返回首页
文学网 > 短文 > 教学教案 > 正文

《正比例反比例》教案

2025/10/07教学教案

文学网整理的《正比例反比例》教案(精选8篇),供大家参考,希望能给您提供帮助。

《正比例反比例》教案 篇1

教学目标:

1、使学生进一步认识正、反比例的意义,了解正反比例的区别和联系,更好的把握正、反比例概念的本质。

2、进一步加深学生对正、反比例意义的理解,使他们能够从整体上把握各种量之间的比例关系,能根据相关条件直接判断两种量成什么比例,提高判断成正比例、反比例量的能力。

教学重难点:进一步认识正、反比例的意义,能根据相关条件直接判断两种量成什么比例,提高判断成正比例、反比例量的能力。

教学准备 :实物投影

教学预设:

一、概念复习:

1、提问:怎样的两个量成正、反比例?

根据学生回答板书字母关系式。

二、书本练习:

1、第9题。

(1)观察每个表中的数据,讨论前三个问题。

要注意启发学生根据表数据的变化规律,写出相应的数量关系式,再进行判断。

(2)组织学生讨论第四个问题。

启发学生根据条件直接写出关系式,再根据关系式直接作出判断。

2、第10题。

(1)看图填写表格。

(2)求出这幅图的比例尺,再根据图像特点判断图上距离和实际距离成什么比例,也可以根据相关的计算结果作出判断。

要让学生认识到:同一幅地图的比例尺一定,所以这幅图的.图上距离和实际距离成正比例。

(3)启发学生运用有关比例尺的知识进行解答。

3、第11题。

填写表格,组织学生对两个问题进行比较,进一步突出成反比例量的特点。

4、第12题。

引导学生说说每题中的哪两种量是变化的,这两种量中,一种量变化,另一种量也随着变化,能不能用相应的数量关系式表示这种变化的规律。

5、第13题。

让学生小组进行讨论,教师指导有困难的学生。

三、补充练习

1、对比练习:判断下列说法是否正确。

(1)圆的周长和圆的半径成正比例。( )

(2)圆的面积和圆的半径成正比例。( )

(3)圆的面积和圆的半径的平方成正比例。( )

(4)圆的面积和圆的周长的平方成正比例。( )

(5)正方形的面积和边长成正比例。( )

(6)正方形的周长和边长成正比例。( )

(7)长方形的面积一定时,长和宽成反比例。( )

(8)长方形的周长一定时,长和宽成反比例。( )

(9)三角形的面积一定时,底和高成反比例。( )

(10)梯形的面积一定时,上底和下底的和与高成反比例。( )

《正比例反比例》教案 篇2

目标

1.结合具体的情境,体会生活中存在着大量相关联的变量;明白一个量变化,另一个量也会随着发生变化的特点。

2.让学生通过观察图表等活动,尝试着用自己的语言描述两个变量之间的关系。

3.培养学生认真观察的良好习惯,感受生活中处处有数学。重点找出变量并体会量之间存在着的关系。重点突破引导学生通过观察、分析,寻找表格、图象中变量之间的变化情况,掌握变量之间的关系。难点用语言描述两个变量之间的关系。难点突破掌握了变量之间的关系后,引导学生用合适的语言把这种关系表达出来。教法主要有讲解法、谈话法、引导发现法、以教促学法。学法通过动手实践、自主探究和合作交流的学习方式,理解具体情境中的各种变量之间的关系。

课前准备教师课件。学生调查自己从出生到现在的身高和体重变化情况。过程引入

1.同学们,你们从出生到现在,身高是如何变化的?先估计一下,再说一说?(引导学生交流与讨论。)

2.我们不但只有身高在变化,我们的体重也在变化,你们知道自己从出生到现在的体重变化情况吗?请个别学生说说自己出生到现在体重的变化情况。

3.我们知道从出生到现在,身高和体重都在随着年龄的增长而增长,也就是说身高和体重都是两个变化的量。今天这节课,我们就来认识变化的量。(板书课题:变化的量)

【设计意图】

通过让学生课前调查自己身高和体重的变化,引出课题,让学生感受到生活中存在着许多变化的量,引起学生探究这些变化的量的欲望。

探新(一)探究妙想的体重变化情况。

过渡:同学们,刚才我们调查了几名同学从出生到现在的身高和体重变化情况,淘气和笑笑也在调查妙想的体重变化情况。他们还画出了图表,我们一起去看看吧!课件出示教材第39页妙想体重变化情况的表格和图。

1.请同学们仔细观察表格和图,看看表格和图中都有哪些数学信息?(学生认真观察,寻找数学信息。)

2.提问:通过观察,你发现哪些量在发生变化?引导学生回答:妙想的年龄和体重在变化。

3.追问:妙想6周岁前的体重是如何随年龄的增长而变化的?

学生回答预测:

生A:妙想的体重随年龄的增长,越来越重。

生B:我发现妙想从出生到2周岁这段时间体重增长最快。

4.质疑:人的体重是不是随着年龄的增长而一直增长?

学生根据生活经验,可能会回答:这是不一定的,因为有的人的体重增长到一定时候,就停止增长了。老年人随年龄的增长,体重还会减少。

小结:人的年龄和体重是互相关联的两个量,人的体重随年龄的'变化而变化。

(二)探究骆驼的体温变化情况。

过渡:刚才,我们通过观察图表,分析了妙想从出生到6周岁前的体重变化情况。下面,我们继续来探究骆驼的体温变化情况,大家请看大屏幕。课件出示骆驼体温变化情况统计图,要求学生观察。

1.提问:表中横轴和纵轴分别表示什么?引导学生回答:纵轴表示温度,横轴表示时间。

2.追问:图中弯曲的线表示的是什么?引导学生回答:弯曲的线表示的是骆驼的体温在48小时内的变化情况。

3.再追问:同学们,通过观察,你们发现了哪些量在变化?引导学生观察后回答:温度和时间在变化。

4.请学生结合图表下面提出的问题,分析每个问题的答案。

(1)学生观察分析,教师巡视。

(2)小组交流,引导学生把自己找到的答案与同学进行交流,在小组内形成统一的意见,反馈汇报。

5.提问:通过刚才的分析,你们发现骆驼体温的变化有什么规律?引导学生回答:骆驼的体温随着时间的变化而变化,而且变化的周期是一天。

(三)寻找生活中变化的量。

过渡:同学们通过探究,了解了年龄和体重、温度和时间这些变化的量。其实在生活中,像这样的例子还有很多,你能找出一个量随着另一个量的变化而变化的例子吗?先想一想,再和同学互相交流。

1.学生思考回忆后,把找到的相关例子和同学交流。

2.教师指名说一说自己发现的生活中一个量随另一个量变化而变化的例子。汇报时,学生只要说的是两个相关联的变化的量,教师都应予以肯定。

【设计意图】充分利用教材的情境图,让学生在观察、分析、交流中体会到生活中存在着大量相关联的变量,我们可以利用图表等形式表示变量之间的关系。

巩固1.完成教材第40页“练一练”第1题。

(1)学生读题,明确题目要求。

(2)分析当底面积一定时,圆柱的体积与高之间的关系。

(3)指名汇报。学生回答预测:当圆柱的底面积等于10c㎡时,圆柱的体积随圆柱高的变化而变化,体积随高的增加而增加。

2.完成教材第40页“练一练”第2题。

(1)学生独立思考后,小组交流。

(2)全班汇报,集体订正。学生汇报预测:

(1)转动过程中,到达的最高点是18米,最低点是3米。

(2)转动第一圈的过程中,0至6分时高度在增加,6至12分时,高度在降低。

(3)到达最高点后,下一次再到达最高点需要经过12分钟。

3.完成教材第40页“练一练”第3题。

(1)学生独立思考,分析数量关系。

(2)引导学生尝试用字母表示出数量关系。

(3)小组交流后反馈汇报。引导学生回答:t=n÷7+3。

【设计意图】数学知识的巩固与深化,不仅靠感知,还要辅以灵活、有层次的练习。通过巩固拓展练习,不但使学生所学的知识进一步深化,而且使学生的思维在练习中得到发展,创新素质得到锤炼。小结通过本节课的学习,你有哪些收获?通过本节课的学习,我们了解了很多变化的量,如:年龄和体重是两个变化的量,时间和骆驼的体温是两个变化的量。反思本节课主要是感受变量之间的关系。

为了遵循“学习不是由教师向学生传递知识,而是学生自己建构知识的过程”这一理念,本节教学主要从以下几个方面来探索:

(1)以观察分析为主要手段,引导学生通过观察、分析,发现相关联的两种量之间的关系,从而体现学生学习的自主性,提高学生的观察能力;

(2)充分利用学生原有的知识以验,教学中,把学生原有的知识、经验作为新知的生长点,引导学生从原有知识、经验中“生长”出新的知识、经验;如让学生在理解相关联的两个变量的基础上,从生活中寻找相关联的量,激发学生对原有知识经验的回忆;

(3)加强学生之间的交流互动,在教学中,让学生在观察分析的基础上,通过小组交流、同伴交流等形式,互相合作,共同获取知识。对于初次接触函数知识的小学生来说,对量的理解还有一定的难度,教学中虽然作了努力,但有些学困生仍不能透彻地理解量的含义,这是本节课教学中的失误,在今后的教学中有待改进。

板书变化的量两个变量:

1.年龄和体重的变化;

2.时间和骆驼体温的变化。

《正比例反比例》教案 篇3

本单元在学生具有比和比例的知识,认识常见数量关系的基础上编排,通过对两个数量保持商一定或积一定的变化,理解正比例关系和反比例关系,渗透初步的函数思想。正比例和反比例历来是小学数学里的重要内容之一,与过去的教材相比,本单元进一步加强正、反比例的概念教学,突出正比例关系的图像及简单应用,重视正、反比例与现实生活的联系,淡化脱离现实背景判断比例关系,不安排应用正、反比例关系解决实际问题。全单元编排三道例题和一个练习,前两道例题都是关于正比例的,分别教学正比例的意义和图像,后一道例题教学反比例的知识。

1.抽象实际事例中的数量变化规律,形成正比例的概念。

例1让学生初步感知两种相关联的量以及成正比例的量的含义。列表呈现了一辆汽车行驶的路程和时间,通过写出几组对应的路程和时间的比并求比值,发现各个比的比值都是80,理解80是这辆汽车每小时行驶的千米数,由此得出数量关系路程/时间=速度(一定)。在数量关系中,路程比时间等于速度是旧知识,速度一定是这个问题情境里的规律,是正比例概念的生长点。教材先指出路程和时间是两种相关联的量,用时间变化,路程也随着变化具体解释两种量的相关联。再指出这辆汽车行驶的路程和时间的比的比值总是一定,可以说路程和时间成正比例,它们是成正比例的量,学生在这里首次感知了正比例关系。

试一试在另一组数量关系中继续感知正比例关系,购买铅笔数量和总价的表格里有三个空格,先计算买4枝、5枝、6枝这种铅笔的总价,让学生体会铅笔的单价每枝0。3元是不变的,总价是随着数量变化而变化的,总价与数量是两种相关联的量。然后依次回答其他三个问题,得出铅笔总价和数量成正比例的结论,并用式子总价/数量=单价(一定)作出解释。试一试的认知线索与例1相似,留给学生自主活动的空间比例1大,使学生对正比例关系的体验更深刻。

学生在上面两个实例中感知了正比例的具体含义,教材第63页要形成正比例的概念。抽象概括正比例的意义是概念形成的重要环节,也是发展数学思考的极好机会。首先用字母表示数量,每个实例里都有两个相关联的量,分别是路程和时间或者总价与数量,两个量的比的比值分别是速度和单价,因而用字母x和y表示两种相关联的量,用k表示它们的比值;然后把路程/时间=速度(一定)、总价/数量=单价(一定)表示成y/x=k(一定),并指出正比例关系可以用这个字母式子表示。用抽象的字母组成的式子表示正比例关系是认知难点,教学要联系两个实例,引导学生经历字母表示具体的数量?字母式子表示常见数量关系?字母式子表示正比例关系的过程,加强对式子y/x=k(一定)的理解。

练一练判断生产零件的数量和时间成不成正比例,是把正比例概念具体化,利用概念进行演绎推理。具体地说,是分析这个情境里的生产零件数量和所用时间的比的比值是否始终保持一定,如果具备y/x=k(一定)这种关系,两种相关联的量成正比例,否则就不成正比例。学生在第62页试一试里已经进行过这样的分析和判断,那时是依据连续的四个问题进行的,现在要求他们独立开展有条理的推理活动,进一步理解正比例的意义,掌握判断两种量成不成正比例的方法。练习十三第1~3题配合例1的教学,第3题判断正方形的周长与边长、面积与边长成不成正比例。可以根据表格里填的数据进行推理,因为周长与边长的比4/1、8/2、12/3、16/4的比值都是4,面积与边长的比1/1、4/2、9/3、16/4的比值不相等,所以正方形的周长与边长成正比例,面积与边长不成正比例。也可以根据正方形的周长公式和面积公式推理,从边长4=周长可以得到周长与边长的比的比值是确定的数4,即周长/边长=4(一定),所以正方形的周长与边长成正比例。从边长边长=面积可以知道,面积虽然随着边长的变化而变化,但是面积与边长的比的比值是变化的量,即面积/边长=边长,所以正方形的面积与边长不成正比例。前一种思考对问题进行具体的分析,适宜大多数学生的实际水平,也符合《标准》的要求。后一种思考没有利用数据信息,推理的难度较大,不必对学生提出这样的要求。教材设计这道题的意图是进一步使学生理解正比例的意义,突出正比例概念的内涵:两种相关联量的比的比值保持一定。

2.用图像直观表达正比例关系。

例2是按照《标准》的要求根据给出的有正比例关系的数据在有坐标系的方格纸上画图,并根据其中一个量的值估计另一个量的.值编排的,设计的三个问题体现了教学正比例图像的三个步骤。第一步认识图像上的点,按照A点表示1小时行80千米B点表示5小时行400千米说出其他各点的具体含义,体会各个点都表示汽车在某段时间所行驶的路程,也体会这些点是根据对应的时间与路程的数据在方格纸上画出来的。第二步认识图像的形状,从图中描出的点在一条直线上,体会正比例关系的图像是一条直线。了解正比例图像是直线对以后画图能起两点作用:一是画正比例关系的图像(如第64页练一练),可以根据提供的各组数据描出图像的许多个点,再依次连成直线;二是如果按正比例关系画出的点不在同一条直线上,表明画点出现了错误,应及时纠正。第三步应用图像,估计行驶时间所对应的路程或者行驶路程所用的时间。要指导学生利用画垂线或画平行线的技能,尽量使得数准确些。如估计2。5小时行驶的千米数,要在横轴上找到表示2。5小时的点,过这点画横轴的垂线,得到垂线与图像的交点,再过交点作纵轴的垂线,根据垂足在纵轴上的位置估计行驶的路程。

练习十三第4、5题配合例2的教学。判断实际问题里相关联的两种量成不成正比例有两种思路,一种是看画成的图像,如果图像是一条直线,那么两种量成正比例;如果图像不是一条直线,那么两种量不成正比例。另一种是根据正比例的意义,利用各组对应的数据写出比、求比值,从比值是否相等作出成不成正比例的判断。教学时要引导学生应用后一种思路,在判断活动中加强对概念的理解。

3.调动学生的积极性与数学活动经验,教学成反比例的量。

例3教学反比例的意义,安排的教学活动线索和例1十分相似。在表格里可以看到笔记本的单价在变化,购买的数量也在变化,而且每组相对应的单价和数量的乘积都是60,这不仅是算得的,还和题目里的用60元买笔记本相一致,因此用数量关系式单价数量=总价(一定)表示这个问题情境里两个变量的变化规律。在此基础上指出单价和数量是两种相关联的量,它们成反比例,是两个成反比例的量。试一试先把表格填写完整,在填表时体会工地要运的72吨水泥是确定的。然后思考三个问题,抓住每天运的吨数与需要的天数的乘积是多少,乘积表示什么数量以及问题情境的数量关系式,从每天运的吨数天数=运水泥的总吨数(一定),理解每天运的吨数和需要的天数成反比例。通过上面四个实例的研究,学生初步感知了反比例的含义,于是用字母x、y表示两种相关联的量,用k表示两个量的乘积,把反比例关系表示成xy=k(一定),形成反比例的概念。

学生认识正比例意义时的数学活动经验可以迁移到反比例意义的学习中来,教学时要给学生多提供一些独立思考和合作交流的机会。如让学生观察例3的表格、填写试一试的表格,发现表格里的变量,解释两个变量的相关联;让学生联系已有的数量关系,研究总价与数量、每天运的吨数与需要的天数的变化,通过计算发现总价总是60元,一共运水泥的吨数总是72;让学生写出单价、数量和总价,每天运的吨数、需要的天数和运水泥总数的数量关系式,说说总价一定、运水泥的总吨数一定的理由;让学生阅读教材第65页关于单价和数量成反比例的那段话,交流自己的理解和体会;让学生试着用字母x、y、k表示反比例关系

练习十三第6~8题配合例3的教学,重温认识反比例的过程,应用概念进行判断,从而加强对反比例的理解。第8题在方格纸上分别呈现了三个面积都是12平方厘米的长方形、三个周长都是14厘米的长方形,看图在表格里填出各个长方形的长与宽。前三个长方形的长乘宽分别是121=12、62=12、43=12,即长宽=面积(一定),得到的结论是长方形的面积一定,长与宽成反比例。后三个长方形的长乘宽分别是61=6、52=10、43=12,这些周长相等的长方形,长与宽的乘积不相等,所以长方形的周长一定,长与宽不成反比例。教学这道题要让学生经历得出结论的过程,强化对反比例概念的理解。第9~13题是综合练习,练习内容包括成正比例的量与成反比例的量的比较,成比例的量与不成比例的量的比较,比例尺与正比例关系,还要寻找生活中成正比例的量或成反比例的量的实例。编排这些练习,要通过比较与判断进一步使学生清晰地理解概念,掌握成正、反比例的量的变化规律;要联系正比例的概念体会比例尺的意义,形成新的认知结构;要体验生活中经常看到成正比例的量与成反比例的量,培养数学意识。

《正比例反比例》教案 篇4

目标

1.结合具体的情境,体会生活中存在着大量相关联的变量;明白一个量变化,另一个量也会随着发生变化的特点。

2.让学生通过观察图表等活动,尝试着用自己的语言描述两个变量之间的关系。

3.培养学生认真观察的良好习惯,感受生活中处处有数学。重点找出变量并体会量之间存在着的关系。重点突破引导学生通过观察、分析,寻找表格、图象中变量之间的变化情况,掌握变量之间的关系。难点用语言描述两个变量之间的关系。难点突破掌握了变量之间的关系后,引导学生用合适的语言把这种关系表达出来。教法主要有讲解法、谈话法、引导发现法、以教促学法。学法通过动手实践、自主探究和合作交流的学习方式,理解具体情境中的各种变量之间的关系。

课前准备教师课件。学生调查自己从出生到现在的身高和体重变化情况。过程引入

1.同学们,你们从出生到现在,身高是如何变化的?先估计一下,再说一说?(引导学生交流与讨论。)

2.我们不但只有身高在变化,我们的体重也在变化,你们知道自己从出生到现在的体重变化情况吗?请个别学生说说自己出生到现在体重的变化情况。

3.我们知道从出生到现在,身高和体重都在随着年龄的增长而增长,也就是说身高和体重都是两个变化的量。今天这节课,我们就来认识变化的量。(板书课题:变化的量)

【设计意图】

通过让学生课前调查自己身高和体重的变化,引出课题,让学生感受到生活中存在着许多变化的量,引起学生探究这些变化的量的欲望。

探新(一)探究妙想的体重变化情况。

过渡:同学们,刚才我们调查了几名同学从出生到现在的身高和体重变化情况,淘气和笑笑也在调查妙想的体重变化情况。他们还画出了图表,我们一起去看看吧!课件出示教材第39页妙想体重变化情况的表格和图。

1.请同学们仔细观察表格和图,看看表格和图中都有哪些数学信息?(学生认真观察,寻找数学信息。)

2.提问:通过观察,你发现哪些量在发生变化?引导学生回答:妙想的年龄和体重在变化。

3.追问:妙想6周岁前的体重是如何随年龄的增长而变化的.?

学生回答预测:

生A:妙想的体重随年龄的增长,越来越重。

生B:我发现妙想从出生到2周岁这段时间体重增长最快。

4.质疑:人的体重是不是随着年龄的增长而一直增长?

学生根据生活经验,可能会回答:这是不一定的,因为有的人的体重增长到一定时候,就停止增长了。老年人随年龄的增长,体重还会减少。

小结:人的年龄和体重是互相关联的两个量,人的体重随年龄的变化而变化。

(二)探究骆驼的体温变化情况。

过渡:刚才,我们通过观察图表,分析了妙想从出生到6周岁前的体重变化情况。下面,我们继续来探究骆驼的体温变化情况,大家请看大屏幕。课件出示骆驼体温变化情况统计图,要求学生观察。

1.提问:表中横轴和纵轴分别表示什么?引导学生回答:纵轴表示温度,横轴表示时间。

2.追问:图中弯曲的线表示的是什么?引导学生回答:弯曲的线表示的是骆驼的体温在48小时内的变化情况。

3.再追问:同学们,通过观察,你们发现了哪些量在变化?引导学生观察后回答:温度和时间在变化。

4.请学生结合图表下面提出的问题,分析每个问题的答案。

(1)学生观察分析,教师巡视。

(2)小组交流,引导学生把自己找到的答案与同学进行交流,在小组内形成统一的意见,反馈汇报。

5.提问:通过刚才的分析,你们发现骆驼体温的变化有什么规律?引导学生回答:骆驼的体温随着时间的变化而变化,而且变化的周期是一天。

(三)寻找生活中变化的量。

过渡:同学们通过探究,了解了年龄和体重、温度和时间这些变化的量。其实在生活中,像这样的例子还有很多,你能找出一个量随着另一个量的变化而变化的例子吗?先想一想,再和同学互相交流。

1.学生思考回忆后,把找到的相关例子和同学交流。

2.教师指名说一说自己发现的生活中一个量随另一个量变化而变化的例子。汇报时,学生只要说的是两个相关联的变化的量,教师都应予以肯定。

【设计意图】充分利用教材的情境图,让学生在观察、分析、交流中体会到生活中存在着大量相关联的变量,我们可以利用图表等形式表示变量之间的关系。

巩固1.完成教材第40页“练一练”第1题。

(1)学生读题,明确题目要求。

(2)分析当底面积一定时,圆柱的体积与高之间的关系。

(3)指名汇报。学生回答预测:当圆柱的底面积等于10c㎡时,圆柱的体积随圆柱高的变化而变化,体积随高的增加而增加。

2.完成教材第40页“练一练”第2题。

(1)学生独立思考后,小组交流。

(2)全班汇报,集体订正。学生汇报预测:

(1)转动过程中,到达的最高点是18米,最低点是3米。

(2)转动第一圈的过程中,0至6分时高度在增加,6至12分时,高度在降低。

(3)到达最高点后,下一次再到达最高点需要经过12分钟。

3.完成教材第40页“练一练”第3题。

(1)学生独立思考,分析数量关系。

(2)引导学生尝试用字母表示出数量关系。

(3)小组交流后反馈汇报。引导学生回答:t=n÷7+3。

【设计意图】数学知识的巩固与深化,不仅靠感知,还要辅以灵活、有层次的练习。通过巩固拓展练习,不但使学生所学的知识进一步深化,而且使学生的思维在练习中得到发展,创新素质得到锤炼。小结通过本节课的学习,你有哪些收获?通过本节课的学习,我们了解了很多变化的量,如:年龄和体重是两个变化的量,时间和骆驼的体温是两个变化的量。反思本节课主要是感受变量之间的关系。

为了遵循“学习不是由教师向学生传递知识,而是学生自己建构知识的过程”这一理念,本节教学主要从以下几个方面来探索:

(1)以观察分析为主要手段,引导学生通过观察、分析,发现相关联的两种量之间的关系,从而体现学生学习的自主性,提高学生的观察能力;

(2)充分利用学生原有的知识以验,教学中,把学生原有的知识、经验作为新知的生长点,引导学生从原有知识、经验中“生长”出新的知识、经验;如让学生在理解相关联的两个变量的基础上,从生活中寻找相关联的量,激发学生对原有知识经验的回忆;

(3)加强学生之间的交流互动,在教学中,让学生在观察分析的基础上,通过小组交流、同伴交流等形式,互相合作,共同获取知识。对于初次接触函数知识的小学生来说,对量的理解还有一定的难度,教学中虽然作了努力,但有些学困生仍不能透彻地理解量的含义,这是本节课教学中的失误,在今后的教学中有待改进。

板书变化的量两个变量:

1.年龄和体重的变化;

2.时间和骆驼体温的变化。

《正比例反比例》教案 篇5

1、成正比例的量

教学内容:成正比例的量

教学目标:

1.使学生理解正比例的意义,会正确判断成正比例的量。

2.使学生了解表示成正比例的量的图像特征,并能根据图像解决有关简单问题。

教学重点:正比例的意义。

教学难点:正确判断两个量是否成正比例的关系。

教学过程:

一揭示课题

1.在现实生活中,我们常常遇到两种相关联的量的变化情况,其中一种量变化,另一种量也随着变化,你以举出一些这样的例子吗?

在教师的此导下,学生会举出一些简单的例子,如:

(1)班级人数多了,课桌椅的数量也变多了;人数少了,课桌椅也少了。

(2)送来的牛奶包数多了,牛奶的总质量也多了;包数少了,总质量也少了。

(3)上学时,去的速度快了,时间用少了;速度慢了,时间用多了。

(4)排队时,每行人数少了,行数就多了;每行人数多了。行数就少了。

2.这种变化的量有什么规律?存在什么关系呢?今天,我们首先来学习成正比例的量。板书:成正比例的量

二探索新知

1.教学例1

(1)出示例题情境图。

问:你看到了什么?

生:杯子是相同的。杯中水的高度不同,水的体积也不同,高度越高体积越大;高度越低,体积越小。

(2)出示表格。

高度/㎝24681012

体积/㎝350100150200250300

底面积/㎝2

问:你有什么发现?

学生不难发现:杯子的底面积不变,是25㎝2。

板书:

教师:体积与高度的比值一定。

(2)说明正比例的意义。

①在这一基础上,教师明确说明正比例的意义。

因为杯子的底面积一定,所以水的体积随着高度的变化而变化。水的高度增加,体积也相应增加,水的高度降低,体积也相应减少,而且水的体积和高度的比值一定。

板书出示:像这样,两种相关联的量,一种量变化,另一种子量也随着变化,如果这两种量中相对应的两个数的比值一定,这两种理就叫做成正比例的量,它们的关系叫做正比例关系。

②学生读一读,说一说你是怎么理解正比例关系的。

要求学生把握三个要素:

第一,两种相关联的量;

第二,其中一个量增加,另一个量也增加;一个量减少,另一个量也减少。

第三,两个量的比值一定。

(3)用字母表示。

如果用字母X和Y表示两种相关联的量,用K表示它们的比值(一定),比例关系可以用正的式子表示:

(4)想一想:

师:生活中还有哪些成正比例的量?

学生举例说明。如:

长方形的宽一定,面积和长成正比例。

每袋牛奶质量一定,牛奶袋数和总质量成正比例。

衣服的单价一不定期,购买衣服的数量和应付钱数成正比例。

地砖的面积一定,教室地板面积和地砖块数成正比例。

2.教学例2。

(1)出示表格(见书)

(2)依据下表中的数据描点。(见书)

(3)从图中你发现了什么?

这些点都在同一条直线上。

(4)看图回答问题。

①如果杯中水的高度是7㎝,那么水的体积是多少?

生:175㎝3。

②体积是225㎝3的水,杯里水面高度是多少?

生:9㎝。

③杯中水的高度是14㎝,那么水的体积是多少?描出这一对应的点是否在直线上?

生:水的体积是350㎝3,相对应的点一定在这条直线上。

(5)你还能提出什么问题?有什么体会?

通过交流使学生了解成正比例量的图像特往。

3.做一做。

过程要求:

(1)读一读表中的'数据,写出几组路程和时间的比,说一说比值表示什么?

比值表示每小时行驶多少千米。

(2)表中的路程和时间成正比例吗?为什么?

成正比例。理由:

①路程随着时间的变化而变化;

②时间增加,路程也增加,时间减少,路程也随着减少;

③种程和时间的比值(速度)一定。

(3)在图中描出表示路程和时间的点,并连接起来。有什么发现?所描的点在一条直线上。

(4)行驶120KM大约要用多少时间?

(5)你还能提出什么问题?

4.课堂小结

说一说成正比例关系的量的变化特征。

三巩固练习

完成课文练习七第1~5题。

2、成反比例的量

教学内容:成反比例的量

教学目标:

1.经历探索两种相关联的量的变化情况过程,发现规律,理解反比例的意义。

2.根据反比例的意义,正确判断两种量是否成反比例。

教学重点:反比例的意义。

教学难点:正确判断两种量是否成反比例。

教学过程:

一导入新课

1.让学生说一说成正比例的两种量的变化规律。

回答要点:

(1)两种相关联的量;

(2)一个量增加,另一个量也相应增加;一个量减少,另一个量也相应减少;

(3)两个量的比值一定。

2.举例说明。

如:每袋大米质量相同,大米的袋数与总质量成正比例。

理由:

(1)每袋大米质量一定,大米的总质量随着袋数的变化而变化;

(2)大米的袋数增加,大米的总质量也相应增加,大米的袋数

减少,大米的总质量也相应减少;

(3)总质量与袋数的比值一定。

所以,大米的袋数与总质量成正比例。

板书:

3.揭示课题。

今天,我们一起来学习反比例。两种量是什么样的关系时,这两种量成反比例呢?

板书课题:成反比例的量[ 内 容 结 束 ]

《正比例反比例》教案 篇6

教学内容:

六年级下册总复习83—85页《正比例、反比例》。

教学目标:

(一)知识目标:

(1)通过回顾与交流,鼓励学生自己独立整理知识,形成系统。

(2)通过具体问题的认识进一步认识正比例、反比例的量。

(二) 数学思考与解决问题

通过复习与整理加深对正、反比例意义的理解。并运用正、反比例的知识解决一些实际问题,为以后学习函数打下基础。

(三)情感态度

培养学生认真思考的习惯,学会区分正反比例。

教学重、难点:

(1)进一步认识正、反比例的意义,并能运用正、反比例的意义解决实际问题。

(2)培养学生的问题意识,不断积累活动经验,体会重要的数学思想。

教法学法

自主复习、小组交流、全班交流、互帮互学

教学准备

表格、、小黑板

教学过程

一、情境创设,导入复习

1、判断下面每题中的两种量成什么比例关系?

①速度一定,路程和时间( ) ②路程一定,速度和时间( )

③单价一定,总价和数量( ) ④全校学生做操,每行站的人数和站的行数( )

2、根据条件说出数学关系式,再说出两种相关联的'量成什么比例,并列出相应的等式。

(1)一台机床5小时加工40个零件,照这样计算,8小时加工64个。

(2)一列火车从甲地开往乙地,每小时行90千米,要行4小时;每小时行80千米,要行X小时。

指名学生口答,老师板书。

二、回顾整理,构建网络

(一)比的知识:

1. 谁来举个例子说说什么是比?什么是比例?什么是比的基本性质?(引导学生列举:“按比例分配”、“比例尺”、“图形的放大与缩小”等例)

2. 说一说用比的知识可以解决哪些实际问题。

让学生体会比在解决实际问题时的应用。

3. 完成教科书p83“回顾与交流”的3题

两人一组,合作完成后,全班交流结果,让学生比较后回答有什么发现。

(二)比和分数、除法的联系

出示:a∶b=( )(( ))=( )÷( )(b≠0)教师问:

1. 你会填写这个的等式吗?学生填好后,再问:

2. 你的根据是什么?(比和分数、除法的联系)

3. 那么比和分数、除法的联系是什么?它们的区别呢?

4. b为什么不能等于0?小组议一议,再交流。

5. 谁来说说比的基本性质与分数的基本性质、商不变的规律?它们有什么联系吗,谁来说说?

(1)判断:比的前项和后项都乘或都除以相同的数,比值不变。(让学生说说为什么?)

(2)填空:( )(( ))=( )÷( )=( )∶( )(填好后展示学生不同的结果。)

(三)比例尺的知识

什么是比例尺?

(四)正比例,反比例的知识:

(1) 小组合作:把有关正比例反比例的知识在小组内进行交流,整理成知识网络图。

(2) 班内交流,全班分享

(3) 全班同学进行优化, 形成知识网络图。

变化的量---正比例(意义、图象、应用)--反比例(意义、图象、应用)---图形的放缩---比例尺

三:重点复习,强化提高:

1. 一辆汽车在高速路上行驶,速度保持在100千米/时,说一说汽车行驶的路程随时间变化的情况,并用多种方式表示这两个量之间的关系。

(1)学生独立思考

(2) 同桌交流

3)全班交流

a自然语言 b 列表 c 画图 d 关系式

2. 举出生活中正、反比例的例子

3. 完成课本84页巩固与应用

独立完成,班内交流。

四.自主检测,完善提高:

判断并说明理由

(1)出油率一定,香油的质量与芝麻的质量。

(2) 一捆100米长的电线,用去的长度与剩下的长度。

(3) 三角形的面积一定,它的底和高。

(4) 一个数与它的倒数。

五、完成后班内交流,这节课你有什么收获?

板书设计

正比例和反比例

比 比例、应用

分数、比、除法之间的关系

课后反思

本课时有以下特点:

1、抓住复习起点,以小组合作的形式自主讨论复习,既增强了学生的主动性和自觉性,也面向全体学生进行查漏补缺。

2、借助表格的方式来整理复习,更直观地体会比和比例、正比例和反比例的知识点和不同之处。

3、能整合所有的知识,运用多种方法解决简单的实际问题,巩固知识。

《正比例反比例》教案 篇7

课前准备

教师准备多媒体课件

教学过程

谈话导入

师:谁能用比的知识说一说我们班男女同学的人数情况?

(指名汇报)

师:今天我们就一起来整理和复习比和比例的有关知识。

回顾与整理

1.(1)举例说一说什么是比,什么是比例,什么是比例尺以及它们的应用。

预设

生1:两个数相除又叫作两个数的比,如5÷2,可以写成5∶2。

生2:表示两个比相等的式子叫作比例,如8∶4=24∶12。

生3:图上距离和实际距离的`比,叫作这幅图的比例尺,如一幅地图的比例尺是。比例尺可分为数值比例尺和线段比例尺。

生4:配制农药会应用到比的知识;地图上一般都有比例尺。

……

(2)说一说比与比例有什么区别。

比例

各部分名称

0.9 ∶ 0.6=1.5

前项后项比值

基本性质

比的前项和后项同时乘或除以相同的数(0除外),比值不变。

在比例里,两个内项的积等于两个外项的积。

(3)出示教材83页“回顾与交流”2题。

学生独立完成,思考比、分数、除法之间的关系,并全班交流。

预设

生1:除法算式中的被除数相当于分数的分子,相当于比的前项;除法算式中的除数相当于分数的分母,相当于比的后项;除号相当于分数的分数线,相当于比的比号。

生2:除法算式的商相当于分数的分数值,相当于比的比值。

强调:因为0不能作除数,所以所有分数的分母及比的后项都不能为0。

《正比例反比例》教案 篇8

教学目标:

1、使学生进一步认识正、反比例的意义,了解正反比例的区别和联系,更好的把握正、反比例概念的本质。

2、进一步加深学生对正、反比例意义的理解,使他们能够从整体上把握各种量之间的比例关系,能根据相关条件直接判断两种量成什么比例,提高判断成正比例、反比例量的能力。

教学重难点:进一步认识正、反比例的意义,能根据相关条件直接判断两种量成什么比例,提高判断成正比例、反比例量的能力。

教学准备 :实物投影

教学预设:

一、概念复习:

1、提问:怎样的两个量成正、反比例?

根据学生回答板书字母关系式。

二、书本练习:

1、第9题。

(1)观察每个表中的数据,讨论前三个问题。

要注意启发学生根据表数据的变化规律,写出相应的数量关系式,再进行判断。

(2)组织学生讨论第四个问题。

启发学生根据条件直接写出关系式,再根据关系式直接作出判断。

2、第10题。

(1)看图填写表格。

(2)求出这幅图的比例尺,再根据图像特点判断图上距离和实际距离成什么比例,也可以根据相关的计算结果作出判断。

要让学生认识到:同一幅地图的比例尺一定,所以这幅图的图上距离和实际距离成正比例。

(3)启发学生运用有关比例尺的知识进行解答。

3、第11题。

填写表格,组织学生对两个问题进行比较,进一步突出成反比例量的特点。

4、第12题。

引导学生说说每题中的哪两种量是变化的,这两种量中,一种量变化,另一种量也随着变化,能不能用相应的数量关系式表示这种变化的规律。

5、第13题。

让学生小组进行讨论,教师指导有困难的学生。

三、补充练习

1、对比练习:判断下列说法是否正确。

(1)圆的周长和圆的半径成正比例。( )

(2)圆的面积和圆的半径成正比例。( )

(3)圆的面积和圆的半径的平方成正比例。( )

(4)圆的面积和圆的`周长的平方成正比例。( )

(5)正方形的面积和边长成正比例。( )

(6)正方形的周长和边长成正比例。( )

(7)长方形的面积一定时,长和宽成反比例。( )

(8)长方形的周长一定时,长和宽成反比例。( )

(9)三角形的面积一定时,底和高成反比例。( )

(10)梯形的面积一定时,上底和下底的和与高成反比例。( )