返回首页
文学网 > 短文 > 教学教案 > 正文

多边形面积教学反思

2025/10/13教学教案

文学网整理的多边形面积教学反思(精选8篇),供大家参考,希望能给您提供帮助。

多边形面积教学反思 篇1

课前思考:这节课是在学生已经掌握了平行四边、三角形、梯形的面积计算方法的基础上进行教学的。通过整理和复习,使学生加深对公式的记忆,学会灵活运用公式,并在此基础上学习和掌握一些数学思想方法,完善认知结构,拓宽知识面,学会与人合作,共同学习提高。

复习课是教师和学生都不爱上的,也是最不好上的,课上没有新意,重复性的练习;显得单调而呆板。那么如何把这节课上得让学生有兴趣,有厚度,让学生的思维动起来?又能很好地落实“探究性学习”的教学模式呢?我在这节课中做了大胆尝试,同时为更好地调动学生的学习兴趣,引导学生的反思意识,课前设计了导学材料。三个问题:一是对前面学过的知识进行浏缆,自主地以自已的方式把本单元的知识进行梳理;二是提出一个问题,引导学生思考“平行四边形、三角形和梯形面积计算公式的推导过程有什么相同的地方”这个问题引导学生回顾学习过程,通过寻找“相同的地方”提炼转化策略,都是把新的图形转化成已能求面积的图形,都是利用已有的面积公式推出新的.面积公式。因为转化策略支持了本单元中对面积计算公式的探索,还能广泛应用于其他数学知识的学习和数学问题的解决。三是让学生带着问题走进课堂。

教学过程分为三个环节:第一个环节是让学生在小组中相互欣赏自主学习成果,为全班交流做准备;第二个环节是成果分享、梳理提升;依托自学材料中的问题进行全班交流,在师生、生生互动中加强图形面积公式的内在联系,形成知识结构图,完善学生的认知体系。使学生加深认识到长方形是平面图形的根本,转化这一策略在学习中的作用。接着三个层次练习。

上完课后,我又对本节课的教学过程进行了反思,给了我很多思考。从教学目标上,我觉得基本上能够完成课前的预设,但存在着很多问题需要在今后的教学中不断改进和提高。例如:在练习环节,对学生的发言关注不够.比如课堂教学的调控能力,何时适时介入,何时勇敢地退出,与学生的学习溶为一体。这样的教学基本功和机智还需在今后的教学中不断地锤炼。

另外:复习课力求通过教师的引导,最终的目的是让学生自己掌握复习的方法。教师应引导学生初步掌握复习整理的方法,在学生掌握方法的基础上,知识整理环节可以放在课前,课堂教学可以从交流知识整理的成果开始。这样既能对知识整理呈现不同的个性,有利于取长补短,又能保证复习、练习的时间。

多边形面积教学反思 篇2

整整两个星期我们都在学习多边形的面积计算,因为初次教五年级,所以每节课的备课时间总是花到上课时间的三到四倍,不过总算今天把这章内容讲完了,下面我来谈谈我的教学感受。

小学阶段的多边形是指平行四边形、三角形和梯形,它们的面积计算是以长方形、正方形的面积计算为基础,由于四年级时学生们通过剪一剪,画一画,分一分把长方形和正方形分成边长是1厘米的小正方形推导出它们的面积公式,掌握了计算方法。因此五年级学习多边形的面积计算时应充分利用已具备的学习基础。首先学习的'是平行四边形,在教学时我先出示一组面积相等的长方形和平行四边形让学生猜一猜它们的大小;再把它们放到方格纸上让学生通过数方格得出它们的面积相等;然后教师提出问题:我们可不可以把平行四边形通过分一分、拼一拼转化成长方形呢?接下来让学生们动手操作。有的同学沿平行四边形的高把它分成两个梯形;有的同学沿它的高把平行四边形分成一个直角三角形和一个直角梯形;然后利用前面学习的平移知识转化成一个长方形,从而推导出平行四边形的面积公式。

教学三角形的面积计算时,师问:我们怎样应用所学的方法探究三角形的面积计算公式呢?于是学生们三个一组,四个一堆就开始讨论、操作。有的剪了两个完全一样的直角三角形拼成一个长方形;有的剪了两个完全一样的等腰直角三角形拼成了一个正方形;有的剪了两个锐角三角形拼成了一个平行四边形;还有的同学剪了一个大三角形,过三角形的一个顶点作一条高,再过高的中点作一条和底边平行的平行线,然后沿平行线剪开,把大三角形分成一个小三角形和一个梯形,把小三角形旋转后与梯形拼成一格平行四边形。最后他们都利用自己拼的图形推导出了三角形的面积计算公式。

在学习梯形面积计算公式的推导时,我更加相信学生们的能力了,首先从学生的生活实际出发,让学生知晓生活中很多时候都要计算梯形的面积,从而引发学生探究梯形面积的学习欲望,让他们充分调动自己已有的知识经验,放手让学生把梯形转化成前面学过的会计算面积的图形,自主探究出了很多种推导面积公式的方法,培养了他们的创新思维能力和自主学习能力。

在教学多边形面积公式的推导时,我注重把握以下几点:

1、充分应用前面掌握的学习策略来学习新知识。

2、重视培养学生的动手能力。

3、重视发展学生的个性,鼓励学生拼出多种多样的图形,让学生选择自己喜欢的图形来推导面积计算公式。

总之,数学教学不仅是一门科学,而且是一门艺术。为了让学生在愉快的气氛中最大限度的调动他们的积极性和主动性,使他们轻松愉快的学习,我们更应该备好每一堂课。

多边形面积教学反思 篇3

《多边形的面积》是新人教版第六单元内容。这单元教学内容包括四部分:平行四边形的面积,三角形的面积,梯形的面积和组合图形的面积。

教学时我注重让学生经历面积公式的推导过程,让学生亲自经历数、剪、拼、摆的操作活动。在思维训练上注重渗透“转化”思想,引领学生运用“转化”的方法将新研究图形转化为已经会计算面积的图形,并通过对比探究新研究图形与转化后图形间有什么关系,从而得出新研究图形面积计算的方法。对于组合图形面积的计算,我则渗透了两种思维:一是将组合图形分成若干个已会计算面积的单一图形(分割法),这几个单一图形面积总和便是这个组合图形面积;二是根据图形特征将这个组合图形补成已学过的一个单一大图形(添补法),用这个大图形面积减去补充部分的图形面积便是原组合图形面积。

本以为这样教下来,学生掌握很好,等到本单元的'综合测试结果一出来,让我大失所望,更感到我班后进生辅导工作的严峻与艰辛,也感觉到中下成绩学生学得很吃力。一是计算单一图形面积,有个别后进生能写对图形面积计算公式而不会将数据代入公式计算,如果图形是侧放的则无法找到相应的底和高。而组合图形也就更让他们感到困难了,即使能将图形分成几个单一图形了,他们也无法正确找到相应的数据计算对单一图形面积。二是部分学生计算失误严重。三是单位的改写要么没有,要么出错。

以上这些原因让我不知所措, 可见我在平时教学中对中下成绩学生关注得不够,以至中下成绩学生知识出现脱节。针对自己的不足以及学生知识的缺陷,今后在课堂教学中要注意多关注中下成绩学生学习情况,课后多采取措施辅导他们的学习,要帮助他们把最基础的知识补回来,然后再逐渐提高。

多边形面积教学反思 篇4

课前思考:这节课是在学生已经掌握了平行四边、三角形、梯形的面积计算方法的基础上进行教学的。通过整理和复习,使学生加深对公式的记忆,学会灵活运用公式,并在此基础上学习和掌握一些数学思想方法,完善认知结构,拓宽知识面,学会与人合作,共同学习提高。

复习课是教师和学生都不爱上的,也是最不好上的,课上没有新意,重复性的练习;显得单调而呆板。那么如何把这节课上得让学生有兴趣,有厚度,让学生的思维动起来?又能很好地落实“探究性学习”的教学模式呢?我在这节课中做了大胆尝试,同时为更好地调动学生的学习兴趣,引导学生的反思意识,课前设计了导学材料。三个问题:一是对前面学过的知识进行浏缆,自主地以自已的'方式把本单元的知识进行梳理;二是提出一个问题,引导学生思考“平行四边形、三角形和梯形面积计算公式的推导过程有什么相同的地方”这个问题引导学生回顾学习过程,通过寻找“相同的地方”提炼转化策略,都是把新的图形转化成已能求面积的图形,都是利用已有的面积公式推出新的面积公式。因为转化策略支持了本单元中对面积计算公式的探索,还能广泛应用于其他数学知识的学习和数学问题的解决。三是让学生带着问题走进课堂。

教学过程分为三个环节:第一个环节是让学生在小组中相互欣赏自主学习成果,为全班交流做准备;第二个环节是成果分享、梳理提升;依托自学材料中的问题进行全班交流,在师生、生生互动中加强图形面积公式的内在联系,形成知识结构图,完善学生的认知体系。使学生加深认识到长方形是平面图形的根本,转化这一策略在学习中的作用。接着三个层次练习。

上完课后,我又对本节课的教学过程进行了反思,给了我很多思考。从教学目标上,我觉得基本上能够完成课前的预设,但存在着很多问题需要在今后的教学中不断改进和提高。例如:在练习环节,对学生的发言关注不够.比如课堂教学的调控能力,何时适时介入,何时勇敢地退出,与学生的学习溶为一体。这样的教学基本功和机智还需在今后的教学中不断地锤炼。

另外:复习课力求通过教师的引导,最终的目的是让学生自己掌握复习的方法。教师应引导学生初步掌握复习整理的方法,在学生掌握方法的基础上,知识整理环节可以放在课前,课堂教学可以从交流知识整理的成果开始。这样既能对知识整理呈现不同的个性,有利于取长补短,又能保证复习、练习的时间。

多边形面积教学反思 篇5

第五单元是《多边形的面积》,学生学起来饶有兴致。原因就是他们可以不必正襟危坐,完全可以畅所欲言,此时,他们的大脑好像被激活了一样,双手也变得那般灵活。整节课充满着无限生机。这样的课就这样持续着,包括学年的“一课三讲”,包括“区域教研”。学生喜欢上这样的课,我想可能有以下几个原因:

1、学生真正成了课堂的主人

苏霍姆林斯基说过:“在人的心灵深处都有一种根深蒂固的需要,就是希望感到自己是一个发现者、研究者、探索者,而在儿童的精神世界中,这种需要特别强烈。”无论是平行四边形的面积还是三角形的面积教师都引导学生自主探究,鼓励学生大胆猜想。学生本来就很爱动手实践,当他们的主观能动性被充分调动,所发挥出来的潜力是无法估量的。因为老师为学生创设了一种民主、宽松、和谐的学习氛围,给了学生充分的思考问题的时间与空间,所以在推导平行四边形面积时,有很多同学都想出了三四种方法(剪拼法、拼组法、折叠法等)转化成以前学习过的图形----长方形,并能够加以有效的验证。在这样的课堂教学中教师始终是学生学习活动的组织者、指导者、合作者,在这样的课堂学习中学生乐想、善思、敢说,他们可以自由地思考、猜想、实践、验证……

2、重视学生的提问

问题是数学的`心脏,能给学生的思维以方向和动力,不善于发现、提出和解决问题的学生是不可能具有创新精神的。听了这几节课,教师都精心设计了具有探索性的问题,比如:“平行四边形面积该怎样求?”“该怎样来验证自己的猜想呢?”“怎样用数方格来数出平行四边形的面积?”“怎样用转化的方法把平行四边形转化成长方形呢?”……这些问题在学生的头脑中自然产生,学生在独立思考、相互交流、相互评价的过程中感受到自己是学习的主人,满足了学生自尊、交流和成功的心理需求,从而以积极的姿态投入到数学学习之中。因此学习效果也很显著。

多边形面积教学反思 篇6

首先要感谢领导对我的信任,将这一重要的任务交给我。在备课之前,我认真学习并研究了刘所长亲自执教的三个视频,通过学习我个人认为这种“学帮理练”的上课模式,也就是尝试教学法的另一种诠释,它的理论核心是“先试后导”,让学生自主学习,合作探究。本着这种理解,我说一说对我这节课的一个思考:

本节课的重点是:探究并掌握多边形面积的计算方法

本节课的难点是:根据已知条件把多边形分解成几个基本图形。

教学设计:

1、复习旧知。多边形面积需要在学生已有的知识基础上进行,设计复习基本图形的面积为新授内容做好知识铺垫。

2、展示生活中的多边形,通过找一找由几个基本图形组成,使学生认识到多边形可以分成熟悉的基本图形;再动手分一分,是使学生在此对多边形的组成产生认识,也为下面计算做好铺垫。

3、本节课不是要教会学生求多边形的面积,而是让学生体会到求多边形面积的方法。因此出示例题,让学生自己动手画一画,算一算,使每个学生都参与到教学活动中,学生的知识背景不同,肯定会有多种方法,在交流中使学生体会解题方法的多样化;再通过2个练习题,使学生在操作中领悟方法与步骤,最后在学生独立尝试计算、相互分享的基础上总结方法。

上完这一节课,细细回想还存在这些问题:

1、在第一环节中展示学生的作品时,浪费了一部分时间,反映出自己对上课节奏把握的不准确,安排不得当,今后还需要严格要求自己,在备课中队对每一个字、每一句话都要细细斟酌。

2、在展示交流这一环节时,只是展示了成功的`作品,在备课时还记得,要搜集由于找不到相关条件无法计算图型面积的作品进行展示,通过对比让学生知道分图形也是有要求的,并且要根据已知的条件进行。

3、在每个图形结束后,在学生体会多种方法的基础上,应该让学生进行比较,进行方法的优化,选择最好、最简单的方法。由于前面浪费了时间而没有进行,这是一个失误。

4、自己的教学语言,学生操作的方式以及汇报的形式,都需要在今后的教学中进一步加以完善。

多边形面积教学反思 篇7

本单元的教学中我注重以下几点:

1、教学中注重让学生通过动手操作、观察与合作交流促进发展

面积公式的推导是本单元的重难点,这些知识是建立在学生数、剪、拼、摆的操作活动之上的,所以动手操作是本单元教学的重要环节之一。教师要做好引导不要包办代替,要给学生留出时间和空间让学生在独立思考和合作交流的基础上进行操作获得知识。通过让学生动作实际操作活动,这样就发展了学生的空间观念,提高学生动手操作能力,解决问题能力。

2、教学过程中注重引导学生探究,渗透“转化”思想。

“转化”是数学学习和研究的一种重要思想方法,本单元面积公式的推导都渗透“转化”思想方法。在本单元的.教学中注重发挥教师组织者,合作者,引导者的作用和发挥学生的主体作用,通过让学生动手操作去获得本单元知识。教学中一方面启发引导学生设法把所研究的图形转化为已经会计算面积的图形,渗透“转化”的思想方法;另一方面引导学生去主动探究所研究的图形与转化后的图形之间有什么联系,从而找到面积的计算方法,让学生通过讨论和交流等形式,把自己操作——转化——推导过程叙述出来,促过学生思维和表达能力的发展。

3、注意培养学生用多种策略解决问题的意识和能力。

运用转化的方法推导面积计算公式和计算多边形面积,可以有多种途径和方法。教学中教师要鼓励学生从不同的途径和角度去思考和探索解决问题。通过引导学生通过观察,作虚线等方法,清晰地认识一个简单图形、组合图形的构成,并能正确地进行计算。

多边形面积教学反思 篇8

五年上册第五单元多边形面积计算,主要学平行四边形面积、三角形面积和梯形面积的计算。一直以来,这几个面积公式的推导都是教学的难题,也是教学中的典型课例。在进行教学前,我做了充分的准备工作,学生们做了各种各样的三角形、平行四边形和梯形学具,准备课上动手操作时使用。

在预备课上,我带领学生对相关的平面图形知识进行了复习。学生已经学习了长方形和正方形周长、面积的.计算,对平行四边形、三角形、梯形、圆等平面图形学生也有了初步的了解。

在讲平行四边形面积的时候,因为特殊原因,新课不能按计划进行,我灵机一动,这节课可以上一节动手操作课啊。于是,我让学生拿出已准备好的各种图形,进行摆拼,看看都能摆拼出什么样的图案,然后小组进行总结。

在学生进行摆拼的过程中,我一巡视指导,一边思考,这节课应该为后面的新课做哪些铺垫。于是,我提出了以下两个问题:⑴根据我们上节课复习的内容,各小组把摆拼出来的图形进行分类。各小组经过讨论,在我的揭示下,得出结论,所有摆拼出来的图形,可以分为规则图形和不规则图形(也就是组合图形)。⑵观察摆拼成的规则图形,所用的图形有什么规律或者特点。学生开始观察,争论,研究,有的学生还主动寻求教师的帮助。在这一过程中,学生认识到,两个完全一样的三角形可能摆拼成平行四边形、三角形、长方形、正方形,两个完全一样的平行四边形还可以摆拼成平行四边形,两个完全一样的梯形可以摆拼成平行四边形等结论。

通过这一节意外的教学设计,学生在后面学生平行四边形、三角形、梯形面积计算公式推导时,感觉很容易操作,对图形的理解也容易的多了。

不足之处是因为临时的课,教师想的还不是很深入。现在想,可以在这节课上设计两个活动,一个用各种基本图形进行摆拼,完成上面提到的内容,另一个就是各个基本图形之间的转化,在面积不变的情况下,如何把一个基本图形转化成另一个基本图形。这样,整个多边形面积计算的基础就给学生打牢了,再讲多边形面积计算难度就降低了很多,学生掌握起来也会容易的多。