在求做长方体和正方体纸盒至少各要用多少硬纸板的问题时,都算出了它们6个面的面积之和,长方体(或正方体)6个面的总面积,叫做它的表面积。
三、应用拓展
1.做“练一练”。
先让学生独立计算,再要求学生结合自己的列式和题中的直观图具体说明思考的过程。
2.做练习四第1题。
让学生看图填空,再要求同桌同学互相说说每个面的长和宽,并核对相应的面积计算是否正确。
3.做练习四第2题。
让学生独立依次完成题中的两个问题,适当提醒学生运用第(1)题的结果来解答第(2)题,并要求学生说说用这样的方法求表面积的根据。
4.做练习四第5题。
让学生根据表中列出的各组数据对每一个物体是长方体还是正方体作出判断,并说明判断的理由;再让学生独立计算,并将结果填人表中。最后引导学生比较求长方体的表面积与求正方体表面积的过程和方法,说说求长方体或正方体表面积时各要注意什么。
四、全课小结
通过今天的学习你有什么收获?什么是长方体(或正方体)的表面积?可以怎样计算长方体(或正方体)的表面积?长方体表面积的计算方法与正方体表面积的计算方法有什么联系?
五、布置作业
做练习四第3、4题。补充习题相关内容
1.探究长方体表面积的计算方法。
(1)出示问题:如果告诉你这个长方体纸盒的长、宽、高
你能算出做这个长方体纸盒至少要用多少平方厘米硬纸板吗?
追问:做这个长方体纸盒至少要用多少平方厘米硬纸板,与这个长方体的各个面有什么关系?可以怎样解决这个问题?
在交流中明确:求至少需要多少平方厘米硬纸板,只要算出这个长方体6个面的面积之和。
(2)启发:请你借助自己手中的长方体模型思考,根据长方体的特征,可以怎样计算这6个面的面积之和?
(3)指名回答是怎样列式的,并相机板书如下算式:
6×4×2+5×4×2+6×5×2; (6×4+5×4+6×5)×2
(4)比较小结:这两种方法都反映了长方体的什么特征?你认为计算长方体6个面的面积之和时,最关键的环节是什么? (要根据长方体的长、宽、高,正确找出3组面中相关面的长和宽)
(5)提出要求:用这两种方法计算长方体6个面的面积之和都是可以的。请你用自己喜欢的方法算出结果。
修改之处:
书上的思考题作为机动,课堂上或自习课上要组织探讨:1、按第1题要求画出从三个面的角度看到图形形状。2、计算这个物体的表面积。3、想象添加后成为一个大正方体,计算表面积。与原物体表面积比较,你发现了什么?4、拓展:一个棱长是10厘米的正方体的一角挖去一个棱长是3厘米的小正方体后表面积是多少?如在上面的正中间挖呢?你发现了什么?