返回首页
文学网 > 短文 > 教学教案 > 正文

八年级上册数学教学计划

2025/11/05教学教案

文学网整理的八年级上册数学教学计划(精选6篇),供大家参考,希望能给您提供帮助。

八年级上册数学教学计划 篇1

一、指导思想

从本学期开始,八年级学生要增加一门新学科——数学。数学是一门自然科学,跟平时的实际生活比较接近,本着“生活中的数学”这一思想来进行教学,让学生在形象生动中体会到数学的乐趣,也为以后的学习打下基础。

二、教材分析

本册教材共五章分别是:一、声现象,二、光现象,三、透镜及其应用,四、物态变化,五、电流和电路。具体章节又可分为:探究、演示、想想做做、想想议议、STS、科学世界、动手动脑学数学几大个板块。这样编排更有利于教育教学的开展,更有利于学生的认识和学好数学知识。在学习方法上,积极创造条件让学生主动学习参与实践,通过学生自己动手、动脑的实际活动,实现学生的全面发展。教科书采用了符合学生认知规律的由易到难、由简到繁,以学习发展水平为线索,兼顾到数学知识结构的体系。这样编排既符合学生认知规律,又保持了知识的结构性。通过一学期的教育教学,使学生能进入数学的世界里来,在掌握基础知识和技能的同时,对四周的数学自然世界有一个重新的、更加科学的了解和认识。

三、教学要求

1、进一步了解当前新课标的改革方向及趋势,学习新的数学教育观念。要围绕新的数学课程标准,开展教学研究活动,特殊是在科学探究教学上要积极实践,积累经验。

2、进一步突出应用数学知识教学,树立知识与应用并重的观念。数学教学要“从生活走向数学,从数学走向社会”,留意培养学生应用数学知识解决生活中简朴实际问题的能力,对生活和社会有进一步的了解、认识。

3、理论联系实际,还要留意适应新情况,增强时代感,加强数学教学的针对性和现实性,体现本学科教学的鲜明特点;要注重紧跟时代步伐,掌握时代脉博,懂得及时运用新材料、新信息以及社会生活中的热点问题;要注意创设新情景,提出新问题,激发学生的'学习兴趣,促进学生生动活泼主动学习。

4、注重培养学生的创新精神、观察能力和实践能力,注重培养学生运用所学知识认识和分析社会生活的能力。单纯地掌握课本知识,不是教学的最终目的。而应该通过教学使学生在掌握基础知识的前提下,使其能力和情感尤其是创新精神和实践能力获得充分地发展,并运用拥有的能力和情感去积极主动地探求未知,获取新知,使知识、能力和情感相辅相成、协调发展。把学生培养成全面发展的新世纪人才。

四、教学目标

(1)第一章声现象使学生了解振动使物体发声,声音的传播需要介质,声是一种波,频率越高,音调越高;振幅越大,响度越大;实际中既要合理地利用声音,同时也要有效地控制噪声。

(2)第二章光现象本章主要研究光现象及其规律,内容包括:光的直线传播、光的速度、颜色;光的反射规律;光的折射和跟现代生活十分密切的两种看不见的光──红外线、紫外线及其应用。

(3)第三章透镜及其应用这一章主要讲述透镜的初步知识和透镜在日常生活中的应用。透镜是照相机、投影仪等光学仪器的最重要的组成部分,研究透镜对光的作用和凸透镜成像是本章的中心内容。照相机、投影仪、放大镜和眼镜是日常生活中常用的光学仪器,学生应该对它们有所了解。

(4)第四章物态变化通过这一章的学习,应该使学生了解温度的概念,会正确使用常用的温度计测量温度。知道熔解、凝固现象,理解这些过程中晶体和非晶体的不同温度特点。知道液化、汽化现象,知道蒸发与沸腾过程中吸热,理解蒸发快慢与表面积、温度、气流有关。知道升华和凝华现象。

(5)第五章电流和电路电流和电路”的基本概念是本章的核心,通过让学生研究基本的串、并联电路和基本的测量,初步经历科学探究的过程,初步领会科学研究的方法。在电流和电路概念的基础上,通过家庭电路的学习,使学生在了解电流和电路知识应用的同时,受到了安全用电的教育。

五、教学措施

(1)认真研究新教材,根据新课标的要求恰当确定教学内容,选择教学方法,把“从生活走向数学,从数学走向社会”的教学理念运用到教学法中。

(2)认真分析学生状况,确定出优生与待努力生的层次,制定相应的教育方案。

(3)充分发挥课堂效率,做到突出重点,突破难点,使学生各方面的能力得到培养,使学生成为真正的学习主人。

(4)重点进行科学探究能力的培养。进行学生自主探究的训练。进一步激发他们学习数学的积极性。

八年级上册数学教学计划 篇2

一、工作要点:

面向全体,使每一个学生都在原有基础上得到充分发展,得到新的提高.贯彻"因材施教"的原则,面向全体学生进行教学.

尊重学生,以人的发展为本,培养学生的品德与修养,保护他们的自尊与自信,激发他们的梦想与激情.培养学生的创新意识和实践能力,促使学生全面和谐地发展.

二、工作任务:

(一)加强备课组建设

1、继续发扬数学备课组团结协作精神,组内同志要精诚团结,有事要多协商.

2、加强业务学习:加强业务进修,钻研新课程标准,研究新的教法,学法,使教育教学经验升华到新的台阶.

(二)加强常规教学工作

1、坚持集体备课制度:

备好课是上好课的前提和保证.备课时要坚持研究标准、教材、教法.各班力争做到统一进度,统一讲课内容,统一习题,统一作业,统一测试题.

2、强化课堂教学:

要强化课堂教学的过程管理,完善教学环节.要研究课堂教学的语言技能.使数学组教师的.课节节都是精品课,做到全天候.

3、坚持作业批改制度:

要结合本年级的实际,确定本年级的作业次数和每次的作业量.做到全批全改.

作业反馈的情况真实反映了学生理解知识与运用知识的情况,及时的给予辅导能有效地提高教学效率.

4、坚持单元过关制度:

每学完一章,都要进行验收,试题要灵活,要符合学生实际.考后要及时进行批改和讲评.

5、坚持听课制度:

按学校规定:任课教师每学期每人不少于8节,力争超额完成听课任务.组内教师每人上一节观摩课,课后要有说课和评课.逐步提升教学能力.

三、教材分析

第一章全等三角形主要介绍了三角形全等的性质和判定方法及直角三角形全等的特殊条件.更多的注重学生推理意识的建立和对推理过程的理解,学生在直观认识和简单说明理由的基础上,从几个基本事实出发,比较严格地证明全等三角形的一些性质,探索三角形全等的条件.

第二章轴对称立足于已有的生活经验和初步的数学活动经历,从观察生活中的轴对称现象开始,从整体的角度直观认识并概括出轴对称的特征;通过逐步分析角、线段、等腰三角形等简单的轴对称图形,引入等腰三角形的性质和判定的概念.

第三章勾股定理整式在形式上力求突出:勾股定理产生的实际背景——使学生经历实际问题"符号化"的过程,发展符号感;有关运算法则的探索过程——为探索有关运算法则设置了归纳、类比等活动.

第四章本单元首先通过平方根、立方根的学习引入无限不循环小数,进而给出了无理数的概念,实现了数系的第二次扩张,将有理数扩充到实数范围,使学生对数的认识进一步深入.

第六章一次函数通过对变量的考察,体会函数的概念,并进一步研究其中最为简单的一种函数——一次函数.了解函数的有关性质和研究方法,并初步形成利用函数的观点认识现实世界的意识和能力.

四、教学进度

周次

日期

内容

课时

1

9.1-9.4

1.1-1.2全等三角形

2

2

9.7-9.12

1.3.1-1.3.5探索三角形全等的条件

5

3

9.14-9.18

1.3.5-13..8探索三角形全等的条件

5

4

9.21-9.25

2.1-2.4线段的轴对称

5

5

9.28-10.2

国庆放假

6

10.5-10.10

2.4.2-2.5.2等腰三角形的轴对称

5

7

10.12-10.16

2.5.3-2.5.3复习测试

5

8

10.19-10.23

3.1-3.3

5

9

10.26-10.30

第三章复习测试

5

10

11.2-11.6

期中复习

5

11

11.9-11.13

期中考试

1

12

11.16-11.20

4.1-4.3实数

5

13

11.23-11.27

4.3.2-复习测试

5

14

11.30-12.4

5.1-5.2平面直角坐标系

5

15

12.7-12.11

6.1.1-6.2.2一次函数

5

16

12.14-12.18

5

17

12.21-12.25

6.5-复习测试

5

18

12.28-1.1

期末复习

4

19

1.4-1.8

期末复习

5

20

1.11-1.15

期末复习测试

5

21

1.18-1.22

期末考试

5

八年级上册数学教学计划 篇3

一、学生起点分析

学生的知识基础:学生在七年级上册教材中已经学习过了尺规作图。其中包括理解尺规作图的含义,能完成作一条线段等于已知线段、作一个角等于已知角的基本作图,初步掌握了尺规作图。而对于三角形,它是最简单、最基本的几何图形,学生在生活中随处可见。并且在本章的前4节中学生已经对三角形的有关概念及相关结论有了进一步的学习,如认识三角形、全等三角形、探索三角形全等条件。学生已经初步具备了作三角形的基本知识与技能。

学生的活动经验:在相关知识的学习过程中,学生已经经历了观察、折纸、拼图、画图、想象、推理、交流等活动,发展了空间观念,积累了一些数学活动经验,具备了一定的动手实践与合作交流能力。

二、教学任务分析

在学生现有的知识和活动经验的基础上,提出具体的教学及学习任务:在分别给出两角一夹边、两边一夹角和三边的条件下,能够利用尺规作出三角形,并能用自己的语言表述作图的过程。学生在本学段完成后会书写“已知、求作和作法”。能结合三角形全等条件与同伴交流作图过程和结果的合理性。为此,本节课的教学目标是:

1.经历尺规作图实践操作过程,训练和提高学生的尺规作图的技能,能根据条件作出三角形。

2.能依据规范作图语言,作出相应的图形,在实践操作过程中,逐步规范作图语言。

3.通过与同伴交流作图过程和结果的合理性,体会对问题的说明要有理有据。

三、教学设计分析

本节课设计了7个环节:情境引入、作三角形、合作分享、基础练习、拓展提高、课堂小结、布置作业。

第一环节 情境引入

活动内容:首先提出“豆豆书上的三角形被墨迹污染了一部分,你能帮他在作业本上画出一个与书上完全一样的三角形吗?”的问题,自然地引发学生思考“如何作一个三角形与已有的三角形一样呢?”与此同时引导学生回顾三角形的基本元素,以及学过的基本作图 ——作一条线段等于已知线段、作一个角等于已知角。学生思考后独立回答。对于两种基本尺规作图,找两名学生板演示范,其他学生在练习本上做。完成后,请学生试着叙述作法,教师规范学生的语言。

活动目的:通过学生处理身边经历过的事情,激发学生学习数学的兴趣,培养学生的善于观察生活,并能从生活中提炼出数学模型的能力。同时对两个基本尺规作图的复习是为后面的学习做铺垫。自然引出本节课的主要研究内容“如何利用尺规作一个三角形与已知三角形全等呢?”

实际教学效果:学生一开始在问题情境下进行积极思考,思考各种办法进行解决,如:用一张薄纸覆盖在三角形上,描出来未被污染的部分,将污染了一部分的两边延长,两边相交,即恢复成了原来的三角形。提出方案的同时,引导学生考虑方案的可行性。此时,教师与学生一起回顾三角形的基本元素,及尺规的基本作图——作线段、作角。学生能熟练的画一条线段等于已知线段,并用语言描述作图过程。而对于画一个角等于已知角,有些学生作起来稍显困难,需教师重新示范,并说明作图过程。在这一复习过程中,教师对做得好的学生给予鼓励,说明学习知识要扎实,基础打得好后续的学习才会比较容易。

第二环节 作三角形

活动内容:师生共同探索、研究、交流、经历利用尺规作三角形,学生用自己的语言表述作图的过程。本环节学生要按要求完成三个尺规作三角形的内容:

(1) 已知三角形的两角及其夹边,求作这个三角形;(豆豆所求助的三角形) (2) 已知三角形的两边及其夹角,求作这个三角形; (3) 已知三角形的三边,求作这个三角形。

首先,学生在教师的引导下分析、交流作三角形时作边与角的先后顺序,再作所求的三角形。第一个作图教师给出作法,并演示作图过程,让学生进行模仿操作;第二个作图只给出作法,不演示,让学生根据已知步骤独立作出图形;第三个作图让学生自己探索作法,并独立作出图形。学生在每个作图完成后,进一步思考“还有没有其他的作法?”,思考后进行操作,尝试表述作图过程,并组织全班进行交流。再提出“大家画出的三角形是否全等”的问题供学生讨论。

活动目的:本环节通过分析—操作—再分析的形式培养学生分析和解决问题的能力。学生通过经历从模仿、独立完成作图、到探索作图的过程,巩固尺规作图的技能,循序渐进的会书写“已知、求作和作法”。在完成三个作图后,都鼓励学生比较各自所作的三角形,利用重合等直观方式观察所作出的三角形是否全等。在此基础上,还引导学生利用已经获得的三角形全等的条件来说明大家所作出的三角形一定是全等的,即说明作法的`合理性。这实际上体现了直观操作与推理的相结合,并从中也使学生意识到这两种方法的不同。

实际教学效果:在教师示范第一个作图之后,学生能够学着模仿分析和操作下面的作图,并且在不断地作一个角等于已知角的过程中,逐渐达到熟练。从而,学生可以自己探索作法,并独立作出图形。在整个过程中,学生的画图要比表述作图过程(即写作法)显得自如,有信心。大多数学生对“用准确的语言描述作图过程”感到有很大的困难。即使这样,也要鼓励学生亲自张嘴说一说,尽他的最大可能描述自己的作图顺序及过程,教师即时地加以引导、完善、规范作图所用的语言。使学生可以很快地自己独立完成作图和作法。本环节注意模仿与自主学习的相结合,给学生一个展示自己思维的平台。

学生在完成每一个作图后,都要思考“依据给出的条件作出的三角形会全等吗?”学生能够很好地根据刚刚学过的三角形全等的判别方法中的“ASA”、“SAS”和“SSS”来进行说明,从中体会做法的合理性以及直观操作与推理的相结合。

第三环节 合作分享

活动内容:以4人合作小组为单位,根据问题开展活动。

问题(1)你都知道有哪些常用的作图语言可以用于描述作图过程(即作法)?

问题(2)我们是如何分析作图题的?它的步骤是什么?

活动目的:学生通过前一环节的实践操作,已经有了一定的作图经验。在此基础上提出这两个问题是为了让学生对刚刚的作图过程进行回顾、总结,培养学生善于思考,善于归纳数学方法的能力,并加强学生的语言表达能力。这一环节无论是对已完成的实践操作,还是下面的实战练习都起到至关重要的作用——承上启下。

实际教学效果:各合作小组成员在已有的作图经验基础上积极参与,各抒己见,尽可能多的挖掘作图语言和详细的分析步骤,一派紊而不乱的讨论气氛。最后各小组把自己的研究成果在全班进行展示,与大家分享。在分享的同时全班进行交流,取长补短,使语言更加规范、精练。达到集思广益、互帮互助的教学效果。

八年级上册数学教学计划 篇4

一、学术条件分析

八年级是初中学习过程中的关键时期,起着承上启下的作用。下学期尤为重要,因为学生的基础会直接影响到以后能否上学。通过上学期的学习,学生的计算能力、阅读理解能力和实践探究能力得到了发展和培养。他们对图形及其数量关系有了初步的认识,逻辑思维和逻辑推理能力得到了发展和培养。通过教育教学,大多数学生可以认真对待每一项作业,及时纠正作业中的错误。他们可以在课堂上集中精力学习和思考,学习兴趣得到了激发和进一步发展。本学期将继续促进学生的自主学习,让学生参与活动,探索发现,用自己的经历获得知识和技能;努力实现基础与现代性的统一,提高学生的创新精神和实践能力;进一步激发学生对数学的兴趣和爱好,通过各种教学方法帮助学生理解概念、操作运算、拓展思维。为了在这一时期取得理想的效果,教师和学生都应该努力检查和弥补差距,充分发挥学生作为学习的主体和教师作为教学的主体,注重方法和能力的培养。关注学困生和女生。

二、教材分析

本学期的教学内容由五章组成,包括知识的`联系、教学目标、重点和难点分析如下:

第十六章二次部首

本章的主要内容是二次根式的概念、性质、简化和计算。本章重点了解二次根式的性质、简化和计算。本章的难点是正确理解二次根式的性质和算法。

第十七章勾股定理

直角三角形是一种特殊的三角形,它有许多重要的性质,如两个锐角相辅相成,与30度相对的右边等于斜边的一半。本章研究的勾股定理也是直角三角形的一个性质,也是一个很重要的性质。本章分为两节。第一节介绍勾股定理及其应用,第二节介绍勾股定理的逆定理。

第十八章平行四边形

四边形是人们日常生活中广泛使用的图形,特别是平行四边形、矩形、菱形、正方形等特殊的四边形。因此,四边形不仅是几何学中的基本图形,也是“空间与图形”领域的主要研究对象之一。这一章是基于学生前一期所学的四边形知识,以及这一期所学的多边形、平行线、三角形的相关知识。也可以说是在现有知识的基础上做进一步的系统整理和研究。本章的学习也是反复运用平行线和三角形的知识。从这个角度来说,本章的内容也是对前面平行线和三角形的应用和深化。

第十九章线性函数

一阶函数通过对变量的考察,可以了解函数的概念,进一步研究最简单的函数之一,——一阶函数。了解函数的相关性质和研究方法,初步形成从函数的角度认识现实世界的意识和能力。在教材中,通过体现“问题情境——”——建立数学模型——的概念、规律、应用和拓展模式,学生可以从实际问题情境中抽象出函数和初等函数的概念,探索初等函数及其图像的性质,最终利用初等函数及其图像解决相关的实际问题;同时,在教学顺序上,将比例函数纳入线性函数的学习。文本框

本章主要研究均值、中位数、众数、极差、方差等统计量的统计意义。并学习如何使用这些统计数据来分析数据的集中趋势和分散程度。通过研究如何利用样本的均值和方差来估计总体的均值和方差,可以进一步理解用样本估计总体的思想。

大家都在关注苏联档案解密:朝鲜战争欺骗了历史

20xx年人民教育版八年级数学教案和教学进度

三、提高学科教育质量的主要措施:

1、努力搞好教学八项。重视教学八项作为提高成绩的主要方法,认真学习新课程标准和新教材,根据新课程标准拓展教材内容;认真听课,批改作业,给予指导,做试卷,也能帮助学生学会努力学习。

2.爱因斯坦说,对它感兴趣的老师。激发学生兴趣,向学生介绍数学家和数学史,介绍相应的有趣的数学题,给出课外数学思维题,激发学生兴趣。

3.引导学生积极参与知识建设,营造民主、和谐、平等、自主、探究、合作、交流、共享的高效学习课堂,让学生体验学习的乐趣,享受学习的乐趣。引导学生写小论文,复习提纲,让知识来源于学生的结构。

4.引导学生主动总结解题规律,引导学生一题多解,统一多解,培养学生透过现象看本质,提高举一反三的能力,是提高学生素质的根本途径之一。

5.用新课标的理念来指导教学,积极更新你头脑中固有的教育理念。不同的教育理念会带来不同的教育效果。

6.探究性问题的研究、课后调查和操作实践将带动班级学生学习数学,同时发展他们的专业。

7.进行分层教学,将作业安排在A、B、c三类,分层安排适合差、中、好学生,课堂提问照顾好,中、差

八年级上册数学教学计划 篇5

一、学情分析

八年级是初中学习过程中的关键时期,学生基础的好坏,直接影响到将来是否能升学。两班比较,83班优生多一些,但后进面却较大,学生非常活跃,有少数学生不上进,思维不紧跟老师。84班学生单纯,有大多数同学基础特差,问题较严重。要在本期获得理想成绩,老师和学生都要付出努力,查漏补缺,充分发挥学生是学习的主体,教师是教的主体作用,注重方法,培养能力。

二、教材分析

第一章 平 行线是在七年级上第七章提出平行线的概念、画法后的延续,这章将继续学习平行线的有关判定和性质;教学时把握证明难度,避免概念超前,加强形的建模。教学应注意以下几点:1、说理的过程仍以填空为主,注意避免综合性较强的说理出现。2、要避免证明、命题、定理、公理等词的口头出现,课本是以判定方法、性质、结论来描述。3、要注重现实生活中的实物情景抽象为相交线、平行线等数学图形的建模过程。4、还应注意画图、探究性题的教学。另外对教材中(1)P8 例2出现了添辅助线的说明方法,教师需根据实际情况,不要作深入展开,(2)P20 第5题:不是很明确其意图。

第二章 特殊三角形是在七年级下册第一章三角形的基础知识和全等三角形的基础上学习等腰三角形、等边三角形、直角三角形的判定和性质,进一步熟练几何符号语言的表达、书写;教学时要控制证明的综合难度,侧重计算与形状的判定。本节与以往教材相比较,有以下特点:1、加强了对等边三角形的学习要求;2、强化了直角三角形斜边上的中线等于斜边的一半的性质3、淡化了300角所对的直角边等于斜边的一半的性质。4、P28 等腰三角形的判定说明、P36 例3,教师可简单提出辅助线的作法、作用、要求,但不要藉此来提高难度。5、可以在勾股定理的知识上,让学生去研究探讨,增强数学人文性教育。另外教材中的(1)P24—4、5两题的难度较大,综合性较强,教师要作提示、作小结; (2)教师最好还是根据实际情况补充300角的直角三角形性质;(3)勾股定理这节中出现了不少“定理”一词,是否在教学时可改。

第三章 直 棱柱是从七年级上册提出立体图形概念后第一次对立体图形的研究,与原浙江版义务教材相比,是较新的一章(原教材有立体图形直观图的画法),主要是培养学生空间想像能力,也是为高中阶段立体几何中棱柱的学习做准备;教学时要借助实物、课件的展示,逐步构建空间想象基础能力,教材重点落在两处: 1、直棱柱特征及表面展开图2、画三视图,关键要理解“长对正,高平齐,宽相等”法则。因此,在教学中要注意1)充分利用实物、课件、实际动手操作等途径,使学生能慢慢的在实物与空间想象之间找到一些转换的经验,(2)在教学时对解答过程、说理过程不作过高的要求,避免过高的严密的要求挫伤学生学习本章的积极性。

第四章 样本与数据分析是在学习了七年级上册第六章数据收集与图表的基础上,对科学取样、数据分析、合理化决策的研究学习,是实用性较强的一章;教材以生活现象为导入背景,以解决问题为达成目标,教学应注意(1)避免对样本、总体、个体的定性的描述;(2)增加了对某一事件研究抽样与普查的方法选择;(3)加强了对平均数、众数、中位数、方差标准差这些数据处理方法的决策判断,

第五章 一元一次不等式是在掌握了七年级上册第五章一元一次方程及七年级下册第四章二元一次方程组的基础上,学会一元一次不等式(组)的解法,以及利用一元一次不等式解应用题;教学时应注重与方程、等式的'迁移类比,发挥数轴工具性,建立数形结合分析问题的习惯。

第六章 图形与坐标是函数知识学习的开始,与老教材比较也是较新的一章,重在突出直角坐标系的建立与运用,其中也有一部分知识与七年级下册第二章图形和变换相关; 教学时应重视场境模拟,降低坐标表达的抽象,侧重变换图形的坐标描述。 当然更应注意多利用实际场景图示,降低点的位置表达的抽象性,增加点与有序数对的对应性。

第七章 一次函数是在第六章建立直角坐标系后通过对实际生活中变量间变化关系的刻画,侧重了函数是刻画现实生活的又一数学模型。注重函数建模,降低函数抽象图形分析,融合方程、不等式、函数的统一,教学中应做到1、突出了函数是生活中变量之间数量关系的刻画。很多问题是以实际生活背景为载体。2、函数解析式,一次函数,正比例函数的教学顺序做了调整。3、要加强函数基础知识的练习,要注重解题时从应用中来到应用中去的理念。要充分利用合作小组讨论,有足够形成建模的时间,切忌分析模式化,练习呈式化。

另外,本书的设计题(P95, P181)切合学生实际,容易操作,要好好利用,既培养学生的动手能力又增强学生学习数学的兴趣。在课题学习P181-182《怎样选择较优方案》时,根据班级的实际情况建议作为一堂较重要的方程、不等式、函数综合应用课来讲。

三、提高学科教育质量的主要措施:

1、认真做好教学六认真工作。把教学六认真作为提高成绩的主要方法,认真研读新课程标准,钻研新教材,根据新课程标准,扩充教材内容,认真上课,批改作业,认真辅导,认真制作测试试卷,也让学生学会认真学习。

2、兴趣是最好的老师,爱因斯坦如是说。激发学生的兴趣,给学生介绍数学家,数学史,介绍相应的数学趣题,给出数学课外思考题,激发学生的兴趣。

3、引导学生积极参与知识的构建,营造民主、和谐、平等、自主、探究、合作、交流、分享发现快乐的高效的学习课堂,让学生体会学习的快乐,享受学习。引导学生写小论文,写复习提纲,使知识来源于学生的构造。

4、引导学生积极归纳解题规律,引导学生一题多解,多解归一,培养学生透过现象看本质,提高学生举一反三的能力,这是提高学生素质的根本途径之一,培养学生的发散思维,让学生处于一种思如泉涌的状态。

5、运用新课程标准的理念指导教学,积极更新自己脑海中固有的教育理念,不同的教育理念将带来不同的教育效果。

6、培养学生良好的学习习惯,陶行知说:教育就是培养习惯,有助于学生稳步提高学习成绩,发展学生的非智力因素,弥补智力上的不足。

7、指导成立“课外兴趣小组”的民间组织,开展丰富多彩的课外活动,开展对奥数题的研究,课外调查,操作实践,带动班级学生学习数学,同时发展这一部分学生的特长。

8、开展分层教学,布置作业设置A、B、C三类分层布置分别适合于差、中、好三类学生,课堂上的提问照顾好好、中、差三类学生,使他们都等到发展。

9、进行个别辅导,优生提升能力,扎实打牢基础知识,对差生,一些关键知识,辅导差生过关,为差生以后的发展铺平道路。

八年级上册数学教学计划 篇6

多阅读和积累,可以使学生增长知识,使学生在学习中做到举一反三。在此为您提供八年级上册数学勾股定理教学计划,希望给您学习带来帮助,使您学习更上一层楼!

一、内容和内容解析

本节课为人教版八年级数学下册第十八章第一节,教材64页至66页(不含探究1)的内容。其内容包括章前对勾股定理整章的引入:20xx年北京召开的国际数学家大会的会徽及“赵爽弦图”的简介,反映了我国古代对勾股定理的研究成果,是对学生进行爱国主义教育的良好素材。教材正文中从毕达哥拉斯发现等腰直角三角形的边之间的数量关系这一事实引入对勾股定理的探究,用面积法得到勾股定理的结论,而后教材又重点从“赵爽弦图”的方法对勾股定理进行了详细的论证;课后习题18.1的第1、2、7、11、12等题目针对勾股定理的内容适当的加以巩固,特别是第11、12题侧重对面积法运用的巩固。

勾股定理是几何中几个重要定理之一,揭示了直角三角形三边之间的数量关系,是对直角三角形性质的进一步学习和深入,它可以解决许多直角三角形中的计算问题,在实际生活中用途很大。它不仅在数学领域而且在其他自然科学领域中也被广泛地应用,而说明数学是一门基础学科,是人们生活的基本工具。

学生接受勾股定理的内容“在直角三角形中两直角边的平方和等于斜边的平方”这一事实从学习的角度不难,包括对它的应用也不成问题。但对勾股定理的论证,教材中介绍的面积证法即:依据图形经过割补拼接后,只要没有重叠,没有空隙,面积就不会改变。学生接受起来有障碍(是第一次接触面积法),因此从面积的“分割”“补全”两种方法进行演示同时学生动手亲自拼接图形构成“赵爽弦图”并亲自验证三个正方形之间的面积关系得到勾股定理的证明。有利的让学生经历了“感知、猜想、验证、概括、证明”的认知过程,感触知识的产生、发展、形成以提高学生学习习惯和能力。

本节的后续学习中,对勾股定理运用的探究和勾股定理逆命题的论证和应用,都是将图形与数量紧密的结合,将有利的培养学生数形结合的意识以提高学生分析问题、解决问题的能力。同时也为后期学习四边形、圆中的有关计算及计算物体面积奠定基础,因此本节课无论从知识的角度还是从数学技能、数学思想方法及数学活动经验等层面都起着举足轻重的作用。为此,教学重点:勾股定理的内容 教学难点:勾股定理的论证

二、教学目标及目标解析

1、教学目标

①、了解勾股定理的文化背景,体验勾股定理的探索过程,掌握勾股定理的内容。

②、在勾股定理的探索过程中,发展合情推理能力,体会数形结合的思想。

③通过观察课件探究拼图等活动,体验数学思维的严谨性,发展形象思维,体验解决问题方法的多样性,并学会与人合作、与人交流,培养学生的合作交流意识和探索精神。

④、在对勾股定理历史的了解过程中,感受数学文化,增强爱国情操,激发学习热情,养成关爱生活、观察生活、思考生活的习惯。

2、目标解析

①、通过学生了解“赵爽弦图”、了解“毕达哥拉斯”探究勾股定理的过程而猜想、验证勾股定理,自愿接受这一理论事实并能简单运用。

②、通过面积法探究勾股定理,让学生感触到直角三角形这一图形与a2+b2=c2 数量关系建立对应关系,同时不同图形从面积角度的论证得到面积的割补是形的变化而面积这一数量不变。更深层次的建立数形结合的方法。

③、通过观察、探究的活动让学生感触知识的产生过程,学生从中学会合作交流,协作探究、归纳总结的学习方法,提高学生的探索能力。

④、勾股定理知识是我国数学领域的璀璨明珠,代表着历代人民智慧和探索精神的结晶。通过学生亲身再次重温它的得来的过程从中感触我国数学知识源远流长和数学价值的伟大从中得到良好的思想的熏陶。

三、教学问题诊断分析

学生对勾股定理的形式容易接受甚至利用结论进行有关的计算难度也不大,但究其缘由有难度,这正是数学学习活动中学生要具备的基本的学习品质和学习技能。所以,在学习勾股定理由来的教学时,应有针对性地设计图形形式的多样呈现,让学生亲自动手拼接图形来揭示概念的由来及正确性。

对于图形面积的计算学生有基本的.技能,但如何最合理的进行分割或补全一时是不易理解,这属于思想方法层面的问题,学生往往只停留在能听懂,但不能内化的层面,需要我进行精心的设计,充分展示“分割、补全、拼凑”以发挥教师的引导作用,为学生探究一般的直角三角形的三边关系做好铺垫,为数学多渠道多方法的探究证明做好引导。

四、教学支持条件分析

根据本节课的教材内容特点,为了更直观、形象地突出重点,突破难点,提高课堂效率,采用以观察发现、动手操练、演算探究为主,多媒体演示为辅的教学组织方式.在教学过程中,给学生提供充足的活动时间和空间,以我设计探究实验和带有启发性及思考性的问题串,创设问题情景,启发学生思维,学生亲自动手操作、测量、演算,让学生亲身体验知识的产生、发展和形成的过程.

五、教学过程设计

(一)创设情境,导入新课。

问题1:请同学们欣赏20xx年国际数学家大会会场情景的的图片,重点抽取会徽图案,你能发现它是有什么图形构成的?(材料附后)

教师展示ppt课件,介绍数学家大会及会徽“赵爽弦图”,学生观察、发表意见、聆听介绍。

【设计意图】以国际数学家大会------“赵爽弦图”为背景导入新课,提出问题,首先可以激发学生强烈的好奇心和求知欲,感受我国古代数学知识的伟大,进行爱国教育,增强学好数学的信心;其次让学生在观察、思考、交流的过程中,对勾股定理先有初步的感性认识.

方案1:如果学生能够说出勾股定理的相关知识,则直接

进入下一环节的学习。

方案2:如果学生有困难,则安排学生自学教材,再发表意见。

学生发言,教师倾听。视学生回答的重点 板书 :勾三股四弦五 等

【设计意图】教师获得学生的知识储备以便以后的教学定位。再次让学生感触勾股定理的存在、作用即勾股定理是研究直角三角形边之间的关系的定理,明确学习目标。

(二)观察演算,合作探究,初具概念

问题3:介绍毕达哥拉斯发现勾股定理的故事。利用ppt课件展示毕达哥拉斯的发现和他的探究的过程。提问:这三个正方形之间的面积有什么关系?从中可以转化得到等腰直角三角形三边在数量上有什么关系? (故事附后)

教师口述故事,ppt课件同步演示;学生借助直观的课件,学生个体或学生间观察交流探究得到结论。

【设计意图】首先,故事中代出问题既激发学生的兴趣又降低了学生探究的难度,让每个学生都可做,可得;其次得到三个正方形面积间的关系而得到等腰直角三角形三边之间的关系,由特殊的图形为研究定理的一般性做好铺垫;再者学生初步具有了勾股定理的雏形,即在等腰直角三角形中两直角边的平方和等于斜边的平方。

问题4:毕达哥拉斯想到:这一结论是不是所有的直角三角形都具备呢?于是展开了进一步的探索。

教师利用ppt课件展示,提出问题;学生利用《学习案》中第1题自己进一步探究,交流;猜测验证。(学习案附后)

【设计意图】问题更深一层次,调动学生高涨的探究热情,同时有效的渗透了由特殊到一般的数学思想。

问题5:你是怎样演算的?

教师关注学生之间的交流,关注学生借助面积法探究问题的不同解法,选取代表性的方法演示。学生个体或小组探究、交流。

视学生的学习情况确定下步的教学:

方案1:学生能够用面积分割法如图一或用面积补全法如图二的方法验证了结论,则直接进行下一步的教学。

方案2:学生不能够得到,探究学习有困难,则教师借助ppt课件演示,精讲点拨面积的割补法,对命题进行验证。

【设计意图】教无定法,视学定教;学生是学习的主人,教师是学生学习的合作者。学生亲自画图,演算,利于对结论的理解。亲身感受知识的产生、形成,初步体会面积法;再次了解勾股定理。

问题6:通过我们大家一起的实验,你得到任意直角三角形的三边之间有什么关系吗?试用语言描述。

学生描述,教师板书。

【设计意图】加深对勾股定理内容的叙述、理解,达成目标。体会数学观察---探究---整理----归纳的数学方法,体验学习的成功。

(三)引导实验,探究论证,形成体系。

问题7:我们已经对直角三角形三边之间关系有了充分的认识。但它的正确性需要数学理论做基础,我国古代数学家赵爽就对该命题进行了严谨的论证。我们刚才欣赏的会徽就是他的论证方法。下面我们一起进行论证。

教师用ppt课件演示拼凑过程,精讲强调面积的无缝、不重叠拼接得到面积相等。

【设计意图】上一环节是从数字上的验证,本环节上升到理论层面,以加强数学学习的严谨性。让学生学懂面积法,再次加深对勾股定理的理解。感受我国数学知识的悠久历史,唤起爱国精神,启发学习数学的兴趣。

问题8:学生用4个全等的直角三角形重新拼凑图形并根据排放 画出图形并用面积法进行论证。

学生或小组间进行合作实验,共同协作探究;教师巡视指导。

【设计意图】学生自主探究,再次理解勾股定理,学会面积法论证勾股定理。培养学生的动手探究能力,养成严谨的学习习惯;学会交流,达到知识、方法共享,体验合作的乐趣、合作的成功。

问题9:教师选取代表性的拼接方法,全班展示。

【设计意图】共享知识,拓展思路,体会一题多解,更深层次的了解掌握勾股定理。

(四)归纳提高,巩固运用,形成能力。

问题10:我们这节课研究的勾股定理是对什么的研究?它侧重是研究直角三角形的什么关系?以前学习直角三角形的哪些知识?

学生回忆,发言。教师强调:勾股定理的前提条件是直角三角形,也就是说其他的三角形是不具备的,但要解决其他三角形的计算问题,我们要借助辅助线(特别是高线)把它转化为直角三角形。教师板书。

【设计意图】更新知识系统,逐渐完善知识脉络,提高分析问题解决问题的能力。

问题11:完成以下练习题

教材69页第1题、

学生独立完成;教师巡视指导,板书得数,介绍勾股数。

【设计意图】第1题针对勾股定理的直接运用。提高学生对新知识的理解、运用。巩固目标。

(五)归纳小结,反思提高

问题12:通过本节课的学习,你有哪些收获?

学生谈本节课的学习感受,教师梳理、概括本节课主要的学习内容,并揭示蕴涵的数学思想方法及评价学生在课堂上的表现对学生进行思想教育。

【设计意图】教师引导学生归纳本节课的知识要点和思想方法,使学生对直角三角形有一个整体全面认识,同时感受数形结合的数学思想。

小编为大家提供的八年级上册数学勾股定理教学计划大家仔细阅读了吗?最后祝同学们学习进步。