七年级数学教案
文学网整理的七年级数学教案(精选6篇),供大家参考,希望能给您提供帮助。
七年级数学教案 篇1
一、素质教育目标
(一)知识教学点
1.了解有理数除法的定义.
2.理解倒数的意义.
3.掌握有理数除法法则,会进行运算.
(二)能力训练点
1.通过有理数除法法则的导出及运算,让学生体会转化思想.
2.培养学生运用数学思想指导思维活动的能力.
(三)德育渗透点
通过学习有理数除法运算、感知数学知识具有普遍联系性、相互转化性.
(四)美育渗透点
把小学算术里的乘法法则推广到有理数范围内,体现了知识体系的完整美.
二、学法引导
1.教学方法:遵循启发式教学原则,注意创设问题情境,精心构思启发导语 并及时点拨,使学生主动发展思维和能力.
2.学生学法:通过练习探索新知→归纳除法法则→巩固练习
三、重点、难点、疑点及解决办法
1.重点:除法法则的灵活运用和倒数的概念.
2.难点:有理数除法确定商的符号后,怎样根据不同的情况来取适当的方法求商的绝对值.
3.疑点:对零不能作除数与零没有倒数的理解.
四、课时安排
1课时
五、教具学具准备
投影仪、自制胶片、彩粉笔.
六、师生互动活动设计
教师出示探索性练习,学生讨论归纳除法法则,教师出示巩固性练习,学生以多种形式完成.
七、教学步骤
(一)创设情境,复习导入
师:以上我们学习了有理数的乘法,这节我们应该学习,板书课题.
【教法说明】
同小学算术中除法一样—除以一个数等于乘以这个数的倒数,所以必须以学好求一个有理数的倒数为基础学习.
(二)探索新知,讲授新课
1.倒数.
(出示投影1)
4×( )=1; ×( )=1; 0.5×( )=1;
0×( )=1; -4×( )=1; ×( )=1.
学生活动:口答以上题目.
【教法说明】
在有理数乘法的基础上,学生很容易地做出这几个题目,在题目的选择上,注意了数的全面性,即有正数、0、负数,又有整数、分数,在数的变化中,让学生回忆、体会出求各种数的倒数的方法.
师问:两个数乘积是1,这两个数有什么关系?
学生活动:乘积是1的两个数互为倒数.(板书)
师问:0有倒数吗?为什么?
学生活动:通过题目0×( )=1得出0乘以任何数都不得1,0没有倒数.
师:引入负数后,乘积是1的两个负数也互为倒数,如-4与,与互为倒数,即的倒数是.
提出问题:根据以上题目,怎样求整数、分数、小数的倒数?
【教法说明】
教师注意创设问题情境,让学生参与思考,循序渐进地引出,对于有理数也有倒数是.对于怎样求整数、分数、小数的倒数,学生还很难总结出方法,提出这个问题是让学生带着问题来做下组练习.
(出示投影2)
求下列各数的倒数:
(1); (2); (3);
(4); (5)-5; (6)1.
学生活动:通过思考口答这6小题,讨论后得出,求整数的倒数是用1除以它,求分数的倒数是分子分母颠倒位置;求小数的倒数必须先化成分数再求.
2.计算:8÷(-4).
计算:8×()=? (-2)
8÷(-4)=8×().
再尝试:-16÷(-2)=? -16×()=?
师:根据以上题目,你能说出怎样计算吗?能用含字母的式子表示吗?
学生活动:同桌互相讨论.(一个学生回答)
师强调后板书:
[板书]
【教法说明】
通过学生亲自演算和教师的引导,对有理数除法法则及字母表示有了非常清楚的认识,教师放手让学生总结法则,尤其是字母表示,训练学生的归纳及口头表达能力.
(三)尝试反馈,巩固练习
师在黑板上出示例题.
计算(1)(-36)÷9, (2)()÷().
学生尝试做此题目.
(出示投影3)
1.计算:
(1)(-18)÷6; (2)(-63)÷(-7); (3)(-36)÷6;
(4)1÷(-9); (5)0÷(-8); (6)16÷(-3).
2.计算:
(1)()÷(); (2)(-6.5)÷0.13;
(3)()÷(); (4)÷(-1).
学生活动:
1题让学生抢答,教师用复合胶片显示结果.
2题在练习本上演示,两个同学板演(教师订正).
【教法说明】
此组练习中两个题目都是对的直接应用.1题是整数,利用口答形式训练学生速算能力.2题是小数、分数略有难度,要求学生自行演算,加强运算的准确性,2题(2)小题必须把小数都化成分数再转化成乘法来计算.
提出问题:(1)两数相除,商的符号怎样确定,商的绝对值呢?(2)0不能做除数,0做被除数时商是多少?
学生活动:分组讨论,1—2个同学回答.
[板书]
2.两数相除,同号得正,异号得负,并把绝对值相除.
0除以任何不等于0的数,都得0.
【教法说明】
通过上组练习的结果,不难看出与有理数乘法有类似的法则,这个法则的得出为计算有理数除法又添了一种方法,这时教师要及时指出,在做有理数除法的题目时,要根据具体情况,灵活运用这两种方法.
(四)变式训练,培养能力
回顾例1 计算:
(1)(-36)÷9; (2)()÷().
提出问题:每个题目你想采用哪种法则计算更简单?
学生活动:(1)题采用两数相除,异号得负并把绝对值相除的方法较简单.
(2)题仍用除以一个数等于乘以这个数的倒数较简单.
提出问题:-36:9=?;:()=?它们都属于除法运算吗?
学生活动:口答出答案.
(出示投影4)
例2 化简下列分数
例3 计算
(1)()÷(-6);
(2)-3.5÷×();
(3)(-6)÷(-4)×().
学生活动:例2让学生口答,例3全体同学独立计算,三个学生板演.
【教法说明】
例2是检查学生对有理数除法法则的灵活运用能力,并渗透了除法、分数、比可互相转化,并且通过这种转化,常常可能简化计算.例3培养学生分析问题的能力,优化学生思维品质:
如在(1)()÷(-6)中.
根据方法①()÷(-6)=×()=.
根据方法②()÷(-6)=(24+)×=4+=.
让学生区分方法的差异,点明方法②非常简便,肯定当除法转化成乘法时,可以利用有理数乘法运算律简化运算.(2)(3)小题也是如此.
(五)归纳小结
师:今天我们学习了及倒数的概念,回答问题:
1.的倒数是__________________();
学生活动:分组讨论。
【教法说明】
对这节课全部知识点的回顾不是教师单纯地总结,而是让学生在思考回答的过程中自己把整节内容进行了梳理,并且上升到了用字母表示的数学式子,逐步培养学生用数学语言表达数学规律的能力.
八、随堂练习
1.填空题
(1)的倒数为__________,相反数为____________,绝对值为___________
(2)(-18)÷(-9)=_____________;
(3)÷(-2.5)=_____________;
(4);
(5)若,是;
(6)若、互为倒数,则;
(7)或、互为相反数且,则,;
(8)当时,有意义;
(9)当时,;
(10)若,,则,和符号是_________,___________.
2.计算
(1)-4.5÷()×;
(2)(-12)÷〔(-3)+(-15)〕÷(+5).
九、布置作业
(一)必做题:1.仿照例1、例2自编2道题,同桌交换解答.
2.计算:(1)()×()÷();
(2)-6÷(-0.25)×.
3.当,,时求的值.
(二)选做题:1.填空:用“>”“<”“=”号填空
(1)如果,则,;
(2)如果,则,;
(3)如果,则,;
(4)如果,则,;
2.判断:正确的打“√”错的打“×”
(1)( );
(2)( ).
3.(1)倒数等于它本身的数是______________.
(2)互为相反数的数(0除外)商是________________.
【教法说明】
必做题为本节的重点内容,首先在这节课学习的基础上让同学仿照例题编题,学生也有这方面的能力,极大调动了学生积极性,提高了学生运用知识的能力.
选作题是对这节课重点内容的进一步理解和运用,为学有余力的学生提供了展示自己的机会.
十、板书设计
七年级数学教案 篇2
教学目标:
知识能力:理解有理数的概念,掌握有理数的两种分类方法,能够按要求对给定的有理数进行分类。
过程与方法:通过本节的学习,培养学生正确的分类讨论观点和分类能力。
情感、态度、价值观:通过本节课的学习,体验成功的喜悦,保持学好数学的信心。
教学重点:
掌握有理数的两种分类方法
教学难点:
给定的数字将被填入它所属的集合中
教学方法:
问题导向法
学习方法:
自主探究法
教学过程:
一、形势归纳
小学我们学了整数和分数,上节课我们学了正数和负数。谁能快速提出以下问题?
1、有以下数字:15,—1/9,—5,2/15,—13/8,0.1,—5.22,—80,0,123,2.33
(1)将以上数字填入以下两组:正整数集{}和负整数集{}。你填完了吗?
(2)将以上数字填入以下两个集合:整数集合{}和分数集合{}。你填完了吗?
称整数和分数为有理数。(指点题,板书)
二、自学指导
学生自学课本,根据课本寻找自学的机会
提纲中问题的答案;老师先做必要的板书准备,再到学生中巡视指导,并了解掌握学生自学情况,为展示归纳作准备。
三、展示归纳
1、找有问题的学生逐题展示自学提纲中的问题答案,学生说,老师板书;
2、发动学生进行评价、补充、完善,教师根据每个题目的展示情况进行必要的讲解和强调;
3、全部展示完毕后,老师对本段知识做系统梳理,关键点予以强调。
四、变式练习
逐题出示,先让学生独立完成,再请有问题的学生汇报结果,老师板书,并发动其他学生评价、补充并完善,最后老师根据需要进行重点强调。
五、总结与反思:通过本节课的学习,你有什么收获?
六、作业:必做题:课本14页:1、9题
七年级数学教案 篇3
问:你会解这个方程吗?你能否从小敏同学的解法中得到启发?
这个方程不像例l中的方程(1)那样容易求出它的解,小敏同学的方法启发了我们,可以用尝试,检验的方法找出方程(2)的解。也就是只要将x=1,2,3,4,……代人方程(2)的两边,看哪个数能使两边的值相等,这个数就是这个方程的解。
把x=3代人方程(2),左边=13+3=16,右边=(45+3)=48=16,
因为左边=右边,所以x=3就是这个方程的解。
这种通过试验的方法得出方程的解,这也是一种基本的数学思想方法。也可以据此检验一下一个数是不是方程的解。
问:若把例2中的“三分之一”改为“二分之一”,那么答案是多少?
同学们动手试一试,大家发现了什么问题?
同样,用检验的方法也很难得到方程的解,因为这里x的值很大。另外,有的方程的解不一定是整数,该从何试起?如何试验根本无法人手,又该怎么办?
这正是我们本章要解决的问题。
三、巩固练习
1、教科书第3页练习1、2。
2、补充练习:检验下列各括号内的数是不是它前面方程的解。
(1)x-3(x+2)=6+x(x=3,x=-4)
(2)2y(y-1)=3(y=-1,y=2)
(3)5(x-1)(x-2)=0(x=0,x=1,x=2)
四、小结。本节课我们主要学习了怎样列方程解应用题的方法,解决一些实际问题。谈谈你的学习体会。
五、作业。教科书第3页,习题6。1第1、3题。
解一元一次方程
1、方程的简单变形
教学目的
通过天平实验,让学生在观察、思考的基础上归纳出方程的两种变形,并能利用它们将简单的方程变形以求出未知数的值。
重点、难点
1、重点:方程的两种变形。
2、难点:由具体实例抽象出方程的两种变形。
教学过程
一、引入
上一节课我们学习了列方程解简单的应用题,列出的方程有的我们不会解,我们知道解方程就是把方程变形成x=a形式,本节课,我们将学习如何将方程变形。
二、新授
让我们先做个实验,拿出预先准备好的天平和若干砝码。
测量一些物体的质量时,我们将它放在天干的左盘内,在右盘内放上砝码,当天平处于平衡状态时,显然两边的质量相等。
如果我们在两盘内同时加入相同质量的砝码,这时天平仍然平衡,天平两边盘内同时拿去相同质量的砝码,天平仍然平衡。
如果把天平看成一个方程,课本第4页上的图,你能从天平上砝码的变化联想到方程的变形吗?
让同学们观察图6.2.1的左边的天平;天平的左盘内有一个大砝码和2个小砝码,右盘上有5个小砝码,天平平衡,表示左右两盘的质量相等。如果我们用x表示大砝码的质量,1表示小砝码的质量,那么可用方程x+2=5表示天平两盘内物体的质量关系。
七年级数学教案 篇4
教学设计思路
“问题是思考的开始”,问题的提出是数学教学中重要的一环,使学生明确学习内容的必要性,才有可能调动学生解决问题的主动性,促进学生认识能力的提高与发展.而对于生产和生活中的实际问题,学生看得见,摸得着,有的还亲身经历过,所以,当教师提出这些问题时,他们一定会跃跃欲试,想学以致用,这样能起到充分调动学习积极性的作用.
教学目标
知识与技能:
1.经历同底数幂的除法运算性质的获得过程,掌握同底数幂的运算性质,会用同底数幂的运算性质进行有关计算,提高学生的运算能力.
2.了解零指数幂和负整指数幂的意义,知道零指数幂和负整指数幂规定的合理性.
过程与方法:
经历探索同底数幂的除法的运算性质的过程,进一步体会幂的意义,发展推理能力,提高语言表达能力.
情感态度价值观:
感受数学公式的简洁美、和谐美.
重点难点
重点:准确、熟练地运用法则进行计算.
难点:负指数幂的条件及法则的正确运用.
教学过程
1.创设情境,复习导入
前面我们学习了同底数幂的乘法,请同学们回答如下问题,看哪位同学回答得快而且准确.
(1)叙述同底数幂的乘法性质.
(2)计算:① ② ③
学生活动:学生回答上述问题.
(m,n都是正整数)
教法说明:通过复习引起学生回忆,巩固同底数幂的乘法性质,同时为本节的学习打下基础.
2.提出问题,引出新知
我国研制的“银河”巨型计算机的运算速度是108次/秒,光计算机(主要由光学运算器、光学存储器和光学控制器组成)的运算速度是108次/秒.光计算机的运算速度是“银河”计算机运算速度的多少倍?
怎样计算 呢?
这就是我们这节课要学习的同底数幂的除法运算.
3.导向深入,得出性质
做一做(鼓励学生根据幂的意义和除法意义,独立得出结果)
按乘方的意义和除法计算:
(1)
(2)
(3)
(4)
探究:(1)若a≠0,a15÷a5等于什么?
(2)通过上面的计算,对同底数幂的除法运算,你发现了什么规律?
学生思考,回答
师生共同总结:
教师把结论写在黑板上.
请同学们试着用文字概括这个性质:
【公式分析与说明】提出问题:在运算过程当中,除数能否为0?
学生回答:不能.(并说明理由)
由此得出:同底数幂相除,底数 .教师指出在我们所学知识范围内,公式中的m、n为正整数,且m>n,最后综合得出:
一般地,这就是说,同底数幂相除,底数不变,指数相减.
尝试证明:
4.揭示规律
由此我们规定
规律一:任何不等于0的数的0次幂都等于1.
一般我们规定
规律二:任何不等于0的数的-p(p是正整数)次幂等于这个数的p次幂的倒数.
5.尝试反馈,理解新知
(补充)例2 自从扫描隧道电子显微镜发明后,便诞生了一门新技术一纳米技术.纳米是长度单位,1 nm (纳米)等于 0.000 000 001 m .请用科学记数法表示 0.000 000 001.
分析:绝对值较小的数可以用一个有一位整数的数与 10 的负指数幕的乘积的形式来表示.
学生活动:学生在练习本上完成例l、例2,由2个学生板演完成之后,由学生判断板演是否正确.
教师活动:统计做题正确的人数,同时给予肯定或鼓励.
6.反馈练习,巩固知识
练习一
(1)填空:
① ②
③ ④
(2)计算:
① ②
③ ④
学生活动:第(l)题由学生口答;第(2)题在练习本上完成,然后同桌互阅,教师抽查.
练习二
下面的计算对不对?如果不对,应怎样改正?
(1) (2)
(3) (4)
学生活动:此练习以学生抢答方式完成,注意训练学生的表述能力,以提高兴趣.
总结、扩展
我们共同总结这节课的学习内容.
学生活动:①同底数幂相除,底数 ,指数 .
②由学生谈本书内容体会.
教法说明:强调“不变”、“相减”.学生谈体会,不仅是对本节知识的再现,同时也培养了学生的口头表达能力和概括总结能力.
6.小结
本节主要学习内容:
同底数幂的除法运算性质.
零指数与负整数指数的意义.
用科学记数法表示绝对值较小的数的方法.
幂的运算与指数运算的关系: (m,n都是正整数); (a≠0,m,n都是正整数),即在底数相同的条件下:幂相乘→指数相加,幂相除→指数相减.
注意的地方:
在同底数幂的除法性质及零指数幂与负整数指数幂中,千万不能忽略底数a≠0的条件.
7.布置作业
P78 A组3、4 B组2、3
8.板书设计
8.3同底数幂的除法
一、同底数幂的法则
二、例题 练习
例1 (补充)例2
七年级数学教案 篇5
教学目的:
(一)知识点目标:
1.了解正数和负数是怎样产生的。
2.知道什么是正数和负数。
3.理解数0表示的量的意义。
(二)能力训练目标:
1.体会数学符号与对应的思想,用正、负数表示具有相反意义的量的符号化方法。
2.会用正、负数表示具有相反意义的量。
(三)情感与价值观要求:
通过师生合作,联系实际,激发学生学好数学的热情。
教学重点:
知道什么是正数和负数,理解数0表示的量的意义。
教学难点:
理解负数,数0表示的量的意义。
教学方法:
师生互动与教师讲解相结合。
教具准备:
地图册(中国地形图)。
教学过程:
引入新课:
1.活动:由两组各派两名同学进行如下活动:一名按老师的指令表演,另一名在黑板上速记,看哪一组记得最快、?
内容:老师说出指令:
向前两步,向后两步;
向前一步,向后三步;
向前两步,向后一步;
向前四步,向后两步。
如果学生不能引入符号表示,教师可和一个小组合作,用符号表示出+2、-2、+1、-3、+2、-1、+4、-2等。
[师]其实,在我们的生活中,运用这样的符号的地方很多,这节课,我们就来学习这种带有特殊符号、表示具有实际意义的数-----正数和负数。
讲授新课:
1.自然数的产生、分数的产生。
2.章头图。问题见教材。让学生思考-3~3℃、净胜球数与排名顺序、±0.5、-9的意义。
3、正数、负数的定义:我们把以前学过的0以外的数叫做正数,在这些数的前面带有“一”时叫做负数。根据需要有时在正数前面也加上“十”(正号)表示正数。
举例说明:3、2、0.5、等是正数(也可加上“十”)
-3、-2、-0.5、-等是负数。
4、数0既不是正,也不是负数,0是正数和负数的分界。
0℃是一个确定的温度,海拔为0的高度是海平面的平均高度,0的意义已不仅表示“没有”。
5、让学生举例说明正、负数在实际中的应用。展示图片(又见教材P5图1.1-2-3)让学生观察地形图上的标注和记录支出、存入信息的本地X银行的存折,说出你知道的信息。
巩固提高:练习:课本P5练习
课时小结:这节课我们学习了哪些知识?你能说一说吗?
课后作业:课本P7习题1.1的第1、2、4、5题。
活动与探究:在一次数学测验中,X班的平均分为85分,把高于平均分的高出部分记为正数。
(1)美美得95分,应记为多少?
(2)多多被记作一12分,他实际得分是多少?
七年级数学教案 篇6
【教学目标】
引导学生通过常规分析,得出解题思路,经历提出问题,自探问题,应用知识的过程,自主总结出解题办法;
【教学难点】
找出题目中的可有可无的已知条件,说一说为什么可以这样认为
【教学过程】
问:以前学过的有关路程,时间,和速度之间的关系是怎么样的?你能写出它们之间的关系吗?
出示例题:甲、乙两地公路全长352千米。汽车原来从甲地到乙地要11小时,建成高速公路后,汽车每小时速度是原来的2.5倍。现在汽车从甲地到乙地需要多少小时?
分析:要求现在汽车从甲地到乙地需要多少小时,那么先要求出汽车现在的速度,而汽车现在的速度是原来的2.5倍,那么还得先求出汽车原来的速度。根据`甲乙两地公路全长352千米。汽车原来从甲地到乙要11小时',可以求出汽车原来的速度。
学生写出解答过程:汽车原来的速度:352÷1=32(千米); 汽车现在的速度:32×2.5=80(千米)
现在的时间:352÷80=4.4(小时)
问:用比例的思路该怎么样理解这道题目呢?
分析:甲、乙两地的公路长度一定,汽车的速度和所需的时间成反比例。因为现在的速度是原来的2.5倍,所以原来的时间是现在的
2.5倍。即:11÷2.5=4.4(小时)。
这样解答使得`甲乙两地公路全长352千米'成了多余条件,但是又不影响解答问题。
【我们来探索】
一批零件有240个,王师傅单独做需要6小时,李师傅的工作效率是王师傅的1.5倍,那么如果让李师傅单独做这批零件,需要几小时?
【总结】
在解答应用题时要善于应用不同的思路和技巧,巧解问题
【作业】
丁阿姨打一份稿件需4小时,王阿姨的速度是丁阿姨的,那么如果由王阿姨打这份稿件,需要几小时?
丁阿姨打一份稿件需要4小时,王阿姨的速度与丁阿姨的速度比是4:5,那么如果由王阿姨打这份稿件,需要几小时?
返回首页