返回首页
文学网 > 短文 > 教学教案 > 正文

三角形内角和说课稿

2025/10/01教学教案

文学网整理的三角形内角和说课稿(精选9篇),供大家参考,希望能给您提供帮助。

三角形内角和说课稿 篇1

今天我说课的内容是人教版九年义务教育小学数学四年级下册第五单元第67页的《三角形的内角和》。根据xxx教授的授课七步法,即说教材,说学情,说目标,说模式,说方法,说设计,说板书,我将进行本课的说课。

一、说教材

“三角形的内角和”是新课标人教版四年级下册第五单元第三节的内容。本节课是在学生学过角的度量、三角形的特征和分类等知识的基础上进行教学的,“三角形的内角和”是三角形的一个重要性质,学好它有助于学生理解三角形内角之间的关系,也是进一步学习几何的基础。

仔细分析教材的知识结构,它是分成3个部分来呈现的。第一部分是让学生通过量一量、算一算,初步感知三角形的内角和是180°;第二部分是通过拼角的实验来探究并归纳三角形内角和的规律,第三部分是运用规律、解决问题。教材这样编排由发现问题,到验证问题,再到运用规律,充分体现了知识结构的有序性和强烈的数学建模思想,既符合四年级学生的认知规律,又突出了本课教学的重点。

二、说学情

1、通过前面的学习,学生已经掌握了三角形的一些基础知识,会用工具量角、画角,具备了探索三角形内角和的知识与基础技能。

2、学生的生活经验是可利用的教学资源。我在课前了解到,已经有不少学生知道了三角形内角和是180度,但却不知道怎样才能得出这个结论,因此学生在这节课上的主要目标是验证三角形的内角和是180度。

三、说目标

根据小学数学教学大纲对四年级学生的具体要求,结合教材特点及学生年龄特征,将本节课的目标制定为以下几点:

认知技能:学生动手操作,在猜想后通过量、剪、拼、折的方法,探索并发现"三角形内角和等于180度"的规律。

数学思考:在操作实验中,让学生感受图形的转化过程及数学建模思想,初步培养学生的空间思维观念。

解决问题:在运用知识解决问题的过程中,感受所学知识的重要性,初步培养学生的应用意识。

情感态度:通过各种实验活动,激发学习兴趣,体验学习成功感,并在教学中,感受生活与数学的密切联系。

将运用各种实验方法探究三角形内角和为180度的过程并掌握规律,运用规律解决实际问题确定为本节课的教学重点。而同时学生难以理解不易掌握的探究规律的全过程则是本节课的教学难点。

四、说模式

“三角形的内角和”一课,知识与技能目标并不难,我认为本节课更重要的是通过自主探索与合作交流使学生经历知识的形成过程,领悟转化思想在解决问题中的应用,以及在探索过程中,培养学生实事求是、敢于质疑的科学态度,同时合作交流中,开拓思维、提升能力。基于以上理念,本节课,我准备引导学生采用自主探究、猜想验证、合作探究的学习模式。体现“以学生的发展为本”这一教育理念。

五、说方法

本节课主要是通过教师的精心引导和点拨,学生在小组中合作探索,通过量一量,折一折,撕一撕,画一画,选择不同的一种或者几种方法来验证三角形的内角和是180度。

因为《课程标准》明确指出:“要结合有关内容的教学,引导学生进行观察,操作,猜想,培养学生初步的思维能力”。四年级学生经过第一学段以及本单元的学习,已经掌握了三角形的分类,比较熟悉平角等有关知识;具备了初步的动手操作,主动探究的能力,他们正处于由形象思维向抽象思维过渡的阶段。因此,本节课,我将重点引导学生从“猜测――验证”展开学习活动,让学生感受这种重要的数学思维方式。

六、说设计

根据我对教材的把握和对学情的了解,设计了4个环节展开教学。

一、创设情境,发现问题

小游戏:猜一猜藏在信封后面的是什么三角形。

师:我们在猜三角形的时候,看到一个直角,就能断定它一定是直角三角形;看到一个钝角,就能断定他一定是钝角三角形;但只看到一个锐角,就判断不出来是哪种三角形。看来在一个三角形中,只能有一个直角或一个钝角,为什么画不出有两个直角或两个钝角的三角形呢?

三角形的这三个角究竟存在什么奥秘呢,我们一起来研究研究。

(创设的不是生活中的情境,而是数学化的情境。有的孩子认为一个三角形中可能会有两个钝角,还有的提出等边三角形中可能会有直角,这两个问题显现出学生在认知上的矛盾,学生用已经学的三角形的特征只能解释"不能是这样",而不能解释"为什么不能是这样"。这样引入问题恰好可以利用学生的这种认知冲突,激发学生的学习兴趣,让学生在疑问与猜想中寻找验证的方法。)

教学进入第二环节——引导探究

二、动手操作,探究规律

1.介绍内角、内角和,并提出猜想

师:我们现在研究三角形的三个角,都是它的内角。

课件演示:三角形的三个内角

师:今天我们就来一起探究《三角形的内角和》。猜一猜其它三角形的内角和是多少度呢?同桌互相说说自己的看法。

2.确定研究范围

师:研究三角形的内角和,是不是应该包括所有的三角形?只研究黑板上这一个行不行?那就随便画,挨个研究吧。(学生反对)

请你想个办法吧!

(通过引导学生分析,"研究哪几类三角形,就能代表所有的三角形"这个问题,来渗透研究问题要全面,也就是完全归纳法的数学思想)

3.建立模型,解决问题

(一)测量法:

(1)学生自然想到要量出三角形每个角的度数就能够求出三角形的内角和,从而证明三角形的内角和与三角形的大小和形状没有关系都接近180度。

(2)教师要组织学生进行小组合作每人用量角器量出一种三角形(锐角三角形、钝角三角形、直角三角形)的三个内角并计算出它们的总和是多少?

(3)记录小组测量结果及讨论结果

实验名称三角形内角和

实验目的探究三角形内角和是多少度。

实验材料尺子剪刀量角器锐角三角形纸片直角三角形纸片钝角三角形纸片

方法一三角形的形状每个内角的.度数三个内角的

方法二

我的发现

(4)学生汇报量的方法,师请同学评价这种方法。

师小结:直接量的方法挺好,虽然测量有误差,不准,但我们能知道,三角形的内角和只能在180°左右,究竟是不是一定就是180度呢,谁还有别的方法?

(二)剪拼法

学生汇报后师小结:能想到这个方法不简单,拼成的看起来像平角,到底是不是平角呢,我们一起来试试看。(教师和学生剪一剪、拼一拼)

师:把三角形的三个内角凑到了一起,拼成了一个大角,角的两条边是不是在一条直线上呢?看起来挺象的,但在操作的过程中难免会产生误差,有时会差一点点,谁还有别的方法确定三角形的内角和一定是180°?

(三)折拼法

学生汇报后师小结:我们要研究三角形的内角和,实际上就是想办法把三角形的三个内角凑到一起,像剪和折的方法,看三个内角拼到一起是不是180度,都是借助我们学过的平角解决的问题。

这三种方法都不错,在操作的过程中,有时会有误差,不太有说服力。想一想,你还能不能借助我们学过的哪种图形,想办法说明三角形的内角和一定是180度?

(四)演绎推理法

(借助学过的长方形,把一个长方形沿对角线分成两个三角形。)

师:你认为这种方法好不好?我们看看是不是这么回事。

(演示课件:两个完全相同的三角形内角和等于360°,一个三角形内角和等于180°)

师小结:这种方法避免了在剪拼过程中由于操作出现的误差,非常准确的说明了三角形的内角和一定是180度。

(学生通过小组合作的方式学到方法,分享经验,更重要的是领悟到科学研究问题的方法。就学生的发展而言,探究的过程比探究获得的结论更有价值。)

学生用的方法会非常多,但它们的思维水平是不平行的。

直接测量法是学生利用已有的知识,测量出每个角的度数,再用加法求和;

拼角求和法,也就是间接剪拼和折拼这两种方法,都是通过拼成一个特殊角,也就是平角来解决问题;

而演绎推理法,即把两个完全相同的三角形合二为一,或把长方形一分为二,成为两个三角形,这是更深层次的思考。

前两种方法是不完全归纳法,能使我们确定研究的范围只能是180度左右,而不可能是其他任意猜想的度数。最后一种方法具有演绎推理的色彩,把一个长方形沿对角线分成两个完全相同的三角形后,因为两个三角形的内角和是原来长方形的四个内角之和360度,所以一个三角形的内角和就是360°÷2=180°,这种方法从科学证明的角度阐述了三角形的内角和,它有严密性和精确性。

本节课引导学生经历从直观到抽象、思维程度从低到高的过程,感悟数学的严谨性。让学生在经历量和拼之后,逐渐会在思维发散的过程中得到集中,集中为分的方法,最后将四边形一分为二,五边形一分为三,六边形一分为四……,又会发现一些新的规律。】

4.验证猜想"三角形的内角和是180度"

5.进一步感受

(1)三角形内角和与三角形大小的关系

教师出示一个小三角形,问学生内角和是多少度?再出示一个大的等腰三角形,问学生它的内角和是多少度?把这个大三角形平均分成两份,每份内角和是多少度?你有什么发现吗?

(2)三角形内角和与三角形形状的关系

(演示不断变化的三角形。)仔细观察,在这个过程中,什么变化了?什么没变化?(三个角的度数都在变化,内角和却总是不变的)你有什么新发现吗?

如果老师把一个角一直往下拽,猜一猜会怎样?

(通过变化的三角形和三个内角的数据显示,进一步感受三角形的内角和与三角形的形状、大小都没有关系;当把三角形的一个角一直向下拽,这个角变成了一个180度的平角,另外两个角变成了0度角,虽然已经不再是三角形,也能从一个侧面证明三角形的内角和是180度,使学生感受到极限的思维方法。)

6.解释课前问题

用内角和的知识解释课前的问题,为什么在三角形中不能有两个直角或钝角。

三、拓展应用,深化创新

本节课的练习由易到难,设计成三个层次。

1、基本练习形成技能

2、变式练习巩固技能

3、综合练习发展提高技能

介绍科学家帕斯卡(出示帕斯卡的资料)

师:帕斯卡为科学作出了巨大的贡献,在我们以后学习的知识中,也有很多是帕斯卡发现和验证的,他12岁就发现三角形内角和是180度,我们同学还没到12岁,看你能不能通过自己的努力也去探索和发现。

多边形边形内角和

(设计求多边形的内角和,旨在把新问题转化归结为求几个三角形内角和的问题上,渗透化归的数学学习方法。)

四、总结全课,全面提升

我们用三角形内角和的知识知道了六边形内角和,那么五边形、七边形……这些多边形的内角和是多少度?有没有什么规律可循,你能用学到的知识和方法去探究问题,相信你还会有一些精彩的发现。

七、说设计

三角形的内角和是180度。

转化的思想:量、撕、剪、折、拼

三角形内角和说课稿 篇2

一、 说教材

三角形的内角和是北师大版四年级下册第二单元的内容。三角形的内角和是三角形的一个重要性质,学好它有助于学生理解三角形内角之间的关系,也是进一步学习几何的基础。

二、说学情

本节课是在学生学过角的度量、三角形的特征和分类等知识的基础上进行教学的,学生已经具备一定的关于三角形的认识的直接经验,也已具备了一些相应的三角形知识和技能,这为感受、理解、抽象三角形的内角和的规律,打下了坚实的基础。

因此,我确定本节课的教学目标是:

教学目标:

知识与技能:通过测量、撕拼、折叠等方法,探索和发现三角形三个内角的和等于180。知道三角形两个角的度数,能求出第三个角的度数。能应用三角形内角和的性质解决一些简单的问题。

过程与方法:

发展学生动手操作、观察比较和抽象概括的能力。

情感、态度与价值观:体验数学活动的探索乐趣,体会研究数学问题的思想方法。

教学重点:

学生经历探究三角形内角和的全过程并归纳概括三角形内角和等于180。

教学难点:

三角形内角和的探索与验证,对不同探究方法的指导和学生对规律的灵活应用。

三、说教法、学法

整个教学将体现以人为本,先放后扶的教学策略。放,不是漫无目的的放,而是为学生提供足够的探究规律的材料和时间,放手让学生自主学习,合作探究;扶,则是根据学生的不同探究方法和出现的错误,给予恰当指导,引导学生归纳概括出规律。

《课程标准》明确指出:要结合有关内容的教学,引导学生进行观察、操作、猜想,培养学生初步的思维能力。四年级学生经过第一学段以及本单元的学习,已经掌握了三角形的分类,比较熟悉平角等有关知识;具备了初步的动手操作、主动探究的能力,他们正处于由形象思维向抽象思维过渡的阶段。因此,本节课,我将重点引导学生从猜测――验证展开学习活动,让学生感受这种重要的数学思维方式。在教学中,学生通过测量、拼折、验证等方式确定三角形内角的度数和。这样,既培养了观察能力和归纳概括能力,又体现了动手实践、合作交流,自主探索的学习方式,同时也培养了探索能力和创新精神。

四、说教学过程

基于以上分析,我以猜测、验证、结论和应用四个活动环节为主线,让学生通过自主探究学习进行数学的思考过程,积累数学活动经验。

第一, 猜测。

通过出示一个角形,让学生说知道三角形的知识来引出三角形的内角的概念,让学生自由猜测,三角形内角和是多少?引出课题,以疑激思。

第二,动手操作,探究新知。

动手实践,自主探究,是学生学习数学的重要方式,新课程的一个重要理念就是提倡学生做数学用亲身体验的方式来经历数学,探究数学,这要求老师首先为学生提供充分的研究材料,以及充裕的时间,保证学生能真正地试验,操作和探索。

这一环节我设计为以下三步:

1、操作感知。

组织学生通过算一算初步感知三角形的内角和。根据学生特点,为了节约学生上课的时间,作为预习作业,我提前让学生在家里自制钝角、锐角、直角三角形,并测量出每个角的度数,写在三角形对应的角上,也填在书上的'表格里。这时直接让学生计算,学生汇报计算结果,不同的学生可能会有不同的结果,有可能大于180或小于180甚至等于180,只要相对合理(允许一点误差)都给与肯定。这时可引导学生得出结论(强调在排除测量误差的前提下):三角形的内角和是180度。在这一过程中,学生有困惑,有疑问,而正是这些困惑激发了学生更强的探究欲望,正是这些疑问,使得合作成为学生的内在需要。

2、小组合作。

针对探究过程中不同思维能力的学生,要做到因材施教。对于得出结论的学生要鼓励他们思考新的方法,对于无法下手的学生,要启发他们知道三角形的内角和,我们可以把角合起来看是多少?能用什么方法将三个角合起来。在探究学习中,老师只是起一个引导者的作用,引导学生不断地深入探究,尽可能用多种合理的方法,验证结论。

3、交流反馈,得出结论。

学生完成探究活动之后,在有亲身体验的基础上,我将选择不同方法的代表,在展示平台上展示自己的探究过程,并说说自己是怎样想的。我关注的不是学生最后论证的结果,而是学生思维的过程。学生可能通过:拼一拼、折一折、画一画的方法,验证得出三角形的内角和是180度,并通过观察对比各组所用的三角形,是不同类型的而且大小不同的,发现这一规律是具有普遍性的,对于任意三角形都是适用。在学生探究之后,我用课件重新演示了3种方法,让学生有一个系统的知识体系。

第三是灵活应用,拓展延伸。

揭示规律之后,学生要掌握知识,形成技能技巧,就要通过解答实际问题的练习来巩固内化。根据学生能力的不同,我将练习分为以下3个层次。

1、基础练习。要求学生利用三角形内角和是180度在三角形内已知两个角,求第三个角。由于学生空间思维能力的局限,我将先出示有具体图形的题目,再出示文字叙述题。在这之间指导学生注意一题多解。

2、提高练习。如已知一个直角三角形的一个角的度数,求另一个角的度数;已知一个等腰三角形的顶角或底角的度数,求底角或顶角的度数。

3、拓展练习。针对不同思维能力的学生,我设计的思考题是要求学生应用三角形内角和是180的规律,求多边形的内角和。我的目的不仅仅是为了让学生去求解多边形的内角和,更重要的是为了让学生灵活应用知识点,培养学生的空间思维能力。

这样安排可以兼顾不同能力的学生,在保证基本教学要求的同时,尽量满足学生的学习需要,启发学生的思维活动。

本节课通过这样的设计,学生全身心投入到数学探究互动中去,学生不仅学到科学探究的方法,而体验到探索的甘苦,领略成功的喜悦,学生在探索中学习,在探索中发现,在探索中成长,最终实现可持续性发展。

板书:

三角形的内角和

猜测验证结论应用

三角形内角和等于180。

三角形内角和说课稿(精选20篇)

作为一名专为他人授业解惑的人民教师,通常会被要求编写说课稿,说课稿有助于提高教师的语言表达能力。快来参考说课稿是怎么写的吧!以下是小编收集整理的三角形内角和说课稿,欢迎阅读与收藏。

三角形内角和说课稿 篇3

各位评委:

我说课的主题是“角色扮演,引导学生猜想验证”,说课的内容是《三角形的内角和》。

一、说说我对教材与学情的分析

《三角形的内角和》是北师大版四年级下册第二单元的教学内容,是在学生学习了三角形的概念及特征、分类之后进行的,它是三角形的一个重要特征,也是掌握多边形内角和及解决其他实际问题的基础。教材的小标题为“探索与发现”,强调说明这一部分的内容要求学生通过自主探索来发现有关三角形的性质。学生已经掌握三角形特性和分类,熟悉了钝角、锐角、平角这些角的知识,大多数学生已经在课前通过不同的途径知道“三角形的内角和是180度”的结论,但不一定清楚道理,所以本课的设计意图不在于了解,而在于验证,让学生在课堂上经历研究问题的过程是本节课的重点。

二、聊聊我对教学目标及重难点的确定

以建构主义理论以及有效教学的理念为指导,结合对教材和学情的分析,我将本节课的教学目标定为下列几点:

1、通过量、剪、拼等活动发现、验证三角形的内角和是180°,并会应用这一知识解决生活中简单的实际问题。

2、经历亲自动手实践、探索三角形内角和的过程,体会运用“量一量”、“算一算”、“拼一拼”、“折一折”进行验证的数学思想方法。

3、在探究中体验成功的喜悦,激发主动学习数学的兴趣。

教学重点:经历“三角形的内角和是180°”的形成、发展和应用的全过程。

教学难点:验证“三角形的内角和是180°”以及对这一规律的灵活运用。

学具准备:量角器、三角尺、剪刀和准备一个喜欢的三角形。

三、谈谈我的主要教学流程

本节课我设计采用支架式教学方法,以猜想→验证→应用→评价四个活动环节为主线,引导学生通过自主探究学习实现对“三角形内角和是180°”这一知识规律的数学理解。同时,每一个活动环节都让学生尝试扮演一种角色,激发他们投入课堂活动的兴趣。

1.大胆设疑,提出猜想(猜想家)

在这节课之前,有不少学生通过各种渠道了解了三角形的内角和是180°。因此,第一个环节我就让学生根据已有的知识经验进行大胆设疑,提出猜想,做一个猜想家。

首先,我向学生出示一个长方形,向学生讲解长方形的四个内角,引导学生将这四个内角的度数相加算出长方形的内角和是360°。

接着,我把长方形拆成两个三角形,让学生指出其中一个三角形的三个内角,设问:这个三角形的三个内角和是多少?让学生说说各自的看法和理由,并引导提出“是不是所有的三角形的内角和是180°”的猜想。通过这一环节,学生首先获得对“三角形内角和是什么”这一陈述性知识的数学理解。

2.科学验证,探索规律(科学家)

有了大胆的猜想,就要进行科学的验证,第二个角色就是扮演科学家,对刚才的猜想进行科学验证,自主探索。

第二个环节的活动步骤如下:

(1)提供实验活动需要操作的工具,如:量角器、三角尺、剪刀等,让学生说说:“要知道三角形的内角和,怎样利用好这些工具?”

(2)明确提出操作要求:先在自己准备的.三角形上作好内角的符号,选择合适的工具开展实验,遇到操作困难可以与同伴商量或请老师帮助解决。

(3)学生操作后在小组内交流,出示交流提纲:

A、通过实验操作,你发现三角形的内角和有什么特点?你是怎样发现的?

B、你认为三角形的内角和与三角形的大小、形状有关吗?为什么?

(4)集体交流,小结规律:

在组织学生交流实验的过程与成果时,我会挑选出研究不同形状或不同大小的三角形的学生进行实验汇报,并在学生提出疑问时进行合理的解释与调控,尤其是要对一些通过量一量得出180度左右的结论进行“误差解释”。最后与学生一起小结归纳出:“三角形的内角和是180°,而且与它的大小、形状无关”这一数学规律,从中感悟由特殊到一般的证明方法。

3.联系生活,实践应用(实践家)

有效教学理论指出练习要考虑它的实效性。在这个环节,我设计让学生扮演实践家,通过三个有层次有针对性的练习实践把探索得出的知识应用于生活问题之中。

第一,基本运用。即书本中“试一试”的第3题和“练一练”的第1、第2题。通过这个3练习让学生形成运用三角形内角和的知识求出未知角度数的基本技能。

第二,综合运用。即书本中“做一做”的第3题,这道题在让学生知道其中一个角等于60度的情况下,综合运用三角形内角和是180度和三角形分类知识来进行解决。

第三,拓展延伸。我设计了让学生求四边形和五边形等多边形的内角和的问题,让学生通过量、拼、分等办法尝试求多边形内角和,并找出其中的规律。

4.自我反思,评价延伸

在这个环节,我会让学生自己说说:“这节课你有什么收获?”“在扮演三个角色时,哪一个角色完成得最好,为什么?”

为了突出本课的重点,我设计了简洁明了的板书:

三角形的内角和

量角撕拼折角拼图

三角形的内角和是180度。

三角形内角和说课稿 篇4

说教材

《三角形的内角和》是人教版小学数学四年级下册第五单元的内容。“三角形的内角和”是三角形的一个重要性质,学好它有助于学生理解三角形内角之间的关系,也是进一步学习几何的基础。本节课是在学生学过角的度量、三角形的特征和分类等知识的基础上进行教学的,学生已经具备一定的关于三角形的认识的直接经验,也已具备了一些相应的三角形知识和技能,这为感受、理解、抽象“三角形的内角和”的规律,打下了坚实的基础。

说学情

一节成功的课,不仅在于对教材的把握,还有对学生的研究。四年级的学生正处于具体形象思维为主导的阶段,他们解决问题的能力很强,但自控力稍差。因此本节课将注重引导学生动脑思考,动手实践,打破以知识传授为主的传统数学课堂模式,采用灵活多样的教学方法,牢牢将学生的注意力集中在课堂中。

说教学目标

根据新课程的要求及教材的编写特点,充分考虑到四年级学生的思维水平,我确立如下三维教学目标:

知识与技能目标:通过量、剪、拼等活动发现、证实三角形内角和是180°,并会应用这一知识解决生活中简单的实际问题。

过程与方法目标:经历观察、猜想、验证的过程,提升自身动手操作及推理、归纳总结的能力。

情感态度价值观目标:在参与学习的过程中,感受数学的魅力,体验成功的喜悦,激发学习数学的兴趣。

说教学重难点

根据教学目标,我确定了本节课的重点和难点。重点为三角形内角和定理,而三角形内角和定理推理的过程为本节课的难点。

说教法

为了更好地突出重点,突破难点,坚持“以学生为主体,以教师为主导”的原则,根据学生的心理发展规律,我将采用启发式教学法,引导学生利用已有的知识经验去探索新知,并在探索过程中掌握本节重难点,同时辅之以多媒体教学设备,直观地呈现教学内容。

我将引导学生采用自主探究,合作交流的方式进行学习,通过动手动脑动口来掌握本节课的教学重难点。

说教学内容

为了更好地完成本节课的教学内容,突出重点突破难点,我设计了以下几个教学环节:

(一)创设情境,导入新课

为了引入新课,调动学生的学习兴趣,一开始上课我便用多媒体播放有关三角形内角和情境视频:在图形的王国中,有一天,三角形家族里为“三角形内角和的大小”爆发了一场激烈的争吵。钝角三角形说“我的钝角大,我的内角和一定比你们的内角和大”。锐角三角形也不示弱“你虽然有一个钝角,可是其它两个角都很小,而我的三个角都不是很小,所以我的内角和比你大”。直角三角形说“别争了,我们的内角和是一样大的,因为三角形的内角和是180°”。根据视频中三角形的对话,顺势引出题目——三角形的内角和。

多媒体课件展示有关三角形内角和的内容,激发学生深厚的学习兴趣和求知欲望,快速的进入学习高潮。

(二)自主探究,感受新知

首先让学生画几个不同类型的三角形。然后同桌互相量一量,算一算,三角形3个内角的和各是多少度?通过测量,学生可以发现三角形的内角和是180°。

接着我会提出一个问题是不是所有的三角形的内角和都是180°,如何进行验证你的结论呢?接下来我会让学生分小组讨论,针对学生出现的问题,我给予指导,讨论过后,请同学汇报,鼓励学生用自己的语言表达,无论学生回答的全面与否,都给予积极的评价,其他同学认真倾听后做出判断,进行补充,提高学生的注意力。

通过小组之间的讨论,引导学生采用剪拼的方法进行验证,先把一个三角形的三个角剪下来,再拼一拼,拼成一个平角。

最后引导学生总结出三角形的内角和是180°。

以上教学活动采用让学生主动探索、小组合作交流的学习方式,使学生充分经历数学学习的全过程,体现以生为本的教学理念。学生在全程参与中不仅掌握新知发展能力培养的推理能力,又锻炼学生的语言表达能力和沟通能力,同时让学生体验数学与生活的紧密联系。

(三)巩固练习,强化知识

我利用小学生好胜心强的特点,以闯关的形式将课本的习题展现在多媒体上来巩固本节课所学的知识,这样设计能增加数学的趣味性,激发学生的学习兴趣,并查看他们知识的掌握情况。

(四)课堂小结

我将此环节分为两部分。第一部分是以学生为主体的知识性总结,让学生畅谈本节课的感受和收获,及时了解学生的学习情况和情感体验。第二部分是以教师为主体的情感性总结,我会对学生的表现予以表扬和激励,激发学生的学习兴趣,增强学习自信心。

(五)布置作业

针对学生的年龄特点,我会让学生在课下和家长交流今天的收获和感受,从而让家长了解学生在校的学习情况,并促进学生与家长的沟通。

说板书设计

一个好的板书应该是简洁明了整洁美观,重难点突出,能够对学生理解本节知识有一定的强化作用,因此我的板书是这样设计的。

以上就是我的全部说课,感谢各位老师的聆听!(鞠躬)

三角形内角和说课稿 篇5

一、说教材

(一)教材的地位和作用

《三角形内角和》一课是人教版义务教育课程标准实验教材四年级下册第五单元的内容,是在学生学习了《三角形的特性》以及《三角形三边关系》,《三角形的分类》之后进行的,在此之后则是《图形的拼组》,它是三角形的一个重要特征,也是掌握多边形内角和及解决其他实际问题的基础,因此,学习,掌握三角形的内角和是180°这一规律具有重要意义.

(二)教学目标

基于以上对教材的分析以及对教学现状的思考,我从知识与技能,教学过程与方法,情感态度价值观三方面拟定了本节课的教学目标:

1.通过"量一量","算一算","拼一拼","折一折"的小组活动的方法,探索发现验证三角形内角和等于180°,并能应用这一知识解决一些简单问题.

2.通过把三角形的内角和转化为平角进行探究实验,渗透"转化"的数学思想.

3.通过数学活动使学生获得成功的体验,增强自信心.培养学生的创新意识,探索精神和实践能力.

(三)教学重,难点

因为学生已经掌握了三角形的概念,分类,熟悉了钝角,锐角,平角这些角的知识.对于三角形的内角和是多少度,学生并不陌生,也有提前预习的习惯,学生几乎都能回答出三角形的内角和是180°.在整个过程中学生要了解的是"内角"的概念,如何验证得出三角形的内角和是180°.因此本节课我提出的教学的重点是:验证三角形的内角和是180°.

二、说教法,学法

本节课主要是通过教师的精心引导和点拨,学生在小组中合作探索,通过量一量,折一折,撕一撕,画一画,选择不同的一种或者几种方法来验证三角形的内角和是180°.

因为《课程标准》明确指出:"要结合有关内容的教学,引导学生进行观察,操作,猜想,培养学生初步的思维能力".四年级学生经过第一学段以及本单元的学习,已经掌握了三角形的分类,比较熟悉平角等有关知识;具备了初步的动手操作,主动探究的能力,他们正处于由形象思维向抽象思维过渡的阶段.因此,本节课,我将重点引导学生从"猜测――验证"展开学习活动,让学生感受这种重要的数学思维方式.

三、说教学过程

我以引入,猜测,证实,深化和应用五个活动环节为主线,让学生通过自主探究学习进行数学的思考过程,积累数学活动经验.

引入

呈现情境:出示多个已学的平面图形,让学生认识什么是"内角".( 把图形中相邻两边的夹角称为内角) 长方形有几个内角 (四个)它的内角有什么特点 (都是直角)这四个内角的和是多少 (360°)三角形有几个内角呢 从而引入课题.

【设计意图】让学生整体感知三角形内角和的知识,这样的教学, 将三角形内角和置于平面图形内角和的大背景中, 拓展了三角形内角和的数学知识背景, 渗透数学知识之间的联系, 有效地避免了新知识的"横空出现".

猜测

提出问题:长方形内角和是360°,那么三角形内角和是多少呢

【设计意图】引导学生提出合理猜测:三角形的内角和是180°.

(三)验证

(1)量:请学生每人画一个自己喜欢的三角形,接着用量角器量一量,然后把这三个内角的度数加起来算一算,看看得出的三角形的内角和是多少度

(2)撕―拼:利用平角是180°这一特点,启发学生能否也把三角形的三个内角撕下来拼在一起,成为一个平角 请学生同桌合作,从学具中选出一个三角形,撕下来拼一拼.

(3)折-拼:把三角形的三个内角都向内折,把这三个内角拼组成一个平角,一个平角是180°,所以得出三角形的内角和是180°.

(4)画:根据长方形的内角和来验证三角形内角和是180°.

一个长方形有4个直角,每个直角90°,那么长方形的内角和就是360°,每个长方形都可以平均分成两个直角三角形,每个直角三角形的内角和就是180°.从长方形的内角和联想到直角三角形的内角和是180°.

【设计意图】利用已经学过的知识构建新的数学知识, 这不仅有助于学生理解新的知识, 而且是一种非常重要的学习方法.在探索三角形内角和规律的教学中,注意引导学生将三角形内角和与平角,长方形四个内角的和等知识联系起来, 并使学生在新旧知识的连接点和新知识的生长点上把握好他们之间的内在联系.在整个探索过程中, 学生积极思考并大胆发言, 他们的创造性思维得到了充分发挥.

深化

质疑: 大小不同的三角形, 它们的内角和会是一样吗

观察指着黑板上两个大小不同但三个角对应相等的三角形并说明原因,三角形变大了, 但角的大小没有变.)

结论: 角的两条边长了, 但角的大小不变.因为角的大小与边的长短无关.

实验: 教师先在黑板上固定小棒, 然后用活动角与小棒组成一个三角形, 教师手拿活动角的顶点处, 往下压, 形成一个新的三角形, 活动角在变大, 而另外两个角在变小.这样多次变化, 活动角越来越大, 而另外两个角越来越小.最后, 当活动角的两条边与小棒重合时.

结论:活动角就是一个平角180°, 另外两个角都是0°.

【设计意图】小学生由于年龄小, 容易受图形或物体的外在形式的影响.教师主要是引导学生与角的有关知识联系起来,通过让学生观察利用"角的大小与边的长短无关"的旧知识来理解说明.

对于利用精巧的小教具的演示, 让学生通过观察,交流,想象, 充分感受三角形三个角之间的联系和变化, 感悟三角形内角和不变的原因.

(五)应用

1.基础练习:书本练习十四的习题9,求出三角形各个角的度数.

2.变式练习:一个三角形可能有两个直角吗 一个三角形可能有两个钝角吗 你能用今天所学的知识说明吗

3.(1)将两个完全一样的直角三角形拼成一个大三角形, 这个大三角形的内角和是多少

(2) 将一个大三角形分成两个小三角形, 这两个小三角形的内角和分别是多少

4.智力大挑战: 你能求出下面图形的内角和吗 书本练习十四的习题

【设计意图】习题是沟通知识联系的有效手段.在本节课的四个层次的练习中, 能充分注意沟通知识之间的内在联系, 使学生从整体上把握知识的来龙去脉和纵横联系,逐步形成对知识的整体认知, 构建自己的认知结构, 从而发展思维, 提高综合运用知识解决问题的能力.

第一题将三角形内角和知识与三角形特征结合起来,引导学生综合运用内角和知识和直角三角形,等边三角形等图形特征求三角形内角的度数.

第二题将三角形内角和知识与三角形的分类知识结合起来,引导学生运用三角形内角和的知识去解释直角三角形,钝角三角形中角的特征, 较好地沟通了知识之间的联系.

第三题通过两个三角形的分与合的过程,使学生感受此过程中三角内角的 变化情况, 进一步理解三角形内角和的知识.

第四题是对三角形内角和知识的进一步拓展, 引导学生进一步研究多边形的内角和.教学中, 学生能把这些多边形分成几个三角形, 将多边形内角和与三角形内角和联系起来,并逐步发现多边形内角和的规律, 以此促进学生对多边形内角和知识的整体构建.

说课板书设计:

三角形内角和

引入:

猜测:

验证:

量——算

撕——拼

折——拼

三角形内角和说课稿 篇6

尊敬的各位评委老师好!(鞠躬)

我是小学数学组几号考生,今天我说课的题目是《三角形的内角和》,下面开始我的说课。

依据数学课程标准,在新课程理念的指导下,我将以教什么,怎样教以及为什么这样教的思路,从教材分析,教学目标,教学方法教学内容等方面展开我的说课。

说教材

《三角形的内角和》是人教版小学数学四年级下册第五单元的内容。“三角形的内角和”是三角形的一个重要性质,学好它有助于学生理解三角形内角之间的关系,也是进一步学习几何的基础。本节课是在学生学过角的度量、三角形的特征和分类等知识的基础上进行教学的,学生已经具备一定的关于三角形的认识的直接经验,也已具备了一些相应的三角形知识和技能,这为感受、理解、抽象“三角形的内角和”的规律,打下了坚实的基础。

说学情

一节成功的课,不仅在于对教材的把握,还有对学生的研究。四年级的学生正处于具体形象思维为主导的阶段,他们解决问题的能力很强,但自控力稍差。因此本节课将注重引导学生动脑思考,动手实践,打破以知识传授为主的传统数学课堂模式,采用灵活多样的教学方法,牢牢将学生的注意力集中在课堂中。

说教学目标

根据新课程的要求及教材的编写特点,充分考虑到四年级学生的'思维水平,我确立如下三维教学目标:

知识与技能目标:通过量、剪、拼等活动发现、证实三角形内角和是180°,并会应用这一知识解决生活中简单的实际问题。

过程与方法目标:经历观察、猜想、验证的过程,提升自身动手操作及推理、归纳总结的能力。

情感态度价值观目标:在参与学习的过程中,感受数学的魅力,体验成功的喜悦,激发学习数学的兴趣。

说教学重难点

根据教学目标,我确定了本节课的重点和难点。重点为三角形内角和定理,而三角形内角和定理推理的过程为本节课的难点。

说教法

为了更好地突出重点,突破难点,坚持“以学生为主体,以教师为主导”的原则,根据学生的心理发展规律,我将采用启发式教学法,引导学生利用已有的知识经验去探索新知,并在探索过程中掌握本节重难点,同时辅之以多媒体教学设备,直观地呈现教学内容。

我将引导学生采用自主探究,合作交流的方式进行学习,通过动手动脑动口来掌握本节课的教学重难点。

说教学内容

为了更好地完成本节课的教学内容,突出重点突破难点,我设计了以下几个教学环节:

(一)创设情境,导入新课

为了引入新课,调动学生的学习兴趣,一开始上课我便用多媒体播放有关三角形内角和情境视频:在图形的王国中,有一天,三角形家族里为“三角形内角和的大小”爆发了一场激烈的争吵。钝角三角形说“我的钝角大,我的内角和一定比你们的内角和大”。锐角三角形也不示弱“你虽然有一个钝角,可是其它两个角都很小,而我的三个角都不是很小,所以我的内角和比你大”。直角三角形说“别争了,我们的内角和是一样大的,因为三角形的内角和是180°”。根据视频中三角形的对话,顺势引出题目——三角形的内角和。

多媒体课件展示有关三角形内角和的内容,激发学生深厚的学习兴趣和求知欲望,快速的进入学习高潮。

(二)自主探究,感受新知

首先让学生画几个不同类型的三角形。然后同桌互相量一量,算一算,三角形3个内角的和各是多少度?通过测量,学生可以发现三角形的内角和是180°。

接着我会提出一个问题是不是所有的三角形的内角和都是180°,如何进行验证你的结论呢?接下来我会让学生分小组讨论,针对学生出现的问题,我给予指导,讨论过后,请同学汇报,鼓励学生用自己的语言表达,无论学生回答的全面与否,都给予积极的评价,其他同学认真倾听后做出判断,进行补充,提高学生的注意力。

通过小组之间的讨论,引导学生采用剪拼的方法进行验证,先把一个三角形的三个角剪下来,再拼一拼,拼成一个平角。

最后引导学生总结出三角形的内角和是180°。

以上教学活动采用让学生主动探索、小组合作交流的学习方式,使学生充分经历数学学习的全过程,体现以生为本的教学理念。学生在全程参与中不仅掌握新知发展能力培养的推理能力,又锻炼学生的语言表达能力和沟通能力,同时让学生体验数学与生活的紧密联系。

(三)巩固练习,强化知识

我利用小学生好胜心强的特点,以闯关的形式将课本的习题展现在多媒体上来巩固本节课所学的知识,这样设计能增加数学的趣味性,激发学生的学习兴趣,并查看他们知识的掌握情况。

(四)课堂小结

我将此环节分为两部分。第一部分是以学生为主体的知识性总结,让学生畅谈本节课的感受和收获,及时了解学生的学习情况和情感体验。第二部分是以教师为主体的情感性总结,我会对学生的表现予以表扬和激励,激发学生的学习兴趣,增强学习自信心。

(五)布置作业

针对学生的年龄特点,我会让学生在课下和家长交流今天的收获和感受,从而让家长了解学生在校的学习情况,并促进学生与家长的沟通。

说板书设计

一个好的板书应该是简洁明了整洁美观,重难点突出,能够对学生理解本节知识有一定的强化作用,因此我的板书是这样设计的。

以上就是我的全部说课,感谢各位老师的聆听!(鞠躬)

三角形内角和说课稿 篇7

各位老师:

下午好!

今天我们相聚在云周小学,共同行走在“生本”课堂的道路上。作为一名新教师,我也是抱着一种学习的心态来评课。应老师的这节《三角形内角和》,无论是他的设计,还是他对课的演绎,都充分体现了“以生为本”的理念。

这节课有以下几点值得我们去探讨:

一、学生的起点在哪里?

既然是生本课堂,那我们在备课之前,就要做到备学生,找起点。新课导入时,应老师花了一些时间复习三角形的分类和平角的知识,充分唤醒学生对三角形的认知,分类是为了抓住三角形的本质,缩小验证时选材的范围,而三个角拼成一个平角的练习,则为学生之后的验证搭好一个脚手架,降低他们学习的难度。但从课堂上来看,部分学生已经知道三角形内角和是180°,而且当出示平角那道题时,学生立刻说出180°是三角形内角和,而没有想到平角,这需要我们来反思这个环节的必要性。为什么学生会联想到内角和呢?我想可能是应老师在此之前询问了:“三角形有几个角?如果告诉你两个角,会求第三个角吗?”同样是为了复习,却产生了负迁移,反而没有达成预定的效果。再此之后又介绍“内角”等概念,这样难免有回课嫌疑。课堂选材要有取舍,我觉得这个环节可以删除。

二、既然量正确了,为什么还要拼?

有位老师说过:“数学老师和语文老师就是不一样,语文老师会发散,将一句简单的话复杂化;而数学老师会收敛,将复杂的例题、方法融汇成一句话。”所以数学课上必须让学生亲身经历知识的发展过程。在探究过程中,应老师放手让学生想方法验证猜想,学生首先会想到量出内角并相加,从反馈来看,学生量得的结果都是180°,既然得到想要的'结果了,再拼不是多此一举了吗?课堂上应老师也对学生的精确结果赶到意外,究竟量角的误差在哪里?

学生的心里总是不敢犯错的,这就会让很多数据失真。其实误差不仅仅只是存在于内角总和,还存在于每个内角的度数。课堂反馈上,对于同样的锐角,学生量出了“60°,40°,80°和55°,45°,80°”同样一个三角形,为什么内角度数会有所不同,此时通过对比,让学生明白量角时有误差,容易改变角度,看来量不是最准确的方法,而撕角拼角则不会改变它的大小。我想这就是我们为什么将力气花在剪拼法上了。

三、如何凸显内角和的本质?

通过各种方法的验证,我们知道了三角形的内角和是180°,难道点到即止吗?应老师巧妙借助几何画板,改变三角形的形状和大小,并引导学生观察什么变了,什么不变?这一简单的演示却寓意深远,无论形状大小如何改变,三角形内角和永远是180°,这也从另一个角度说明了三角形为什么具有稳定性,只要确定两个角,第三个角永远的唯一的。结论只是静态的文字,而课件是动态的演示,这种动静结合的美渲染了我们的眼球,同时也凸显了内角和的本质,让结论更具说服力。

四、练习设计的创新点在哪里?

练习是一节课的精髓,这节课的练习主要分三层,一算二辨三延伸。应老师在练习的设计上很注重一材多用,而且非常有坡度性,这也是本节课最大的亮点。在“只知道一个角”的环节中,应老师设计了只露出一个70°角的等腰三角形,求另两个角。大多数学生只想到一种情况后,便沾沾自喜,不会更深入思考问题,因为在学生潜意识中总认为正确答案只有一个。这也给了我们一个启示,关注答案,更要关注学生解题的意识,引导学生从多维角度思考问题。

这里我有一个的想法,这个想法也来源于作业本的习题。能不能把70°角改成40°,当学生算出答案后,询问学生,如果按角分,这是一个什么三角形?沟通按角分和按边分三角形的横向联系,在练习中温故而知新。再设计已知一个角是140°的等腰三角形的练习,打破学生的思维定势,并不是所有等腰三角形都有两种可能。之后再询问:“一个角都不知道,如何求内角。”让练习更具层次性。

应老师这节课还有很多值得我们学习的地方,比如应老师自如的教态、亲切的语言让学生倍感温暖;精心准备的教具让课堂不再沉闷;精彩的练习让知识落到实处。以上是我对这节课一些不成熟的想法,希望各位老师给予批评和指正。

三角形内角和说课稿 篇8

一、说教材

1、说课内容

今天我说课的内容是人教版九年义务教育小学数学四年级下册第五单元第67页的《三角形的内角和》。

2、教材分析

《三角形的内角和》是探索型的教材。是在学生学习了三角形、长方形等基本图形,以及角的度量、三角形的特征、分类的基础上进行教学的,学生对这一知识的理解和掌握又将为进一步学习几何知识打下坚实的基础。

教材的知识它是分成3个部分来呈现的。第一部分是让学生通过量一量、算一算,初步感知三角形的内角和是180°;第二部分是通过拼角的实验来探究并归纳三角形内角和的规律,第三部分是运用规律、解决问题。教材这样编排由发现问题,到验证问题,再到运用规律,充分体现了知识结构的有序性和强烈的数学建模思想,既符合四年级学生的认知规律,又突出了本课教学的重点。

3、教学目标

根据小学数学教学大纲对四年级学生的具体要求,结合教材特点及学生年龄特征,将本节课的目标制定为以下几点:

知识与技能:学生动手操作,在猜想后通过量、剪、拼、折的方法,探索并发现"三角形内角和等于180度"的规律。

过程与方法:在操作实验中,让学生感受图形的转化过程及数学建模思想,初步培养学生的空间思维观念。解决问题:在运用知识解决问题的过程中,感受所学知识的重要性,初步培养学生的应用意识。

情感态度:通过各种实验活动,激发学习兴趣,体验学习成功感,并在教学中,感受生活与数学的密切联系。

4、教学重点难点

根据本节课的教学目标及对编者意图的理解。将运用各种实验方法探究三角形内角和为180度的过程并掌握规律,运用规律解决实际问题确定为本节课的教学重点。而同时学生难以理解不易掌握的探究规律的全过程则是本节课的教学难点。

5、教学具准备

每个4人小组准备三个不同的三角形(锐角三角形、钝角三角形、直角三角形的纸片一个,且要求大小不一)、实验报告单一份;量角器、白板。

二、说教法学法我要说的第二块是教法学法。

新课程标准的基本理念就是要让学生"人人学有价值的数学"。强调"教学要从学生已有的经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程"。

因此,我运用猜想验证,自主探究,动手操作,直观演示的教学法,让学生大胆猜想,自主探索三角形的内角和是多少度?再通过测量、拼折、验证等方式让学生确定三角形内角的度数和。这样,既培养了学生的观察能力和归纳概括能力,又体现了学生动手实践、合作交流,自主探索的学习方式。

在整个教学设计上力求充分体现"以学生发展为本"教育理念,将教学思路拟定为"故事设疑导入--猜想验证{自主探究}--巩固新知—数学文化—课堂总结",努力构建探索型的课堂教学模式。当然,一堂课的效果如何,还要看课堂结构是否合理。接下来,我就来说说我的教学程序设计。

三、说教学流程

根据我对教材的把握和对学情的了解,设计了5个环节展开教学。

四、创设情境,发现问题

一天,图形王国举行了一场盛大的宴会,正在大家聊得热火朝天的时候,突然下面传来了一阵吵闹声,图形王国的国王“点”来到争吵的地方一看,原来是三角形家族在争吵,只听一个钝角三角形说:“我有一个内角是最大的,所以我的三角和也是最大的。”,这时候一个锐角三角形说“我长得比你大,所以说我的内角和才是最大的!”,这时,一个直角三角形弱弱的说了一句:“谁长的大,谁的内角和就最大,这不公平!!!”,于是他们就让国王来评理,听到这里国王的也糊涂了:“你们说的都是什么呀?什么是三角形的内角,什么是三角形的内角和呀?”

五、合作交流,引导探究

(1)学生自然想到要量出三角形每个角的度数就能够求出三角形的内角和,从而证明三角形的内角和与三角形的大小和形状没有关系都接近180度。

(2)教师要组织学生进行小组合作每人用量角器量出一种三角形(锐角三角形、钝角三角形、直角三角形)的三个内角并计算出它们的总和是多少?

(3)记录小组测量结果及讨论结果

实验名称:三角形内角和

实验目的:探究三角形内角和是多少度。

实验材料:量角器,锐角三角形纸片,直角三角形纸片,钝角三角形纸片。

(4)学生汇报量的方法,师请同学评价这种方法。

师小结:直接量的方法挺好,虽然测量有误差,不准,但我们能知道,三角形的内角和只能在180°左右,究竟是不是一定就是180度呢,谁还有别的方法?

(一)剪拼法

学生汇报后师小结:能想到这个方法不简单,拼成的看起来像平角,到底是不是平角呢,我们一起来试试看。(教师和学生剪一剪、拼一拼)

师:把三角形的三个内角凑到了一起,拼成了一个大角,角的两条边是不是在一条直线上呢?看起来挺象的,但在操作的过程中难免会产生误差,有时会差一点点,谁还有别的方法确定三角形的内角和一定是180°?

(二)折拼法

学生汇报后师小结:我们要研究三角形的内角和,实际上就是想办法把三角形的三个内角凑到一起,像剪和折的方法,看三个内角拼到一起是不是180度,都是借助我们学过的平角解决的问题。

这三种方法都不错,在操作的过程中,有时会有误差,不太有说服力。想一想,你还能不能借助我们学过的哪种图形,想办法说明三角形的内角和一定是180度?

(三)演绎推理法

(借助学过的长方形,把一个长方形沿对角线分成两个三角形。)

师:你认为这种方法好不好?我们看看是不是这么回事。

(演示课件:两个完全相同的三角形内角和等于360°,一个三角形内角和等于180°)

师小结:这种方法避免了在剪拼过程中由于操作出现的误差,非常准确的说明了三角形的内角和一定是180度。

(学生通过小组合作的方式学到方法,分享经验,更重要的是领悟到科学研究问题的方法。就学生的.发展而言,探究的过程比探究获得的结论更有价值。)

学生用的方法会非常多,但它们的思维水平是不平行的。

直接测量法是学生利用已有的知识,测量出每个角的度数,再用加法求和;

拼角求和法,也就是间接剪拼和折拼这两种方法,都是通过拼成一个特殊角,也就是平角来解决问题;而演绎推理法,即把两个完全相同的三角形合二为一,或把长方形一分为二,成为两个三角形,这是更深层次的思考。

前两种方法是不完全归纳法,能使我们确定研究的范围只能是180度左右,而不可能是其他任意猜想的度数。最后一种方法具有演绎推理的色彩,把一个长方形沿对角线分成两个完全相同的三角形后,因为两个三角形的内角和是原来长方形的四个内角之和360度,所以一个三角形的内角和就是360°÷2=180°,这种方法从科学证明的角度阐述了三角形的内角和,它有严密性和精确性。

六、训练提高

使用课本两道题,以及以下习题

(1)∠1=35°∠2=47°∠3=()

(2)∠1=50°∠2=40°∠3=()

(3)∠1=20°∠2=45°∠3=()

按着难易程度逐渐提高,巩固新知。

七、数学文化

帕斯卡(BlaisePascal,1623~1662),法国数学家、物理学家、近代概率论的奠基者。早在300多年前这位法国著名的科学家就已经发现了任何三角形的内角和是180度,而他当时才12岁。

八、课堂总结

我们用三角形内角和的知识知道了六边形内角和,那么五边形、七边形……这些多边形的内角和是多少度?有没有什么规律可循,你能用学到的知识和方法去探究问题,相信你还会有一些精彩的发现。

九、反思

整节课都在比较愉快的氛围中展开的,但在小组合作中因为要求不够明确,导致在合作中出现了问题,不过好在由于我给孩子们足够的时间,他们能说出:所有三角形都是180度,证明孩子们是学会了的。所以,如果你给孩子足够的时间,他们会给你意想不到的惊喜。

三角形内角和说课稿 篇9

一、说教材

《三角形的内角和》是人教版小学四年级下册的内容,“三角形的内角和”是三角形的一个重要性质,是“空间与图形”领域的重要内容之一,学好它有助于学生理解三角形内角之间的关系,也是进一步学习几何的基础。

二、说学情

本节课的教学是在学生已经认识了三角形、平角,学会测量角的度数及三角形的分类、已具备一定的探究经验和技能的基础上探索和发现三角形内角和等于180度,为理解三角形三个内角的关系以及在今后学习多边形内角和打下基础。

三、说教学目标

根据教材的特点,我制定出本节课的三维目标分别是:

1、通过测量、撕拼、折叠等方法,探索和发现三角形内角和是180°。能运用新知识解决问题。

2、在操作活动中,培养学生的合作意识、动手实践能力,发展学生的空间观念,培养学生自主探究能力。

3、激发学生主动学习数学的兴趣,体验知识的形成过程,实现自主发展。

四、说教学重点:

探究和发现三角形内角和是180°

五.说教学难点:

用不同方法探究、验证三角形的内角和是180°

六.说教学准备

课件、学生准备不同类型的三角形各一个,长方形或正方形、剪刀、量角器。

七、说教法学法

这节课如果作为一般的讲授课教学,其实说来很容易,只需要告诉学生三角形的内角和是180度,学生记住这个结论就可以直接进行练习了。显然这种教学设计不符合新的教学理念 ,《新课程改革》指出:教师要从知识的传授者向学生学习活动的组织者引导者合作者转变,为了将这节课的目标真正的落到实处,我把这节课定性为“开放型探究课”,开展了一系列的数学探究活动,让学生在探究活动中亲身去体验知识的形成过程,从而实现自主发展。所以本节课我主要采用了以下几种教学方法:

(1)、引导学生在合作中学习数学。例如:分小组测量三角形每个内角的度数并算出它们的总和。

(2)、引导学生在探究中学习数学。例如:当同学们无法判断大小三角形的內角和谁大谁小时

,自己想办法进一步探究.

(3)、引导学生在探究中完成归纳推理过程。例如:通过拼一拼、折一折、分一分等方法层层推进,这样由普通到特殊再到一般的推理过程.

(4)、引导学生在归纳推理的基础上实现知识迁移。例如:当学生探究三角形的内角和之后,引导学生利用本节课所学知识进一步探究多边形的内角和。

八、说教学流程

学生的学习过程是在其原有认知基础上的主动建构,因此我依据学生的认知规律将教学过程分为以下4个环节:

1、创设情景,以情激趣

首先上课一开始,我利用多媒体出示大小两个三角形为比谁的内角和大而争吵,让正方形来判断谁大谁小的教学情景,富有挑战性,充满了浓浓的吸引力,学生的好奇心好胜心让他们产生一种想立即判断出谁大谁小的强烈愿望,激发了学生的求知欲。为了加深对内角和意义认识和理解我把正方形巧妙的融入了情景中,为后来探究三角形的内角和度数做了铺垫。

2、 合作交流

探究新知

这一环节的设计我是分4部分完成的:

(1).量一量

我紧紧抓住小学生强烈的好奇心,先引导他们用量角器量一量的方法去探究比较大小三角形的内角和,可能会出现大于180度、180度或小于180度不同的结果。在交流汇报的结果时会发现答案不统一,无法判断大小三角形内角和谁大谁小的问题。此时学生心中产生了更大的疑惑,“三角形的内角和到底是多少度?谁的答案正确呢?”这一思维的碰撞,再次激起学生的学习探究热情,自主产生探究欲望,强烈的求知欲和好胜心让学生跃跃欲试,此时我顺水推舟,引导他们用拼一拼、折一折等不同的方法探究不同的三角形的内角和是多少度。

(2)、拼一拼、折一折

学生已经学习了三角形有关知识,已具备一定的探究经验和技能。所以在自主探究和验证三角形的内角和是180

度时,我充分调动学生学习的积极性,挖掘他们的学习潜力,给他们提供充分自主探究和交流的时间和空间。引导他们利用手中的学具自己去研究,不做任何拼折方法的提示,不局限学生的思维方式,完全放手,选择自己喜欢的方法探究,同学们可能会用不同的方法进行剪拼、折拼,对他们的探究精神我都予以表扬和肯定。

(3).得出结论、加深内化

学生亲身经历探索、实验、发现、讨论、交流、验证等一系列的数学活动后,体会到:这些三角形的内角和是相等的。都是180度,并自主得出结论:三角形的内角和是180度。然后引导他们:用科学、简练的数学语言表述探究方法学生汇报并演示三角形内角和180度探究过程。并借助多媒体在大屏幕上演示其中几种基本的剪拼、折拼方法。学生通过动口表述,动手演示,观看验证、加深了他们对三角形内角和是180度的直观理解,更加深了对知识的内化。

(4).揭示课题、解决问题

在学生得出三角形的内角和是180度这一瓜熟蒂落,水到渠成的时候,我出示了本节课的课题。继而让学生对大小三角形内角和谁大谁小的问题作出判断:他们说的都不对,这两个三角形的内角和都是

180度。在这个环节中,我自始至终充当教学研究的组织者,引导者,参与者。前后组织了几次自主探究活动,让学生在保持高度学习热情与欲望的探究过程中,始终以愉悦的心情亲身经历和体验知识的形成过程。培养了学生的探究能力、分析思维能力,激发了他们的创新意识、参与意识,体验成功的同时掌握和体会数学的学习方法,初步感知数学知识的科学性和严密性。在学生在探究中,实现自主体验,获得自主发展。

3、运用新知、解决问题

本环节我设计了以下几种题型:1、推算题,2、辨析,3、思考题,4、拓展题,这几种题型由简单到复杂,巩固了这节课学到的知识,也解决了一些实际的问题,最后一道实践活动让学生根据三角形的内角和探索经验去探索多边形的内角和,对知识进行了迁移,加深了知识的内化,更是学生通过自主体验获得知识自我建构的升华。

4、了解历史 、全课小结

这一环节我利用数学文化给学生介绍三角形的内角和180度的历史,旨在使学生了解数学知识的博大精深,领悟数学的学习方法,同时也是对本节课三角形的内角和是180度这一知识点作出小结。通过谈感想,增强学生学习数学知识的信心,也是对学生学习所提出的希望:对待学习要有不断探索和创新的精神,只有亲身经历了知识的形成过程,学习效率才会更高!