《分数除法》数学教案
文学网整理的《分数除法》数学教案(精选9篇),供大家参考,希望能给您提供帮助。
《分数除法》数学教案 篇1
教学目标
1.通过比较,进一步弄清求一个数的几分之几是多少的乘法应用题和相应的列方程解的应用题的数量关系之间的内在联系,解题思路,解题方法的联系和区别.
2.能正确熟练地解答稍复杂的分数应用题.
3.培养学生分析问题和解决问题的能力.
教学重点
明确分数乘、除法应用题的联系和区别.
教学难点
明确分数乘、除法应用题的联系和区别.
教学过程
一、启发谈话,激发兴趣.
在前边,我们已经学习了稍复杂的分数乘、除法应用题,这两类应用题在分析解答
时易混淆.这节课我们就来一起对这两类应用题进行比较.通过比较弄清它们之间的联系与区别.
二、学习新知
(一)出示例8的4个小题.
1.学校有20个足球,篮球比足球多 ,篮球有多少个?
2.学校有20个足球,足球比篮球多 ,篮球有多少个?
3.学校有20个足球,篮球比足球少 ,篮球有多少个?
4.学校有20个足球,足球比篮球少 ,篮球有多少个?
(二)学生试做.
1.第一题
解法(一)
解法(二)
2.第二题
解:设篮球有 个.
解法(一)
解法(二)
解法(三)
3.第三题
解法(一)
解法(二)
4.第四题
解:设篮球 个.
解法(一)
解法(二)
解法(三)
(三)比较区别
1.比较1、3题.
教师提问:这两道题中的.第二个已知条件有什么不同?解题思路有什么相同的地方?有
什么不同的地方?
(1)观察讨论.
(2)全班交流.
(3)师生归纳.
这两道题都是把足球看作单位1,单位1的量是已知的,求篮球有多少个?
就是求一个数的几分之几是多少?用乘法计算,不同的是(1)题篮球比足球多 ,而第(3)题是篮球比足球少 ,计算进一个要加上多的数,一个要减去少的个数.
2.比较2、4题
教师提问:这两道的第二个已知条件有什么不同?解题思路有什么相同的地方?有什么不同的地方?
(1)观察讨论.
(2)全班交流.
(3)师生归纳.
这两道题都是把篮球看作单位1,而且单位1的量者是未知的,因此要设单位1的量为 ,根据一个数乘以分数的意义找出等量关系列方程解答.熟练之后也可以直接列除法算式解答.
《分数除法》数学教案 篇2
《分数除法》数学教案
作为一位无私奉献的人民教师,往往需要进行教案编写工作,教案是教材及大纲与课堂教学的纽带和桥梁。那么教案应该怎么写才合适呢?下面是小编帮大家整理的《分数除法》数学教案,仅供参考,大家一起来看看吧。
《分数除法》数学教案 篇3
教材分析
理解并掌握分数除法的计算方法,会进行分数除法计算;理解比的意义,知道比与分数、除法的关系,并能类推出比的基本性质;能够正确地化简比和求比值。这为以后学习运用比的知识解决有关的实际问题打下基础。学习本节课学生能理解并掌握分数除法的计算方法,会进行分数除法计算。
学情分析
分数除法是本单元的第一课,也是非常要的一课,这节课的学习效果将直接影响到后面解决问题的学习。由于学生普遍基础较差,必须在理解分数除法的意义的基础上开始学习。学生分析问题解决问题的能力较差,因此,要培养学生在探索除分数以整数计算方法的过程中,进一步体会分数除法的意义,体会数学知识间的内在联系,发展分析、比较、抽象、概括的能力。
教学目标
1.通过具体的问题情境,探索并理解分数除法的`计算方法。
2.能正确地进行分数除法的计算。
3.培养学生分析、推理能力。
教学重点和难点
教学重点:理解分数除法的意义,掌握分数除以整数的计算方法。
教学难点:分数除以整数计算法则的推导过程。
教学过程
一、创设情景,教学分数除法的意义
1.以3盒水果糖的重量为问题为切入点,请你们列出算式并计算,看谁算的又快又好!
(1)每盒水果糖重100g,那么3盒有多重?
100×3=300(g)
(2)3盒水果糖重300g,那么每盒有多重?
300÷3=100(g)
(3)300g水果糖,每盒重100g,可以装几盒?
300÷ 100=3(盒)
2、师:我们一起来看一下这三个算式,观察一下这三个算式的已知数和得数,说一说它们都是已知什么,求什么的运算?这就是分数除法的意义。
讨论:分数除法的意义和整数除法的意义一样吗?
总结:分数除法的意义与整数除法的意义相同,都是已知两个因数的积与其中一个因数,求另一个因数的运算。
二、探究分数除法的计算方法
(1)引导参与,探究新知
师:我们已经知道了分数除法的意义,那么如何来计算呢?请同学们看黑板。
出示问题1。
请大家拿出一张操作纸,涂色表示出这张纸的4/5。
师:把一张纸的4/5平均分成2份,每份是这张纸的几分之几?怎样列式?
4/5÷2
请同学们通过涂一涂,算一算的方式来研究4/5÷2怎样计算。小组合作,汇报交流。
方法一:把4/5平均分成2份就是把4份平均分成2份,每份是2个1/5,也就是2/5。展示折纸和计算过程。
4/5÷2=4÷2/5=2/5
方法二:把一张纸的4/7平均分成2份,求每份是多少就是求4/5的1/2是多少,可以用乘法来做。展示折纸和计算过程。
4/5÷2=4/5×1/2=2/5
(2)质疑问难,理解新知
①师小结:有的是用分子除以整数,分母不变的方法算出结果2/5,有的是转化成分数乘法来做……那么在这些方法中,你最喜欢哪种?
②接下来就请你用自己喜欢的方法来解决这个问题:把一张纸的4/5平均分成3份,每份是这张纸的几分之几?先列式再用自己喜欢的方法计算。
③通过计算你们有什么发现?
生1、用第一种方法就不能做了。因为:上一题的时候,分子4是2的倍数,4÷2能得到整数商。而4÷3时,分子4不是3的整倍数,得不到整数商。所以不能用分子除以整数这种方法了。
生2:把除法转化成乘法来做……4/5÷3=4/5×1/3=4/15
能再讲讲这样做的道理吗?
师:“4/5÷3”表示把4/5平均分成3份,取其中的一份。
请同学们拿出第二张操作纸,你能把图中的4/5平均分成3份,并表示出其中的一份吗?
展示学生的分法
师(指着涂色部分):你所表示的这一部分是4/5的多少?
通过直观图理解4/5的1/3是4/15
(3)比较归纳,发现规律。
分数除以整数(0除外),等于分数乘这个整数的倒数。要注意的是:
结果最简。除号要变成乘号。
三、巩固练习
学生独立完成
四、课堂小结
1、分数除法的意义是什么?
2.分数除以整数的计算法则是什么?(学生总结)
五、作业布置
《分数除法》数学教案 篇4
教学目标
1、使学生掌握列方程解答已知一个数的几分之几是多少,求这个数的应用题的解答方法
2、培养学生分析问题、解答问题能力,以及认真审题的良好习惯.
教学重点
找准单位1,找出等量关系.
教学难点
能正确的分析数量关系并列方程解答应用题.
教学过程
一、复习、引新
(一)确定单位1
1、铅笔的支数是钢笔的 倍.
2、杨树的棵数是柳树的 .
3、白兔只数的 是黑兔.
4、红花朵数的 相当于黄花.
(二)小营村全村有耕地75公顷,其中棉田占 .小营村的棉田有多少公顷?
1、找出题目中的已知条件和未知条件.
2、分析题意并列式解答.
二、讲授新课
(一)将复习题改成例1
例1.小营村有棉田45公顷,占全村耕地面积的 ,全村的耕地面积是多少公顷?
1、找出已知条件和问题
2、抓住哪句话来分析?
3、引导学生用线段图来表示题目中的数量关系.
4、比较复习题与例1的相同点与不同点.
5、教师提问:
(1)棉田面积占全村耕地面积的 ,谁是单位1?
(2)如果要求全村耕地面积的 是多少,应该怎样列式?(全村耕地面积 ).
(3)全村耕地面积的 就是谁的面积?(就是棉田的面积)
解:设全村耕地面积是 公顷.
答:全村耕地面积是75公顷.
6、教师提问:应怎样进行检验?你还能用别的方法来解答吗?
(1)把 代入原方程,左边 ,右边是45,左边=右边,所以 是原方程的解.)
(公顷)
(根据棉田面积和 是已知的,全村耕地面积是未知的,根据分数除法意义,已知两个因数的积与其中一个因数,求另一个因数应该用除法计算.)
(二)练习
果园里有桃树560棵,占果树总数的 .果园里一共有果树多少棵?
1、找出已知条件和问题
2、画图并分析数量关系
3、列式解答
解1:设一共有果树 棵.
答:一共有果树640棵.
解1: (棵)
(三)教学例2
例2.一条裤子75元,是一件上衣价格的 .一件上衣多少钱?
1、教师提问
(1)题中的已知条件和问题有什么?
(2)有几个量相比较,应把哪个数量作为单位1?
2、引导学生说出线段图应怎样画?上衣价格的
3、分析:上衣价格的 就是谁的.价钱?(是裤子的价钱)谁能找出数量间相等的关系?(上衣的单价 =裤子的单价)
4、让学生独立用列方程的方法解答,并加强个别辅导.
解:设一件上衣 元.
答:一件上衣 元.
5、怎样直接用算术方法求出上衣的单价?
(元)
6、比较一下算术解法和方程解法的相同之处与不同之处.
相同点:都要根据数量间相等的关系式来列式.
不同点:算术解法是按照分数除法的意义直接列出除法算式;而方程解法则要先设未知数,再按照等量关系式列出方程.
三、巩固练习
(一)一个修路队修一条路,第一天修了全长 ,正好是160米,这条路全长是多少米?
提问:谁是单位1?数量间相等的关系式是什么?怎样列式?
(米)
(二)幼儿园买来 千克水果糖,是买来的牛奶糖的 ,买来牛奶糖多少千克?
(三)新风小学去年植树320棵,相当于今年植树棵数的 .今年、去年共植树多少棵?
1、课件演示:
2、列式解答
四、课堂小结
这节课我们学习了列方程解答的方法.这类题有什么特点?解题时分几步?
五、课后作业
(一)一桶水,用去它的 ,正好是15千克.这桶水重多少千克?
(二)王新买了一本书和一枝钢笔.书的价格是4元,正好是钢笔价格的 .钢笔价格是多少元?
(三)一种小汽车的最快速度是每小时行140千米,相当于一种超音速飞机速度的 .这种超音速飞机每小时飞行多少千米?
六、板书设计
《分数除法》数学教案 篇5
教学内容:
49~50页的内容及练习十二1~12题。
教学目标:
1.知识与能力:并会用分数表示两个数相除的商,明确可以用分数表示两个数相除的商。
2.过程与方法:通过观察、探究,理解分数与除法的关系,经历分数与除法的关系的探究过程
3.情感、态度与价值观:通过观察、探究,渗透辩证思想,激发学生学习兴趣。
教学重点:
掌握分数与除法的关系,会用分数表示两个数相除的商。
教学难点:
理解可以用分数表示两个数相除的商。
教具准备:
课件
教学过程:
一、复习导入
1.表示什么意思?它的分数单位是什么?它有几个这样的分数单位?
2.把一根铁丝平均截成3段,每段的长度是这根铁丝的几分之几,把谁看作单位“1”?
3.引入:5除以9,商是多少?板书:5÷9
如果商不用小数表示,还有其他方法吗?学习了分数与除法的关系后,就能解决这个问题了。板书课题:分数与除法。
二、新课讲授
1.教学例1:出示题目
(1)列出算式。(板书:1÷3=)
(2)讨论:1除以3结果是多少?你是怎样想的?
(3)教师画出示意图。把一个蛋糕平均分成3份,其中一份应是这个蛋糕的 ,就是 个“1”。
板书:1÷3= 1/3(个)
2.教学例2:出示题目
(1)动手操作。拿出三张同样大小的圆形纸片,把它看作3块饼,用剪刀把它们分成同样大小的4份。
(2)口述方法及每份分得的结果,教师总结几种不同的分法。
(3)归纳:从上面的操作可以看出,把3块饼平均分成4份,无论怎样分,每一份都是3块饼的 ,即3个 块,把3个 块饼合起来就是1个饼的 ,即 块,因此,3÷4=3/4 (块)。
由此可见, 不仅可以理解为把1块饼(单位“1”)平均分成4份,表示这样的3份的数,也可以看作把3块饼组成的整体(单位“1”)平均分成4份,表示这样1份的数。
学生相互说说 表示的意义。
3.教学分数与除法的关系。
(1)观察1÷3= 3÷4= 这两道算式,
想一想
①两个(非0)自然数相除,在不能得到整数商的情况下还可以用什么数表示?
②用分数表示商时,除式里的被除数,除数分别是分数里的什么?
③分数与除法的关系是怎样的?
(2)总结三点
①分数可以表示除法的商。
②在表示除法的商时,要用除数作分母,被除数作分子。
③除法里的被除数相当于分数里的'分子,除数相当于分数里的分母(强调“相当于”一词)。分数与除法的关系可以表示成下面的形式
(3)如果用a表示被除数,b表示除数,那么分数与除法的关系可以怎样表示
板书:a÷b=a/b (b≠0)
(4)这里的b能为0吗?为什么?
明确:两个整数相除,商可以用分数表示,反过来,分数能不能看作两个整数相除?(可以,分数的分子相当于除法中的被除数,分母相当于除数)
(5)分数与除法有区别吗?区别在哪里?
(分数是一种数,但也可以看作两个数相除,除法是一种运算)
4.教学例3:出示题目
(1)列出算式。板书:7÷10
(2)怎样计算?。7÷10=
三、巩固练习。
1.做一做:独立完成,集体订正。
2.练习十二的第1、2题:独立完成,订正时说一说怎样计算。
第3、4题:做在书上,集体订正。
第5、6题:独立完成,订正时说一说是怎么想的。
3.作业:练习十二7----11题,选作12题。
四、课堂小结
这节课学习了什么知识,你有哪些收获?
板书设计:
分数与除法
例1:1÷3= 1/3(个)
例2:3÷4=3/4 (个)
例3:7÷10= 7/10
《分数除法》数学教案 篇6
教学目标
使学生掌握分数除法和加、减法混合运算的运算顺序,能正确进行运算,并根据具体情况合理计算,提高学生四则计算的能力。
教学重难点
能正确进行运算,并根据具体情况合理计算,提高学生四则计算的.能力。
教学准备
教学过程设计
教学内容
师生活动
备注
一、 复习引新
二、教学新课
三、课堂
四、作业
1、说说下面各题的运算顺序
8÷2+9÷318÷(12-3)
2、将上题中的数据改为分数,问运算顺序怎样?
3、问:分数除法和加、减法的混合运算顺序和整数除法和加、减法的混合运算顺序是否一样?
1、出示例1
让学生自己独立完成,一人上黑板,集体说解题顺序。
2、组织练习
做“练一练”第1题
3、教学例2
出示例2
问:先算什么,再算什么?
学生口答、老师边板书边提问。
指出:这道题在把除法改为乘法后,可以应用乘法分配律使计算简便。所以我们在混合运算时,每一步计算时,都要注意观察算式的特点,能用简便算法的一般用简便算法。
4、组织练习
做“练一练”第2题
问:应用了什么定律,要怎样计算?
指出:在除法转化成乘法后,要注意有一些题可以用乘法的运算定律使计算简便。
这节课学习了分数除法和加、减法的混合运算。谁来说一说它的运算顺序怎样?运算时要注意什么?
练习十一第1~3题的第一行,第4、5题
课后感受
本节课的重点放在简便运算上,基本上同学们还是掌握的不错。
《分数除法》数学教案 篇7
教学目标:
1、通过实例,使学生知道分数除法的意义与整数除法的意义是相同的,并使学生掌握分数除以整数的计算法则。
2、动手操作,通过直观认识使学生理解整数除以分数,引导学生正确地总结出计算法则,能运用法则正确地进行计算。
3、培养学生观察、比较、分析的能力和语言表达能力,提高计算能力。
教学重点:
使学生理解算理,正确总结、应用计算法则。
教学难点:
使学生理解整数除以分数的算理。
教具准备:多媒体课件
教学过程:
一、旧知铺垫(课件出示)
1、复习整数除法的`意义
(1)引导学生回忆整数除法的计算法则:已知两个因数的积与其中一个因数,求另一个因数的运算。
(2)根据已知的乘法算式:5×6=30,写出相关的两个除法算式。(30÷5=6,30÷6=5)
2、口算下面各题
×3 × ×
× ×6 ×
二、新知探究
(一)、教学例1
1、课件出示自学提纲:
(1)出示插图及乘法应用题,学生列式计算。
(2)学生把这道乘法应用题改编成两道除法应用题,并解答。
(3)将100克化成千克,300克化成千克,得出三道分数乘、除法算式。
2、学生自学后小组间交流
3、全班汇报:
100×3=300(克)
A、3盒水果糖重300克,每盒有多重? 300÷3=100(克)
B、300克水果糖,每盒100克,可以装几盒? 300÷100=3(盒)
×3= (千克) ÷3= (千克) ÷3=3(盒)
4、引导学生通过整数题组和分数题组的对照,小组讨论后得出:
分数除法的意义与整数除法相同,都是已知两个因数的积与其
中一个因数,求另个一个因数。都是乘法的逆运算。
(二)、巩固分数除法意义的练习:P28“做一做”
(三)、教学例2
(1)学生拿出课前准备好的纸,小组讨论操作,如何把这张纸的平均分成2份,并通过操作得出每份是这张纸的几分之几。
(2)小组汇报操作过程,得出:将一张纸的平均分成2份,每份是这张纸的。
(3)引导学生数形结合,对照不同的折法,说出两种不同的计算方法。
A、 ÷2= =,每份就是2个。
B、 ÷2= × =,每份就是的。
(4)如果把这张纸的平均分成3份呢?让学生从上面两种方法中选择一种进行计算,通过操作对比,让学生发现第二种方法适用的范围更广。
4、引导学生观察÷2和÷3两个算式,概括出分数除以整数的计算法则:分数除以整数,等于乘上这个整数的倒数。
三、当堂测评(课件出示)
1、计算
÷3 ÷3 ÷20 ÷5 ÷10 ÷6
2、解决问题
(1)、一辆货车2小时耗油10/3升,平均每小时耗油多少升?
(2)、正方形的周长是4/5米,它的边长是多少米?
学生独立完成。
教师讲评,小组间批阅。
四、课堂总结
1、今天我们学习了哪些内容?(分数除法的意义及分数除以整数的计算法则)
2、谁来把这两部分内容说一说?
教学后记
《分数除法》数学教案 篇8
教学目标
1、使学生理解分数乘、除法应用题的相同点与不同点,能准确解答应用题.
2、加深学生对三类应用题的数量关系和内在联系的认识,提高学生的分析能力和解答应用题的能力.
教学重点
理解分数乘、除法应用题的异同点,会正确解答.
教学难点
能正确解答分数乘、除法应用题.
教学过程
一、复习引新
(一)下面各题中应该把哪个数量看作单位“1”?
1、花手绢的块数是白手绢的
2、白手绢块数的 正好是花手绢的块数.
3、花手绢的块数相当于白手绢的
4、白手绢块数的 倍相当于花手绢的块数
(二)教师提问
1、求一个数是另一个数的的几分之几用什么方法?
2、求一个数的几分之几是多少用什么方法?
3、已知一个数的几分之几是多少,求这个数,用什么方法?
(三)谈话导入
为了更进一步了解每一类应用题的特点,巩固解题方法,请同学们和老师一起来做下面一组练习.
二、讲授新课
(一)教学例3
1、课件演示:分数除法应用题
2、比较.
(1)我们把这三道题放在一起比较,它们有什么相同点?
相同点:三个数量是相同的;需要找准单位“1”来分析.
(2)它们有什么区别呢?
不同点:已知和所求不同;解题方法不同.
3、小结:分数应用题主要有以上三类:
(1)求一个数是另一个数的几分之几.
(2)求一个数的几分之几是多少.
(3)已知一个数的几分之几是多少求这个数.
4、解答分数应用题的方法是什么?
抓住分率句;找准单位“1”;画图来分析;列式不必急.
三、巩固练习
(一)应用题
1、一个排球36元,一个篮球40元,一个排球的价钱是一个篮球价钱的几分之几?
(1)学生独立分析列式
(2)要求根据这道题的数量关系,改编出一道分数乘法应用题和一道分数除法应用题.
2、学校有故事书36本,是科技书的 ,科技书有多少本?
3、学校有故事书36本,科技书是故事书的 ,科技书有多少本?
(二)补充条件并列式解答.
一条路长15千米,修了全长的 ,_________________?
(三)选择正确答案
1、修一条长240千米的公路,修了 ,修了多少千米?
2、修一条长240千米的公路,已经修了150千米,修了的占全长的几分之几?
240× 240÷ 150÷240 240÷150
(四)思考题
有一个两位数,十位上的数是个位上的数的 .十位上的数加上2,就和个位上的数相等.这个两位数是多少?
四、课堂小结
这节课我们进行了三类题的对比练习.解决这三类题的关键是什么?
五、课后作业
(一)解答下面各题
1、六一班有学生45人,其中女生有20人.女生人数占全班的几分之几?
2、六一班有学生45人,女生占 .女生有多少人?
3、六一班有男生25人,占全班的' .全班共有学生多少人?
(二)校园里栽了杨树144棵,栽的松树的棵数是杨树的 ,校园里栽了松树多少棵?
(三)学校买了蓝墨水30瓶,红墨水24瓶.蓝墨水是红墨水的几倍?
六、板书设计
分数乘除法对比练习
1、池塘里有12只鸭和4只鹅,鹅的只数是鸭的几分之几?
4÷12=
2、池塘里有12只鸭,鹅的只数是鸭的 .池塘里有多少只鹅?
12× =4(只)
3、池塘里有4只鹅,正好是鸭的只数的 .池塘里有多少只鸭?
4÷ =12(只)
《分数除法》数学教案 篇9
一、教学内容
苏教版小学数学第十一册第33—38页“分数除法”例1—例4。
二、简要分析
本节课是学生刚刚学过“分数乘法”和“倒数”这一概念的基础上进行教学。学生已有的知识还有“商不变的规律”。本课例就是教者引导学生运用已有的知识或经验,去探索获取新知识,形成和发展新知识结构,同时发展学生的智力和能力。大胆的改革教材,进行知识的组块教学,勇于实践,缩短“分数除法计算法则”教时的一个例子。
三、教学过程
(一)复习旧知,作好铺垫,导入新课。
1、说出下列各数的倒数(出示卡片)
2、6、—、—、0.5、 1—、 0.7
2、用投影打出:下面两题简便计算的根据是什么?
12÷25=(12×4)÷(25×4)=48÷100=0.48
11÷125=(11×8)÷(125×8)=88÷1000=0.088
[简析:商不变规律的应用,为后面学习新知作出充分准备。]
3、用投影分A、B组分别出示:下列算式中,哪些算式你一眼就能看了它的商?
A组:78÷10.35÷1136÷721.8÷9
B组:—÷1—÷1—÷218÷——÷1—÷——÷—4—÷2——÷0.7
[简析:这两组有趣习题的练习,有利于调动学生的学习激情,学生很快说出除数是1的算式,一眼就看出商是几。当学生看出除数为1时,计算就最为简便。(这里为学习新知作了重要的铺垫)一看就知道商是几(即被除数)]
师:接着问B组题中是些什么算式,生答师板书“分数除法”算,今天就来研究“分数除法”的计算法则。
(二)指导探索,在新旧知识的衔接上教师加以点拔导学。
(1)请大家列出B组算式中除数不是1的算式。
—÷218÷——÷——÷—4—÷2— —÷0.7
(2)先来研究前四道算式,这四道算式中除数都不是1,你能想办法将这除数变为1,而商不变吗?
[评析:此时学生的学习情绪积极性高,纷纷欲试,是学习新知识的`最佳时机。]
师:下面分学习小组进行讨论。
(3)交流。
学生甲:以—÷2为例,除数是2,将2×—除数变为1,要使商不变,被除数—也要乘以—。
学生乙:以18÷—为例,除数是—,将—×—除数变为1,要使商不变,被除数18也要乘以—。
[评析:此题是倒数的概念和商不变规律同时应用,运用旧知,用得巧。]
(教师根据学生的回答,作好下列板书)
—÷2=(—×—)÷(2×—)18÷—=(18×—)÷(—×—)
=—×—÷1=18×—÷1
=—×— =18×—
(三)引导学生观察、比较、类推,得出结论。
师问:这里我们是应用的什么进行变化的?(商不变的规律)
(教者把上面板书用虚线框起)让学生观察比较。
—÷2=—×—18÷—=18×—
问:这两个等式的前后发生了什么变化?他们变化有什么共同点?(分学习小组讨论)
生汇报:除号变成了乘号,除数变成了它的倒数。
分数除法算式变成了分数乘法算式。
师小结:你们观察得真仔细,将分数除法转化为分数乘法来做,今后到中学里学习还可用到“转化”这一重要思想把未知的转化成已知,去探索知识,为人类服务。
练习:用复合投影片打出:
将下列除法算式转化为乘法算式(学生边回答边出示下排转化的式子)
—÷— —÷— —÷612÷—
=—×—=—×4 =—×—=12×—
[评析:抓住时机,练重点难点,强化新知。]
6、讨论、比较、类推,概括方法。
问:在刚才的练习中,你认为有什么规律?
(生答:被除数不变,除号变成了乘号,同时除数变成了它的倒数。)
师问:如果这些被除数作为甲数,除数作为乙数,你能用一句话概括一下它的规律吗?
生答师板书:甲数除以乙数,等于甲数乘以乙数的倒数。这就是分数除法的计算法则。(看书第38页)
引导学生讨论:为什么乙数要加上零除外?
(四)利用法则,练习重点,巩固新知。
1、—÷3=—×———=12÷—=12×———=—÷—=—×———=—÷—=———()———
2、计算。(并指名板书,注意书写格式)
—÷3—÷——÷36÷—
3÷——÷——÷— —÷—
3、改错。
(1)9÷—=9÷—=—=10—
(2)—÷5=—×—=—
(3)—÷—=—×—=—
4、判断。
(1)1÷—=—÷1
(2)a÷b=a×—
[评析:改错题、判断题的设计,进一步强化了计算法则。]
(五)作业练习,熟记法则。
1、练习八第3题的前4题
第6题的前4题
2、校对答案。(说出过程,强化法则的应用)
思考题:计算
(1)4—÷2—
(2)—÷0.7
[评析:这里是知识结构的完整,知识点的引伸。]
(六)总结。
1、今天我们一起研究了什么内容?
2、你有哪些收获?
3、计算过程中应注意什么问题?
四、教后评析
本节课教者利用旧知识的学习作铺垫,运用知识的迁移规律,对分数除法法则进行整体教学,利用观察、比较、类推等方法缩短了教学课时数,打破了原教材的束缚,学生的学习积极性高,发展了学生的智力,受到良好的教学效果。
1、恰当地调整了教材,进行知识的组块教学,挖掘了教材(知识)本身的潜在因素,利用旧知,通过师生的对话、教师的点拔,为学生主动探索、自己发现方法概括法则创造条件,有利于学生掌握、研究教学问题的思维方法,打破了一例一题传统的教学模式,体现了现代小学数学教育的特点。
2、抓住知识间的内在联系,在知识连接点衔接处精心设计习题、提问,让学生主动探索问题。
3、重视学生素质的培养,注重面向全体学生、全员参与,注重发展学生的思维,培养能力和方法指导,从铺垫(全员练习)→新课(转化除数、变除为乘、试做、比较、类推、概括法则)→巩固新知(填空、计算、改错、判断)→作业练习→思考题引伸拓展→总结整个过程,充分体现了“以教师为主导、学生为主体、训练为主线”的教学原则。
返回首页