返回首页
文学网 > 短文 > 教学教案 > 正文

分数与小数的互化教案

2025/10/09教学教案

文学网整理的分数与小数的互化教案(精选6篇),供大家参考,希望能给您提供帮助。

分数与小数的互化教案 篇1

1.引导学生主动进行新旧知识的类比,利用知识间的迁移解决问题。

儿童心理学指出:类比、迁移能充分调动学生利用原有的知识经验解决新问题。因为百分数应用题的解题思路及方法与分数应用题大致相同,所以教学中要有效地利用两者之间的联系。上课伊始,通过对例题改编而成的分数应用题的分析、列式、解答,使学生进一步明确解答此类题的关键是弄清谁是单位“1”,谁和谁相比。

2.体会算法的多样化。

在解决问题的过程中,鼓励学生采用不同的计算方法,体会算法的多样化,充分培养学生用不同策略解决问题的能力。所以在教学时,鼓励学生自主解决问题,组织交流解决问题的过程,使学生明确根据数据的特点可以灵活地进行转化,再解决问题。

课前准备

教师准备 PPT课件 学情检测卡

教学过程

⊙复习导入

1.复习。

(1)课件出示复习题。

春蕾小学的一项调查表明,有牙病的学生人数占全校人数的。春蕾小学共有750名学生,有牙病的`学生有多少人?

(2)引导学生思考。

①解答此题的关键是什么?(解答此题的关键是弄清谁是单位“1”,谁和谁相比)

②用什么方法计算?怎样列式?(用乘法计算,列式为750×)

(3)尝试解答。(指名板演,其他学生自己做)

2.导入。

师:刚才我们复习了用分数解决问题,下面我们就来学习用百分数解决问题。(板书课题)

设计意图:通过复习“求一个数的几分之几是多少”的问题,引导学生复习解答此类问题的关键及解法,为实现知识间的迁移作铺垫。

⊙学习新课

旧知迁移,探究新知。

(1)课件出示教材85页例2。

(2)学生尝试解题,交流计算过程。

预设

生1:求有牙病的学生有多少人,就是求750的20%是多少。题中的数量关系符合“求一个数的几分之几是多少”,所以列式为750×20%,计算时可以把百分数直接化成小数进行计算。

分数与小数的互化教案 篇2

教学内容

教科书第107~109页的内容和做一做中的题目、练习二十八的第1~4题.

教学目的

1.使学生理解百分数和分数、小数进行互化的必要性.

2.掌握百分数和分数、小数互化的步骤和方法.

3.学会总结百分数和分数、小数互化的规律.

4.通过计算、比较和找规律发展学生的抽象概括能力.

教具准备

将下面的复习题写在小黑板上;幻灯片.

教学过程

一、复习

教师出示小黑板.

1.把下面的小数化成分数.

0.451.20.367

2.把下面的分数化成小数.

1

3.把下面的分数化成百分数.

1

请三名学生到黑板前做这三个小题,其余学生在练习本上做.

二、新课

教师:我们已经初步认识了百分数,理解了百分数的意义,但是用百分数直接进行计算不太方便,一般要将百分数化成分数或小数来进行计算;另一方面,在求百分率的时候,需要将求得的结果化成百分数.所以,学习百分数和分数、小数之间的互化是很有必要的,下面我们就来学习怎样互化.

板书课题:百分数和分数、小数的互化

1.教学例1.

用幻灯显示例1:把0.25、1.4、0.123化成百分数.

教师:刚才我们复习了将分母是100的分数化成百分数,所以,只要能将例1中的小数化成分母是100的分数,就可以化成百分数了.提问:

0.25写成分母是100的分数是多少?学生口答后,教师板书0.25=.

那么谁能将改写成百分数?学生口答,教师继续板书0.25==25%.

教师:再来看看怎样将1.4化成百分数.首先要将它化成分母是100的分数,然后再改写成百分数.请同学们跟着我一起将这个过程写一遍.(教师板书将1.4化成百分数的过程:1.4=1===140%,学生跟着在练习本上写.)

最后,请一名学生在黑板上将0.123化成百分数,其余学生在练习本上做,教师巡回检查,及时纠正学生做题过程中出现的问题.

2.做第21页做一做的题目.

先提问:3是整数,怎样将它化成百分数?请仔细思考.然后,让每个小组做一题,抽四名学生在黑板上做,集体订正.

3.总结把小数化成百分数的规律.

教师:我们来看看例1的这三个小数化百分数的过程,如果我们将中间的推理过程去掉(如教科书上一样,用虚线框将中间过程框出来),大家可以发现什么规律?让两至三名学生回答,互相补充.

教师:既然我们已经发现了规律,请大家接着想一想:怎样能把小数直接化成百分数?(让学生自由讨论.)

小结:把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号就可以了.

4.教学例2.

用幻灯显示例2:把27%、124%、0.4%化成小数.

教师:我们已经学过把分数化成小数,现在要把百分数化成小数,可以怎样做?请学生集体讨论.教师再指出:我们可以先将百分数化成分数,再化成小数.下面我们先把27%化成小数.

请学生集体口答,教师板书27%==27100=0.27.

请两名学生到黑板前做后面两题,其余学生在练习本上做,教师一边巡视,一边提示思路.最后集体订正.

5.做第22页做一做的题目.

让学生在课堂练习本上做,教师巡视,及时纠正出现的错误,集体订正.

6.小结把百分数化成小数的规律.

教师将黑板上百分数化小数的推理过程用虚线框框出来.提问:

如果将推理过程去掉,大家可以发现什么规律?怎样能把百分数直接化成小数?请学生讨论:

教师:我们看到,百分数化成小数与小数化成百分数是两个互逆的过程,所以,只要把百分号去掉,同时把小数点向左移动两位就行了.

请学生把教科书翻到第22页,读一读方框中的结论,进一步明确百分数和小数的互化方法.

7.教学例3.

教师:下面我们再来学习百分数和分数的互化.(板书百分数和分数的互化)

用幻灯显示例3:把、、1化成百分数.

教师:我们在前面已经学习过小数化成百分数的'方法,所以,只要先把例3中的分数化成小数,就可以化成百分数了.

教师在黑板上演示把化成百分数的过程:=0.75=75%.

接着演示把化成百分数的过程,一边演示一边提醒学生注意:百分数的分子一般保留一位小数,因此分子除以分母的商要算到小数第四位,近似商用四舍五入法取三位小数,再化成百分数.如果要求把直接化成百分数,就要写成16.7%,而不能写成等号.

教师小结:把分数化成百分数,通常先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数.

8.教学例4.

用幻灯显示例4:把17%、40%、12.5%化成分数.

教师:把百分数化成分数,实际上就是将分母是100的分数化成最简分数.

着重讲解把12.5%化成分数:

提问:当百分数的分子部分是小数时,怎样将它化成分数?

教师一边在黑板上演示转化过程一边口述:如果百分数的分子部分是小数,要先应用分数的基本性质,把分子、分母同时扩大若干倍,去掉分子的小数点,然后能约分的再约分.(板书转化过程:12.5%===)

让学生自己完成例4中的其他题,然后对照教科书,找出问题,自行订正.

请学生将教科书翻到第23页,读一读方框中的结论,进一步明确百分数和分数的互化方法.

9.让学生做第23页做一做的题目,集体订正.

三、作业

1.理解并掌握第108、109页两个方框中的结论.

2.做练习二十八的第1~4题.

分数与小数的互化教案 篇3

教学目标

1、知识与技能

掌握分数和小数的互化方法,并能熟练地把小数化成分数,把分数化成小数。

2、过程与方法

在学习过程中,感悟转化的数学方法,培养迁移类推的能力。

情感态度与价值观

体验学习数学的乐趣,养成自主学习的习惯。

教学过程

一、探索交流,解决问题

1、出示例1 把一条3米长的 绳子平均分成10段,每段长多少米?平均分成5段呢?

(1)学生先独立计算,然后用小数表示计算结果和用分数表示计算结果。

3÷10=0.3(米) 3÷5=0.6(米) 3÷10=33(米) 3÷5=(米) 105讨论:能否把小数直接写成分数呢?如果能,怎么写?分组讨论,再试着完成课本第的“试一试”。

(2)小结

小数化成分数时,先把小数写成分数,原来有几位小数,就在后面写几个0作分母,原来的小数去掉小数点作分子。注意能约分的要约分。

2、出示例2。把0.7,来。

(1)提问:这6个数中,有分数、有小数,要比较这些数的大小,该怎么办? 学生想到的方法可能有两种:一是把分数化成小数,二是把小数化成分数,再通分。提问:哪种方法比较简便?为什么?

(2)大家先来看看,两种方法:

方法一:把943711,0.25,这6个数按从小到大的顺序排列起101002545943、写成小数分别是多少? 101007的分子和分母同时乘上相同的数,转化为分母是10,100,1000…的分25数,再改写成小数。

287==0.28 25100

方法二:利用分数与除法的关系,用分子除以分母得出小数。

7=7÷25=0.28 25(3)在让学生将11化成小数。 45学生自己尝试解决,看看出现了什么问题?(分母45不能转化成10,100,1000……作分母。用分子除以分母时,出现了除不尽。)

指出:像这样的分数化成小数时,只能用分子除以分母这种方法,一般情况下,分子除以分母除不尽时,要根据需要按“四舍五人”法保留几位小数。这道题要求保留两位小数。

11=11÷45≈0.24 45

(4)现在,你能把这6个数按从小到大的顺序排列了吗? 学生独立完成。

(5)小结:分数化成小数时有几种方法?

引导学生概括出,一般方法是:用分子÷分母(除不尽时按要求保留几位小数)。特殊方法:①分母是10,100,1000……时,直接写成小数。②分母是10,100,1000……的因数时,可化成分母是10,100,1000……的分数,再写成小数。

(6)完成给出的练习。

先让学生判断哪几个分数可以写成小数?哪几个分数可以化成分母是10,100,1000……的分数,再写成小数。哪几个分数只能用一般方法。然后独立完成,选择自己喜欢的方法,把这些分数化成小数。

二、巩固应用,内化提高

1、 分别用小数和分数表示下面每个图中的涂色部分。

2、李阿姨平均每秒打0.9个字,王叔叔一分钟打50个字,谁打字快些?

5≈0.83 0.83<0.9 6答:李阿姨打字快。

3、小林从学校回家要花25分钟,小凡回家要花相同,谁家离学校远些?

1小时,如果他们两个人的行走速度451325÷60=12412答:距离学校远的是小林家。

4、你知道什么样的最简分数能化成有限小数吗? 你想了解这个规律吗? 其实,只要把分数的`分母分解质因数,如果分母中除了 2 和 5 以外,不含有其他质因数,这个分数就能化成有限小数。例如, 的分母 20 = 2×2×5,它就能化成有限小数。如果分母中含有 2 和5 以外的质因数,这个分数就不能化成有限小数。例如, 的分母 30 = 2×3×5,它就不能化成有限小数。

三、回顾整理,反思提升

本节课我们学习了分数和小数互化的方法。小数化成分数时,可以直接把小数转化成分母是10、100、1000……的分数,注意能约分的要约分。而分数化小数时,一般情况下是用分子÷分母,除不尽的按要求取近似值;如果分数的分母是10、100、1000……,可以直接化成小数;如果分母是10、100、1000的因数,可以转化成分母是10、100、1000的分数,再改写成小数。因此,在做分数化成小数的题目时,要认真观察数的特点,灵活选择方法,使得计算又对、又快。

分数与小数的互化教案

作为一名优秀的教育工作者,常常需要准备教案,编写教案有利于我们科学、合理地支配课堂时间。那么教案应该怎么写才合适呢?以下是小编帮大家整理的分数与小数的互化教案,仅供参考,大家一起来看看吧。

分数与小数的互化教案 篇4

教学目标:

1、利用教材提供的问题情境让学生产生把分数与小数进行互化的心理需求,并通过自己的探索找到分数与小数的互化方法。

2、培养学生培养独立探索,解决问题的能力。

教学重点:分数与小数的互化方法

教学流程

一、理解4分之3米:

1、问:“4分之3米”有多长?你能用线段图来表示吗?

画法一:把1米平均分成4份,这样的3份就是4分之3米

画法二:把3个1米的线段对齐后,平均分成4份,其中的1份,有3个4分之1米也就是4分之3米。

理解:4分之3米可以是1米的4分之3,也可以是3米的4分之1。

2、联系生活理解:生活中的4分之3个苹果,可以是1个苹果的4分之3,也可以是3个苹果的4分之1......

二、比较4分之3和0.5:

1、出示情境图:看懂图意,讨论“怎么比两条彩带的长短?”

方法一:估算的方法。4分之3大于一半,所以比0.5大。

方法二:4分之3=3÷4=0.75,0.75大于0.5

2、揭示课题:

分数和小数有时都可以表示一个具体的'数量,有时就需要互化后进行有关的比大小或是计算等。我们这节课就来学习分数和小数的互化。

3、学习分数化成小数的方法:

方法一:可以用除法,分子除以分母

方法二:可以利用分数的基本性质,把分母改写成10、100、1000后再转化成小数。

三、掌握并记忆常见的分数与小数的转化:

1、要求学生拿出自备本,有条理的记一记,算一算。

分母是2的真分数:2分之1=0.5

分母是4的真分数:4分之1=100分之25=0.25

4分之2=2分之1=0.5;4分之3=0.25×3=0.75

分母是5的真分数:5分之1=0.2;5分之2=0.4

5分之3=0.6;5分之4=0.8(依次加0.2)

分母是8的真分数:8分之1=0.125;8分之2=4分之1=0.25

8分之3=0.375;8分之4=4分之1=0.25;8分之5=0.625

8分之6=4分之3=0.75;8分之7=0.875

分母是9的真分数:(略)

2、记一记:上面这些分数转化为小数,你觉得哪些特别好记?你是怎么记的?

依次说一说,尝试背一背。

3、把25分之9、6分之5化成小数

问:你用的是什么方法?遇到了什么困难?

第一个分数:也可能会有学生把它转化成100分之36,再改写成0.36

第2个分数:是循环小数。读题目要求“除不尽的保留三位小数”。指出:分数转化成小数的时候,有时能除尽,有时不能除尽,那就根据题目要求保留。

三、巩固练习:

1、练一练:比较每组中两个数的大小。基本步骤:把分数转化成小数,然后再比较大小。

2、(第7题)学生填一填。掌握:一位小数可以改写成10分之几;两位小数可以改写成100分之几;三位小数可以改写成1000分之几。

3、(第8题)把小数化成分数。

4、(第9题)把分数化成小数。

重点讲解:(1)除不尽时的处理方法,注意“≈”和四舍五入的使用

(2)假分数,先要转化成带分数,然后再转化成小数。或直接除。

5、(第10、11题的比较)

(1)掌握该类题的书写格式:先把分数转化成小数,再把两个小数比一比,最后写出完整的比较结果。

(2)注意根据具体的情况分析该选大数还是小数,如速度快,可以看工作量大或是看工作时间少。

6、思考题:a和b都是大于0的整数,当a()时,a分之b是真分数。

当a()时,a分之b是假分数。当a()时,a分之b能化成整数。

填空时,请学生说说思考的依据是什么。

四、检查预习作业,完成全课的总结。

分数与小数的互化教案

作为一位杰出的老师,通常会被要求编写教案,借助教案可以有效提升自己的教学能力。那么教案应该怎么写才合适呢?以下是小编为大家整理的分数与小数的互化教案,希望能够帮助到大家。

分数与小数的互化教案 篇5

教学目标:

1.利用已有知识迁移、类推、发现百分数和小数互化的规律和方法。

2.理解、掌握百分数和小数互化的方法,并能熟练运用,进一步体会数学之间的内在联系,增强思维的深刻性。

教学重难点:

探索百分数与小数的互化方法,能正确、熟练地进行百分数与小数数的互化。

教学准备:

PPT,练习本

课型:

新授课

教学过程:

一、交流前置作业

1.请学生板演知识准备第1题,写出详细的计算过程。

2.开火车核对知识准备第2题。

二、新授(前置作业自主探究)

1.出示例2,集体交流两个问题。

(1)谁是谁的1.15倍?(王红完成的是指定个数的1.15倍)

(2)谁占谁的110%?(李芳完成的是指定个数的110%)

(3)你是怎样比较的呢?

教师根据学生的'回答明确:1.15倍是指定个数的1.15倍,110%也是指定个数的110%,所以要比较两位同学完成仰卧起坐个数的多少,就是要比较1.15和110%这两个数的大小。

三、讨论比较方法

1.师:你有什么好办法可以比较出这两个数的大小吗?你能把自己的想法展示在黑板上吗?鼓励学生板演,并展示多种比较方法,对正确的方法给予肯定。

2.根据学生的方法归纳总结

要想比较分数和百分数的大小,要么把它们都化成分数,要么把它们都化成百分数。

(1)可以把1.15改写成百分数,与110%比较。

(2)也可以把110%改写成小数,与1.15比较。

3.体会互化方法,规范书写。

(1)师问:怎样将1.15改写成百分数呢? 师板书:因为,1.15=115/100=115%,所以1.15>110% 四、归纳改写方法

1.完成试一试

师:1、2两组完成0.3的改写,3、4两组完成0.248的改写,请学生上黑板板演,集体核对,表扬鼓励。

2.呈现去掉中间环节的几个等式

0.3=30%

0.248=24.8%

1.15=115%

问:把百分号前面的数与原来的小数比较,你有什么发现?

学生全班交流自己的发现,教师帮助归纳完善:左边小数的小数点都向右移动两位就成了百分号前面的数。比如将0.248的小数点向右移动两位成了24.8,就是24.8%百分号前面的数。

师:你能根据这一发现直接将小数化成百分数吗?

学生尝试练一练第1题,请学生板演,并讲解自己的改写方法,重复规律。

2.师:反过来看,怎样将百分数直接改写成小数呢?

生总结方法,教师帮助归纳完善。

3.尝试练一练的第2小题,请生口答,并说出自己的方法。

4.师:看来百分数和小数之间的互化有一定的规律,谁能说说其中的规律呢?其他同学补充。

总结:将百分数改写成小数,可以将百分号前面的数的小数点向左移动两位,去掉百分号。将小数改写成百分数,可以将小数的小数点向右移动两位,添上百分号。

五、巩固练习

1.完成练习十四第13题。

教师巡视并批改。

2.课堂练习。

在作业本上完成练习十四弟14题和15题。

六、全课总结

今天这节课你掌握了什么本领?

板书设计:

百分数与小数的互化

怎样比较1.15和110%的大小呢?

(1)1.15=115/100=115%,所以1.15>110%

(2)110%=110/100=1.1,所以1.15>110%

0.3=30%

0.248=24.8% 比较:怎样把小数直接改写成百分数?怎样把

1.15=115% 百分数直接改写成小数?

1.1=110%

分数与小数的互化教案 篇6

一、教材分析:

1、知识内容:分数与小数的互化

2、教材的地位和作用: 本课教学是学生在学习了分数的加减乘除混合运算后,而对于分数与小数的混合运算该如何做呢?因而必须要全都是小数或全都是分数这样才能进行计算。这节课就在这基础上进行的,目的是使学生掌握分数化成小数的方法以及小数化成分数的方法,也让学生总结并掌握能化成有限小数的最简分数的特点,能判断一个最简分数能不能化成有限小数。这样就为今后学习分数与小数的混合运算打下良好的基础。在本节课的教学中,体现了数学知识的内在联系,让学生从已有的知识背景出发,通过习题练习、自主探索、合作交流等方式积极探索分数与小数互化的规律。

3、教学目标

(1)知识目标

①使学生理解分数化成小数的方法,能根据分数与除法的关系把分数化成小数。

②使学生认识能化成有限小数的最简分数的特点,能判断一个最简分数能不能化成有限小数。

(2)能力目标

在学生对能化成有限小数的最简分数的'过程的参与讨论中培养学生观察、归纳、解决问题的能力。

(3)情感目标

在找出能化成有限小数的最简分数的规律过程中培养学生对待知识的科学态度和探索精神。

教学重点

分数与小数互化的方法

教学难点:

能化成有限小数的分数的特点。

二、 教学分析:

根据本节教材特点,为了更有效地突出重点,突破难点,按照学生的认知规律,遵循教师为主导,学生为主体,训练为主线的指导思想,通过“观图设疑,提出问题,自主探究,总结规律,形成概念,知识运用”等环节,逐步推导归纳得出结论,使学生始终处于主动探索问题的积极状态,从而培养思维能力。

三、教学思路:

1.通过请同学回答说出九大行星如何比较它们的大小来激发学生兴趣,提出数学问题;

2.结合课堂操练,逐步把握知识的本质,形成认知结构,总结规律。

四、教学过程:

一、观图设疑,提出问题

幻灯片显示出九大行星,请学生说出有哪九大行星?并提出:已知水星、冥王星、月球的直径分别是地球直径的 ,问如何比较它们直径的大小并指出哪个行星是最大的,让学生带着这个问题学习新课,这时学生的兴趣已被调动。他们就能积极自主参与知识的发生、发展、形成的过程,带着问题学习新课。 二、出示课题,自主探究 例1把下列分数化成有限小数,如果不能化成有限小数,将其结果保留三位小数。 、 、 、 、 、 学生完成后,在视频台上展示部分学生写的作业,然后教师请学生看自己的作业的对错,并纠正。