返回首页
文学网 > 短文 > 教学教案 > 正文

《圆柱的表面积》教案

2025/10/01教学教案

文学网整理的《圆柱的表面积》教案(精选8篇),供大家参考,希望能给您提供帮助。

《圆柱的表面积》教案 篇1

教学目标:

1、会正确计算圆柱的侧面积和表面积,能解决一些有关实际生活的问题。

2、培养学生良好的空间观念和解决简单的实际问题的能力。

教学重点:

运用所学的知识解决简单的实际问题。

教学难点:

运用所学的知识解决简单的实际问题。

教学过程:

一、复习

1、圆柱的侧面积怎么求?(圆柱的侧面积=底面周长×高)

2、圆柱的表面积怎么求?(圆柱的表面积=圆柱的侧面积+底面积×2)

3、练习二第14题:根据已知条件求出圆柱的侧面积和表面积。(第②题已知圆柱的底面周长,对于求侧面积较有利。但在求底面积时,要先应用C÷π÷2来求出圆柱的底面半径)

二、实际应用

1、练习二第13题

(1)复习长方体、正方体的表面积公式:

长方体的表面积=(长×宽+长×高+宽×高)×2

正方体的表面积=棱长×棱长×6

(2)学生独立完成第13题:计算长方体、正方体、圆柱体的表面积,并指名板演。

2、练习二第7题

(1)用教具辅助,引导学生思考:前轮转动一周,压路面的面积是指什么?(通过圆柱教具的直观演示,使学生看到所压路面的面积就是前轮的侧面积)

(2)学生独立完成这道题,集体订正。

3、练习二第9题

(1)学生通过读题理解题意,思考“抹水泥的部分”是指哪几个面?(侧面和下底面,也就是只有一个底面积)

(2)指名板演,其他学生独立完成于课堂练习本上。

4、练习二第16题

(1)学生读题理解题意后尝试独立解题。

(2)集体评讲,让学生理解计算“制作中间的轴需要多大的硬纸板”,就是计算硬纸轴的侧面积,卫生纸的宽度就是硬纸板的`高度。

5、练习二第19题

(1)学生小组讨论:可以漆色的面有哪些?

(2)通过教具演示,使学生明白圆柱及长方体表面被遮住的部分刚好是圆柱的三个底面积。因此,计算油漆的面积就是计算长方体表面积与圆柱侧面积之和减去圆柱的一个底面积。

(3)提醒学生将计算结果化成以平方米为单位的数,并可根据实际情况保留近似数。

三、布置作业

练习二第8、10、15、17、18及20题完成在作业本上。

板书: 圆柱的侧面积=底面周长×高

圆柱的表面积=圆柱的侧面积+底面积×2

长方体的表面积=(长×宽+长×高+宽×高)×2

正方体的表面积=棱长×棱长×6

教学反思:

《圆柱的表面积》教案 篇2

一、教学目标

【知识与技能】

结合教学用具和学生已有认知,探索圆柱表面积的计算方法,能正确计算圆柱的表面积和侧面积,并根据公式解决实际问题。

【过程与方法】

通过想象、操作等活动,知道圆柱侧面展开图是长方形的同时,熟记表面积的计算公式,发展空间观念。

【情感态度与价值观】

能根据具体情境,借助圆柱表面积的计算方法解决生活中的一些实际问题,体会数学与实际生活的密切联系。

二、教学重难点

【教学重点】

圆柱表面积的计算方法以及在生活中的应用。

【教学难点】

圆柱表面积的计算方法在生活中的应用。

三、教学过程

(一)导入新课

师:在前面的学习中,我们已经认识了圆柱,并且知道了生活中有很多物体的形状是圆柱。大家来看,这个圆柱形状的物体。它的制作需要一定的材料(出示一个茶叶盒)请同学们想一想,要“制作这样一个茶叶盒需要多少材料”,实际上是在求圆柱的什么?(边演示边讲解)

(二)生成原理

(1)介绍圆柱的侧面积、底面积和表面积

师生活动:要求“制作茶叶盒所需的材料”实际上是求圆柱的侧面积和两个底面面积(边演示边说),我们把圆柱侧面的面积叫做圆柱的侧面积,把圆柱底面的面积叫做圆柱的底面积,圆柱的侧面积加上两个底面的面积叫做圆柱的表面积。

(2)创疑激趣

师:我们知道,圆柱的底面是圆,我们已经掌握了圆的面积,可是圆柱的侧面是一个曲面,我们又该怎么求它的面积呢?

(3)小组合作交流

师:请同学们想一想,我们能不能把圆柱的侧面转化成所学过的图形来求侧面积?(小组合作探究结合上节课所学的知识和圆柱的'特征研究)ppt展示

小组汇报:圆柱的侧面积就等于长方形的面积,长方形的长等于圆柱底面的周长,宽等于圆柱的高,因此圆柱的侧面积也就等于圆柱的底面周长乘以高。

(4)学会计算圆柱的表面积

师:我们已经会求圆柱的侧面积,那圆柱的表面积呢?(让学生回答,教师板书求表面积的算式,并板书课题“圆柱的表面积”)

师生活动:用字母表示侧面积和底面积的话,该如何表示圆柱的表面积。

(三)深化原理

圆柱的表面积是圆柱的侧面积加上两个底面面积之和。如果圆柱只有一个底面,它的表面积则是侧面积和一个底面积之和。如水桶。

(四)应用原理

如果给圆柱形笔筒侧面裹一层彩纸,笔筒底面半径是5cm,高是10cm。那么想想得准备多少彩纸?

(五)课堂小结

师:今天收获了哪些知识?能不能用今天所学的知识制作一个常用的学习用品?能否设计一个笔筒?在设计过程中需要解决哪些问题?

生:测量、确定笔筒的大小

师:如何确定?

生:确定底面半径,还有笔筒的高

师:课后利用所学知识给自己设计一个笔筒,并做一下“做一做”。

四、板书设计

《圆柱的表面积》教案 篇3

教学目标

1、使学生理解圆柱体侧面积和表面积的含义,掌握计算方法,并能正确计算圆柱体侧面积和表面积。

2、使学生在数学学习活动中获得成功的体验,建立自信心。

教学重点

表面积的计算。

教学难点

侧面积的含义与计算方法。

教学关键利用教具,弄清侧面积与圆的关系。

教具准备圆柱侧面展开教具。

教学方法操作法。

教学过程

旧知铺垫1、口算。

3.1434100.5670.820

2、长方体表面积。12㎝

(1)长方体的'表面积指的是什么?8㎝

(2)怎样计算长方体的表面积?20㎝

探索新知1、揭示并板书课题。

2、教学例3.

(1)你们知道圆柱体的表面积指的是什么吗?

(说一说、摸一摸)

(2)你们想应该怎样计算圆柱体的表面积?

(学生说明、教师演示)

板书结论:圆柱体的表面积=圆柱体的侧面积+2个底面的面积

(3)圆柱体的底面积和侧面积会计算吗?

(学生说明、教师演示)

板书推导过程。

3、尝试练习。

(1)求侧面积。

a、C=2.5dm,h=0.6dm。

b、d=8cm,h=12cm。

(2)求表面积。

a、S底=40c㎡,S侧=25c㎡。

b、r=2dm,h=5dm。

4、课堂小结。

巩固练习完成练习2的第5、6题。

布置作业完成练习2的第7、8题。

《圆柱的表面积》教案 篇4

【教学内容】

圆柱的表面积(1)(教材第21页例3)。

【教学目标】

1、理解圆柱的表面积的意义。

2、探索并掌握圆柱的侧面积和表面积的计算方法,会正确地计算圆柱的侧面积和表面积。

【重点难点】

1、掌握圆柱的侧面积和表面积的计算方法。

2、理解圆柱的底面半径(直径)及圆柱的高和圆柱侧面的长、宽之间的关系。

【教学准备】

多媒体课件和圆柱体模型。

【复习导入】

1、复习引入。

指名学生说出圆柱的特征。

2、口头回答下面的问题。

(1)一个圆形花池,直径是5m,周长是多少?

(2)长方形的面积怎样计算?

板书:长方形的面积=长×宽。

【新课讲授】

1、教师出示圆柱形实物,师生共同研究圆柱的侧面积。

师:圆柱的侧面展开是一个什么图形?

生:长方形。

师:那么圆柱的侧面积与展开后的长方形的面积是什么关系?待学生回答后,教师板书:圆柱的侧面积=长方形的面积。

师:长方形的面积=长×宽,长相当于圆柱的什么?宽呢?由此可以得出什么?

教师待学生回答后接着板书“=圆柱的底面周长×高”,由此我们就找到了计算圆柱侧面积的方法。

2、教学例3。

(1)圆柱的表面积的含义。

教师:你们知道长方体、正方体的`表面积指什么?圆柱的表面积指的又是什么?

通过讨论、交流使学生明确:圆柱的表面积是指圆柱的侧面和两个底面的面积之和。

(2)计算圆柱的表面积。

①师:圆柱的表面展开后是什么样的?

组织学生将制作的圆柱模型展开,观察展开的面是由哪几部分组成的,并把它们都标出来。引导学生说出:圆柱的表面是由两个底面和一个侧面组成。

②组织学生自主探究、交流,该如何计算圆柱的表面积。指名发言,教师归纳:圆柱的表面积=圆柱的侧面积+两个底面积。

(3)巩固练习:教材第21页“做一做”。组织学生独立完成,请两名学生板演后集体订正。

答案:628cm2

【课堂作业】

完成教材第23页练习四的第2~6题。

第2题教师提醒学生用圆柱形的纸筒代替压路机前轮滚动一周,使学生看到所压路面的面积就是前轮的侧面积。

第3、4题是解决问题。先让学生弄清楚是求圆柱哪部分的面积,然后再计算,必要时,可通过教具或图形帮助学生直观理解。

第5题,对于有困难或争议大的,可用实物或模型直观演示。

第6题,是实际测量、计算用料的题目,可以分组进行测量和计算。

答案:

第2题:3、14×1、2×2=7、536(m2)

第3题:3、14×1、5×2、5=11、775(m2)

第4题:3、14×3×2+3、14×(3÷2)2=25、905(m2)

第6题:长方体:800cm2正方体:216dm2圆柱:533、8cm2

【课堂小结】

通过这节课的学习,你有哪些收获?

【课后作业】

完成练习册中本课时的练习。

第2课时圆柱的表面积(1)

《圆柱的表面积》教案 篇5

教材内容:

23-24页

教学目标:

1、进一步巩固圆柱侧面积、底面积、表面积的计算方法,体会这些计算方法的联系和区别。

2、引导学生运用所学的圆柱表面积的知识解决相关的实际问题。

教学重难点:

通过解决实际问题,加深学生对圆柱表面积计算方法的理解,培养学生灵活运用所学的知识解决实际问题的'能力,发展学生的空间观念。

教学具准备:

与练习六中的练习相关的图片。

教学过程:

一、复习引入

1、什么是圆柱的表面积?包括哪几个部分?怎么求圆柱的表面积?其中圆柱的底面积怎么算?侧面积呢?

2、揭示要求:这节课,我们要运用所学的有关知识,解决生活中的相关问题,希望通过问题的解决,来加深对圆柱表面积的认识。

二、基本练习

1、出示练习六第3题,理解表格意思。

2、第一行中,已知什么?怎么算出这个圆柱的侧面积、底面积和表面积?

各自计算,算后填写在书中表格里,再交流方法和得数。

3、第二行中,已知什么?怎么算出这个圆柱的侧面积、底面积和表面积?

各自计算,算后填写在书中表格里,再交流方法和得数。

4、如果已知一个圆柱的底面周长是6.28分米,高是3分米,怎么算出这个圆柱的侧面积、底面积和表面积?

各自计算,算后交流方法和得数。

三、综合练习

1、完成练习六第4题。

⑴讨论:求做这个通风管要多大的铁皮,实际上是算哪个面的面积?为什么?

⑵各自练习后交流算法。

2、完成练习六第5题。

⑴讨论:需要糊彩纸的面是什么?要求彩纸的面积就是算圆柱的哪几个面积?为什么?

⑵各自练习后交流算法和结果。

3、讨论练习六第7题。

⑴出示“博士帽”问:认识它吗?什么样的人可以拥有博士帽?

⑵看看,这个博士帽是怎么做成的,包括哪几个部分?

⑶出示条件:这个博士帽上面是边长30厘米的正方形,下面的底面直径16厘米,高为10厘米的圆柱。

你能算出,做一顶这样的博士帽需要多少平方分米的黑色卡纸?

⑷各自计算,算后交流算法和结果。

⑸如果要做10顶呢?怎么算?

3、讨论练习六第8题。

⑴出示题目,让学生读题,理解题目意思。

⑵讨论:塑料花分布在这个花柱的哪几个面上?

要算这根花柱上有多少朵花,需要先算出哪几个面的面积?分别怎么算?

算出上面和侧面的面积后,怎么算?为什么?

4、讨论解答练习六第9题。

⑴出示题目,读题,理解题目意思。

⑵尝试列式。

⑶交流算法:

这题先算什么?再算什么?最后算什么?

怎么算一根柱子的侧面积的?为什么不要算底面积?

四、全课

五、作业:练习六6、7、8、9题。

《圆柱的表面积》教案 篇6

一、学习目标:

1、学习圆柱的侧面积和表面积的含义,并掌握圆柱侧面积和表面积的计算方法。

2、会正确计算圆柱的表面积和侧面积,能解决一些有关实际生活的问题。

二、学习重点:

掌握圆柱侧面积和表面积的计算方法。

三、学习难点:

运用所学的知识解决简单的实际问题。

四、学习过程:

(一)、旧知复习

1、圆柱有几个面?分别是、和。

2、底面是形,它的面积=。

3、侧面是一个曲面,沿着它的.高剪开,展开后得到一个形。它的长等于圆柱的,宽等于圆柱的。

4、一个圆形水池,直径是5米,沿着水池走一圈是多少米?

(二)列式为

1、圆柱的侧面积

(1)圆柱的侧面积指的是什么?

(2)圆柱的侧面积的计算方法:

圆柱的侧面展开后是一个长方形,这个长方形的面积就等于圆柱的侧面积。因为长方形的面积=,所以圆柱的侧面积=。

(3)侧面积的练习

求下面各圆柱的侧面积。

①底面周长是1.6m,高0.7m。 ②底面半径是3.2dm,高5dm。

小结:要计算圆柱的侧面积,必须知道圆柱的和这两个条件,有时题里只给出直径或半径,底面周长这个条件可以通过计算得到,在解题前要注意看清题意再列式。

2、圆柱的表面积

(1)圆柱的表面是由和组成。

(2)圆柱的表面积的计算方法:

圆柱的表面积=

(3)圆柱的表面积练习题

一顶圆柱形厨师帽,高28cm,帽顶直径是20cm,做这样一顶帽子需要用多少面料?(得数保留整十平方厘米)

分析,理解题意:求需要用多少面料,就是求帽子的。需要注意的是厨师帽没有下底面,说明它只有个底面。

列式计算:

①帽子的侧面积=

②帽顶的面积=

③这顶帽子需要用面料=

小结:在实际应用中计算圆柱形物体的表面积,要根据实际情况计算各部分的面积。如计算烟囱用铁皮只求一个侧面积;水桶用铁皮是侧面积+一个底面积;油桶用铁皮是侧面积+2个底面积。求用料多少,一般采用进一法取值,以保证原材料够用。

3、巩固练习

一个圆柱底面半径是2dm,高是4.5dm,求它的表面积。

4、总结:通过这节课的学习,你掌握了什么知识?

圆柱的侧面积

圆柱的表面积

《圆柱的表面积》教案 篇7

教材内容:23-24页

教学目标:

1、进一步巩固圆柱侧面积、底面积、表面积的计算方法,体会这些计算方法的联系和区别。

2、引导学生运用所学的圆柱表面积的知识解决相关的实际问题。

教学重难点:

通过解决实际问题,加深学生对圆柱表面积计算方法的理解,培养学生灵活运用所学的知识解决实际问题的能力,发展学生的空间观念。

教学具准备:

与练习六中的练习相关的图片。

教学过程:

一、复习引入

1、什么是圆柱的表面积?包括哪几个部分?怎么求圆柱的表面积?其中圆柱的底面积怎么算?侧面积呢?

2、揭示要求:这节课,我们要运用所学的有关知识,解决生活中的相关问题,希望通过问题的.解决,来加深对圆柱表面积的认识。

二、基本练习

1、出示练习六第3题,理解表格意思。

2、第一行中,已知什么?怎么算出这个圆柱的侧面积、底面积和表面积?

各自计算,算后填写在书中表格里,再交流方法和得数。

3、第二行中,已知什么?怎么算出这个圆柱的侧面积、底面积和表面积?

各自计算,算后填写在书中表格里,再交流方法和得数。

4、如果已知一个圆柱的底面周长是6.28分米,高是3分米,怎么算出这个圆柱的侧面积、底面积和表面积?

各自计算,算后交流方法和得数。

三、综合练习

1、完成练习六第4题。

⑴讨论:求做这个通风管要多大的铁皮,实际上是算哪个面的面积?为什么?

⑵各自练习后交流算法。

2、完成练习六第5题。

⑴讨论:需要糊彩纸的面是什么?要求彩纸的面积就是算圆柱的哪几个面积?为什么?

⑵各自练习后交流算法和结果。

3、讨论练习六第7题。

⑴出示“博士帽”问:认识它吗?什么样的人可以拥有博士帽?

⑵看看,这个博士帽是怎么做成的,包括哪几个部分?

⑶出示条件:这个博士帽上面是边长30厘米的正方形,下面的底面直径16厘米,高为10厘米的圆柱。

你能算出,做一顶这样的博士帽需要多少平方分米的黑色卡纸?

⑷各自计算,算后交流算法和结果。

⑸如果要做10顶呢?怎么算?

3、讨论练习六第8题。

⑴出示题目,让学生读题,理解题目意思。

⑵讨论:塑料花分布在这个花柱的哪几个面上?

要算这根花柱上有多少朵花,需要先算出哪几个面的面积?分别怎么算?

算出上面和侧面的面积后,怎么算?为什么?

4、讨论解答练习六第9题。

⑴出示题目,读题,理解题目意思。

⑵尝试列式。

⑶交流算法:

这题先算什么?再算什么?最后算什么?

怎么算一根柱子的侧面积的?为什么不要算底面积?

四、全课

五、作业:练习六6、7、8、9题。

《圆柱的表面积》教案 篇8

教学目标:

1、初步认识圆柱的基础上理解圆柱的侧面积和表面积的含义,掌握圆柱侧面积和表面积的计算方法,会正确计算圆柱的侧面积和表面积,能解决一些有关实际生活的问题。

2、学生良好的空间观念和解决简单的实际问题的能力。

3、通过实践操作,在学生理解圆柱侧面积和表面积的含义的同时,培养学生的理解能力和探索意识。

教学重点:

掌握圆柱侧面积和表面积的计算方法。

教学难点:

运用所学的知识解决简单的实际问题。

教学过程:

一、复习

1、指名学生说出圆柱的特征.

2、口头回答下面问题.(删掉)

(1)一个圆形花池,直径是5米,周长是多少?

(2)长方形的面积怎样计算?

板书:长方形的面积=长宽.

3、理解圆柱表面积的含义.

(1)让学生把自己制作的圆柱模型展开,观察一下,圆柱的表面由哪几个部分组成?(通过操作,使学生认识到:圆柱的表面由上下两个底面和侧面组成。)

(2)圆柱的表面积是指圆柱表面的面积,也就是圆柱的侧面积加上两个底面的面积。

公式:圆柱的表面积=圆柱的侧面积+底面积2

二、圆柱的侧面积。

1、圆柱面积的认识

(1)圆柱的侧面积,顾名思义,也就是圆柱侧面的'面积。

(2)出示圆柱的展开图:这个展开后的长方形的面积和圆柱的侧面积有什么关系呢?

(学生观察很容易看到这个长方形的面积等于圆柱的侧面积)

(3)那么,圆柱的侧面积应该怎样计算呢?(引导学生根据展开后的长方形的长和宽与圆柱底面周长和高的关系,可以知道:圆柱的侧面积=底面周长高)

2、侧面积练习:练习七第5题

(1)学生审题,回答下面的问题

① 这两道题分别已知什么,求什么?

② 计算结果要注意什么?

(2)指定一名学生板演,其他学生在练习本上做.教师行间巡视,注意发现学生计算中的错误,并及时纠正。

(3)小结:要计算圆柱的侧面积,必须知道圆柱底面周长和高这两个条件,有时题里只给出直径或半径,底面周长这个条件可以通过计算得到,在解题前要注意看清题意再列式。

《圆柱的表面积》教案(通用19篇)

作为一位兢兢业业的人民教师,就难以避免地要准备教案,教案是教材及大纲与课堂教学的纽带和桥梁。那么大家知道正规的教案是怎么写的吗?以下是小编为大家整理的《圆柱的表面积》教案,仅供参考,欢迎大家阅读。