返回首页
文学网 > 短文 > 教学教案 > 正文

五年级数学教案

2025/11/07教学教案

文学网整理的五年级数学教案(精选6篇),供大家参考,希望能给您提供帮助。

五年级数学教案 篇1

课题:研究长方体课型:新知探究课时:1课时

学习目标:

1、我能在认识长方体的基础上,掌握长方体的特征,并认识长方体的长、宽、高。

2、我能通过自主探究与合作交流,探索出长方体的具体特征,并能解决简单的实际问题。

3、我有信心学会本节所学内容,我一定能够获得成功。

重点:掌握长方体面、棱、顶点的特征和认识长方体的长、宽、高。

难点:形成长方体的概念,发展学生的空间观念。

学习过程

☆创设情景揭示课题

1、教师出示幻灯片,让同学们从长方体、长方形、正方形、三角形、球体、圆柱、圆等图形中,找出立体图形和平面图形,然后在立体图形中找出长方体。

2、孩子们,你能找出长方体吗?

☆学海探秘探究一:火眼金睛

1、长方体有()个面,每个面是()形。指一指哪些面是相同的?

2、长方体有()条棱,指一指哪些棱长度相等?

3、长方体有()个顶点。

4、你还能发现什么?

探究二:制作长方体框架图我发现

1、长方体的12条棱可以分为几组?

2、相交于同一顶点的三条棱长度相等吗?

探究三:借助“产品”我能认

1、相交于一个顶点的三条棱的长度分别叫做()、()和()。

2、我能指出长方体的长、宽、高。

☆走进知识大本营填一填

1、长方体有()个面,都是()形,特殊情况可能有一组相对的面是()形,相对的面的面积()。

2、长方体有()条棱,相对的棱长度()。

3、长方体有()顶点。

4、相交于长方体一个顶点的.三条棱的长度分别叫()、()和()

辨一辨

1、长方体的6个面不可能有正方形。()

2、长方体的12条棱中长宽高各有4条。()

3、一张长方形的纸是一个长方体。()

4决定长方体的大小是长、宽、高。()

☆拓展延伸:我能自己制作一个美观的长方体玩具箱。

☆谈收获、写反思(梳理成数学日记)

通过这节课的学习,你有哪些收获?还有哪些方面需要进一步的努力?

五年级数学教案 篇2

教学目标:

1、通过复习,使学生能够运用所学知识,采用列方程的方法解答应用题。

2、让学生独立思考,合作交流,确定等量关系,正确用方程解答应用题

3、培养学生利用恰当的方法解决实际问题的能力。

教学重点:

通过复习,使学生弄请已知量与未知量的联系,找出题目中的等量关系。

教学难点:

通过复习,使学生能够准确的找出题目中的等量关系。

教学过程:

一、复习准备。(P107)

1、找出下列应用题的等量关系。

①男生人数是女生人数的.2倍。

②梨树比苹果树的3倍少15棵。

③做8件大人衣服和10件儿童衣服共用布31.2米。

④把两根同样的铁丝分别围成长方形和正方形。

(学生回答后教师点评小结)

我们今天就复习运用题目中的等量关系解题。(板书:列方程解应用题)

二、新授内容

1、教学例题

(1)、一列客车以每小时90千米的速度从甲站开往乙站,同时有一列货车以每小时75千米的速度从乙站开往甲站,经过4小时相遇,甲乙两站的铁路长多少千米?

①、读题,学生试做。

②、学生汇报(可能情况)

(90+75)×4

提问:90+75求得是什么问题?再乘4求的是什么?

90×4+75×4

提问:90×4与75×4分别表示的是什么问题?

(由学生计算出甲乙两站的铁路长多少千米。)

(2)、甲乙两站之间的铁路长660千米,一列客车以每小时90千米的速度从甲站开往乙站,同时有一列货车以每小时75千米的速度从乙站开往甲站。经过多少小时相遇?

(先用算术方法解,再用方程解)

①、660÷(90+75)=?

②、方程

解:设经过x小时相遇,

(90+75)×x =660或者,90×x +75×x =660

让学生说出等量关系和解题的思路

教师小结(略)

(3)、甲乙两站之间的铁路长660千米。一列客车以每小时90千米的速度从甲站开往乙站,同时有一列货车从乙站开往甲站,经过4小时相遇。货车每小时行多少千米?

(先用算术方法解,再用方程解)

①、(660—90×4)÷4=?

②、方程

解:设货车每小时行x千米

90×4+ 4x = 660或者(90 + x)×4 = 660

让学生说出等量关系和解题的思路

2、教师小结(略)

让学生比较上面三道应用题,它们有什么联系和区别?

比较用方程解和用算术方法解,有什么不同?

教师提问:这两道题有什么联系?有什么区别?

三、巩固反馈。(P109———1题)

1、根据题意把方程补充完整。

(1)张华借来一本116页的科幻小说,他每天看x页,看了7天后,还剩53页没有看。

_____________=53

_____________=116

(2)妈妈买来3米花布,每米9。6元,又买来x千克毛线,每千克73.80元。一共用去139.5元。

_____________=139.5

_____________=9.6×3

(3)电工班架设一条全长x米长的输电线路,上午3小时架设了全长的21%,下午用同样的工效工作1小时,架设了280米。

_____________=280×3

2、(P110————4题)解应用题。

东乡农业机械厂有39吨煤,已经烧了16天,平均每天烧煤1.2吨。剩下的煤如果每天烧1.1吨,还可以烧多少天?

小结:根据同学们的不同方法,我们需要具体问题具体分析,用哪种方法简便就用哪种方法。

3、思考题。

甲乙两个港相距480千米,上午10时一艘货船从甲港开往乙港,下午2时一艘客船从乙港开往甲港。客船开出12小时后与货船相遇。如果货船每小时行15千米。客船每小时行多少千米?

四、课堂总结。

通过今天的复习,你有什么收获?

五、课后作业。

(P110———5题)不抄题,只写题号。

板书设计:

列方程解应用题

等量关系具体问题具体分析

例3:一列火车以每小时90千米的速度从甲站开往乙站,同时有一列货车以每小时75千米的速度从乙站开往甲站,经过4小时相遇,甲乙两站的铁路长多少千米。

五年级数学教案 篇3

教材分析

一、主要教学内容

(一)数与代数

1、第一单元“小数除法”

本单元学生已掌握了整数混合运算顺序及运算律、整数乘除法、小数加减法、小数乘法的计算方法,并能利用这些知识解决生活中的实际问题,除数是整数的小数除法是学习小数除法的基础,它是根据整数除法迁移过来的,利用商不变的规律可将其转化为整数除法,体现了转化的思想。通过这部分内容的学习,学生需要掌握小数小除法的计算方法,同时增进对相关运算律的理解,提高运用四则运算解决简单实际问题的能力,包括用“四舍五入”法求积、商的近似值,了解除数大于1(或小于1、接近1)时,商和被除数的关系。学生要能用估算判断计算结果的正确性,并能举例说明估算在现实生活和数学学习的重要性。

2、第三单元“倍数与因数”

本单元是在学生学过整数的认识、整数的四则计算等知识的基础上学习的,学习的主要内容有:认识自然数,倍数与找倍数,2、5、3倍数的特征,因数与找因数;质数与合数,奇数与偶数等知识。这些知识的学习是以后学习公倍数与公因数、约分、通分、分数四则计算等知识的重要基础。本单元的具体学习内容安排了六个情境活动:在“数的世界”活动中,主要是认识倍数和因数;在“探索活动(一)——2、5的倍数的特征”中,学生将经历探索2、5倍数特征的过程,理解2、5倍数的特征,知道奇数、偶数的含义;在“探索活动(二)——3的倍数的特征”中,学生将经历探索3的倍数的特征的过程,

理解3的倍数的特征;在“找因数”活动中,利用直观的拼图游戏,让学生体会、掌握找因数的直观方法;在“找质数”活动中,引导学生经历用“筛法”制作质数表的过程,理解质数和合数的意义,并在活动在过程中,让学生了解一些数学史,丰富对数学发展的认识,感受数学文化的魅力;在“数的奇偶性”活动中,尝试运用“列表”、“画示意图”等解法问题策略发现规律,运用数的奇偶性解决生活中一些简单问题。

通过本单元的学习,学生将经历探索数的有关特征的`活动,认识自然数,认识倍数和因数,能在100以内的自然数中找出10以内某个自然数的所有倍数,能找出100以内某个自然数的所有因数以及知道质数、合数;将经历2、3、5的倍数特征的探索过程,知道2、3、5的倍数的特征,知道奇数和偶数;能根据解决问题的需要,收集有用的信息,进行归纳、类比与猜测,发展初步合情推理的能力;在探索数的特征的过程中,体会观察、分析归纳或猜想验证等探索方法,在数学活动中体验数学问题的探索性和挑战性。

3、第四单元“分数的意义”

在学习本单元内容前,学生已初步理解了分数的意义,能认、读、写简单的分数,会计算简单的同分母分数加减法,以及能初步运用分数表示一些事物、解决一些简单的实际问题。本单元在此基础上引导学生进一步理解分数的意义,学习分数的再认识、分数与除法的关系、真分数、假分数、分数大小变化规律、公约数、约分、公倍数、通分、分数的大小比较等知识。这些知识的学习是进一步学习分数四则计算、运用分数知识解决实际问题的基础,是分数教学的重点。本单元的具体学习内容安排了九个活动情境:在“分数的再认识”活动中,通过

具体的情境,进一步理解分数的意义,体会“整体”与“部分”的关系,了解一个分数对应的“整体”不同,则所表示的具体数量也不同;在“分饼”与“分数与除法”两个活动中,学生将知道分数的分类标准,并能掌握带分数与假分数的相互转化的方法;在“找规律”的活动中,经历探索分数大小不变规律的过程,理解分数的基本性质,并能根据分数的基本性质把一个分数化成指定分母(或分子)而大小不变的分数;在“找最大公因数”与“约分”两个活动中,学生将认识公因数与最大公因数、并能运用这些知识进行正确地约分,也为后续理解、掌握通分的方法打下了基础;在“去少年宫”与“分数的大小”两个活动中,学生将认识公倍数与最小公倍数,并能运用这一知识,会正确地通分与比较分数的大小。

通过本单元的学习,学生将进一步理解分数的意义,能正确用分数描述图形或简单的生活现象;认识真分数、假分数与带分数,理解分数与除法的关系,会进行分数的大小比较;能找出10以内两个自然数的公倍数和最小公倍数,能找出两个自然数的公因数和最大公因数,会正确进行约分和通分;初步了解分数在实际生活中的应用,能运用分数知识解决一些简单的实际问题。

(二)空间与图形

1、第二单元“轴对称和平移”

学生在第一学段已初步感知生活中的对称、平移和旋转现象,初步认识了轴对称图形。本单元教科书编写的基本特点主要体现在一下几个方面:1.重视结合已有知识和折纸、画图等经验,进一步学习轴

五年级数学教案 篇4

一、教学目标

1、能直接在方格图上,数出相关图形的面积。

2、能利用分割的方法,将较复杂的图形转化为简单的图形,并用较简单的方法计算面积。

3、在解决问题的过程中,体会策略、方法的多样性。

二、重点难点

整点:指导学生如何将图形进行分割,从而让学生体会到解决问题的多样性和简便性。

难点:学生能灵活运用。

三、教学过程

(一)直接揭示课题

1、今天我们来学习《地毯上的图形面积》。请同学们把书P18页,请同学们认真观察这幅地毯图,看看它有什么特征。

2、小组讨论。

3、汇报:对称图形、边长为14米的正方形、图案由蓝色组成。

4、看这副地毯图,请你提出一些数学问题。

(二)自主探索、学习新知

1、如果每个小方格的面积表示1平方米,,那么地毯上的图形面积是多少呢?

2、学生独立解决问题。要求学生独立思考,解决问题,怎样简便就怎样想,并把解决问题的方法记录下来。

3、小组内交流、讨论。

4、全班汇报。

a)直接一个一个地数,为了不重复,在图上编号。(数方格法)

b)因为这个图形是对称的,所以平均分成4份,先数出一份中蓝色的面积,再乘4。(化整为零法)

c)用总正方形面积减去白色部分的面积。(大减小法)

d)将中间8个蓝色小正方形转移到四周兰色重叠的地方,就变成4个3×6的长方形加上4个3×3的正方形。(转移填补法)

5、师总结求蓝色部分面积的方法。

(三)巩固练习

1、第一题。

(1)学生独立思考,求图1的面积。

(2)说一说计算图形面积的方法。引导学生了解“不满一格的当作半格数”。

2、第二题。独立解决后班内反馈。

3、第三题。

(1)学生独立填空。求出每组图形的面积。学生完成后班内交流反馈答案。

(2)学生观察结果,说发现。

第(1)题的`4个图形面积分别为1、2、3、4的平方数。

第(2)题与第(1)题进行比较,第(2)题的3个图形的面积分别是前面一组题的前3个图形面积的一半。

(四)总结

对于计算方格图中规则图形的面积,我们可以分割,可以直接数,可以“大减小”,还可以转移填补。

四、板书设计

地毯上的图形面积

一个一个地数(数方格法)

平均分成4份,再乘4。(化整为零法)

总面积减去白色面积。(大减小法)

五、教学反思

本节课从设计上讲,我充分考虑到学生是主体的新理念,采用小组合作、探索交流的教学形式,在大胆猜测、积极尝试中寻找解决问题的策略,对于不同情况优化选择。

五年级数学教案 篇5

教学内容:冀教版《数学》五年级上册第10、11页。

教学目标:

1、在动手操作的活动中,经历探索莫比乌斯圈神奇特征的过程。

2、学会制作简单的莫比乌斯圈,了解莫比乌斯圈的特征。

3、感受莫比乌斯圈的神奇,体会数学活动的趣味性和探索性。

教学准备:三根长30厘米、宽3厘米的白纸条,彩笔,剪刀,胶水。

教学方案:

教学环节

设计意图

教学预设

一、创设情境

1.学生阅读书中的文字,初步了解莫比乌斯圈。

2.拿出一张纸条让学生估计它的长和宽。

二、探索活动1

1.师生一起动手制作莫比乌斯圈。

教师一边口述制作莫比乌斯圈的方法一边演示制作,然后让每个人制作一个。

2.交流、展示学生作品。

3.提出涂色要求,学生涂色。鼓励学生合作完成。

4.观察、交流学生涂色的结果,让学生说一说发现了什么?

三、探索活动Ⅱ

1.让学生在另一张纸条的正中画好一条线,再粘成一个莫比乌斯圈。通过沿莫比乌斯圈一面涂色却使纸圈两面都有了颜色的事实,使学生初步感受莫比乌斯圈的神奇。

2.提出:如果用剪刀沿中线把莫比乌斯圈剪开,结果会怎样?的问题,让学生先大胆猜测,再动手操作。

3.交流沿中线剪开后的结果。

4.提出书中(2)的操作要求,让学生想象剪开后的结果。

5.鼓励学生按要求实际操作。

6.交流学生沿画线剪开后的结果。使学生发现把一个三等分的莫比乌斯圈沿等分线剪开,变成了一大一小两个套在一起的纸圈。

四、课外延伸

教师进行激励性谈话,鼓励学生课下继续探索

通过激励性谈话引起学生的学习兴趣,通过阅读让学生初步了解莫比乌斯圈。

培养估计的意识,了解纸条的长和宽,方便下面的语言表述。

通过教师边口述边示范,让学生学会制作简单的莫比乌斯圈。每人制作一个,为下面的探索活动提供材料。

展示学生的作品,检查莫比乌斯圈做的是否正确。

让学生经历探索莫比乌斯圈的全过程。

通过自己动手做莫比乌斯圈,亲身体验它的神奇。

通过教师叙述制作要求,培养学生倾听的习惯,为探索活动提供材料。

通过让学生想象猜测,一方面培养学生联想的意识,更重要的是引出探索的活动。

在操作结果和提供的数据中,让学生感受莫比乌斯圈的神奇和数学活动的探索性。

在前面探索活动的基础上,对看似相关问题进行猜测,激发学生探索的愿望。

带着问题进行实际操作,体验数学问题的探索性。

在猜测、操作、交流等探索活动中,进一步感受莫比乌斯圈的`神奇和数学活动的趣味性。

激发学生的探索的积极性,培养科学探索精神。

师:同学们,今天我们就用老师给大家准备的纸条来探索一种神奇的纸圈,这个纸圈是什么呢?大家请打开书第10页,读一读前两段。

学生阅读书中的文字。

师:通过读书,你了解到哪些信息?

学生回答可能不同,只要是意思对就给予肯定。

师:德国数学家莫比乌斯发明的这个“纸圈”到底有什么神奇之处,下面我们就一起去探索。

师:请同学们拿出一张纸条,估计一下这张纸条有多长、多宽?

学生估计,对估计准确给予表扬。使大家知道:纸条的长30厘米,宽3厘米。

师:我们就用这张纸条做一个莫比乌斯圈。怎样做呢?把纸条儿的一端扭转180°,与另一端粘在一起,这样一个莫比乌斯圈就做好了。

教师边说边示范制作莫比乌斯圈。

师:下面同学们就用准备好的纸条也做一个莫比乌斯圈!

学生动手制作,教师巡视指导。

师:谁来展示一下你的莫比乌斯圈?

学生展示,关注是否都对。

师:同学们都有了自己的莫比乌斯圈,我们给它涂上颜色让它更漂亮。涂色的要求是:用一种颜色的彩笔在纸圈的一面涂色。可以同桌合作完成。

学生给莫比乌斯圈涂色,教师巡视指导。

师:请同学们仔细观察涂好色的莫比乌斯圈,你发现了什么?

生:两面都有颜色了。

生:太奇怪了。

师:沿一面涂色纸圈的两面都出现了颜色,真是个奇迹!这就是神奇的莫比乌斯圈!

教师板书:神奇的莫比乌斯圈。

师:请同学们接着做,你会发现更神奇的事情。听清这次的操作要求:取出一张新的纸条,在正中画一条线,再把它粘成莫比乌斯圈。

学生操作,教师巡视指导。

师:同学们想象一下,如果用剪刀沿中线把这个莫比乌斯圈剪开,结果会怎么样?

生:会得到2个莫比乌斯圈。

师:结果到底怎么样呢?请同学们用剪刀沿中线把它剪开,看一看结果会怎样。用剪刀时注意安全。

学生操作,教师巡视指导。

师:沿中线剪开后怎样?和你想象的结果一样吗?

学生可能回答:

●沿中线剪开后结果不是两个莫比乌斯圈,而是一个。

●这个新的纸圈比原来的大了。

……

师:真是出乎意料!把莫比乌斯圈沿中线剪开结果不是两个纸圈,而是一个更大的纸圈。那同学们,你们猜想一下,要是在纸条上画两条线,把纸条分成三等分,粘成莫比乌斯圈,再用剪刀沿画线剪开,猜一猜结果会怎么样?

学生可能回答:

●得到一个更大的纸圈。

●得到3个纸圈。

……

师:请同学们实际动手做一做,看一看结果会怎样?

学生动手操作,教师巡视指导。

师:这次剪开后结果怎么样?

生:得到了一大一小两个套在一起的纸圈。

师:这就是莫比乌斯圈的神奇之处!要是在纸条上画三条线,把它四等分,再粘成莫比乌斯圈,接着沿画线剪开,结果会怎样?要是画四条线呢?有兴趣的同学课下可以继续探索!

五年级数学教案 篇6

教学目标:

1,使学生感受数学与现实生活的密切联系,初步学会列方程解决一些稍复杂的生活问题。

2,学会找出生活问题中相等的数量关系,正确列出方程。

3,培养学生根据具体情况,灵活选择算法的意识与能力。

4,培养学生的合作交流意识,让学生在学习过程中获得成功体验,培养学生积极的数学情感。

教学重点:

用方程解"已知比一个数的几倍多(少)几是多少,求这个数"的问题。

教学难点:

分析问题中的等量关系,并会列出方程解答。

教学准备:

多媒体课件。

教学过程:

一,知识回顾:

1,解下列方程。

X+2x=147 y-34=71

2,根据下面叙述说说相等关系,并写出方程。

①公鸡x只,母鸡30只,是公鸡只数的2倍。

②公鸡有x只,母鸡有30只,比公鸡只数的2倍少6只。

3,(媒体出示教材情景图)讲述:一天,学校的足球场上,善于观察的小军,勤于研究的小华和爱提问题的.小刚三人休息时,突然发现足球的秘密。小军发现……小华发现……小刚提出……

(足球上黑色的皮都是五边形,白色的皮都是六边形的。黑色皮共有12块,白色皮比黑色皮的2倍少4块,共有多少块白色皮)

让学生独立做,集体订正时,(板书线段图)。

二,合作探究:

1,教学例1(媒体出示教材情景图)。

"足球上黑色的皮都是五边形,白色的皮都是六边形的。白色皮共有20块,白色皮比黑色皮的2倍少4块,共有多少块黑色皮"

(1)审题,寻找解决问题的有用信息。

提问:"例题与复习题有什么相同的地方" "有什么不同的地方"

教师说明:例1就是我们以前见过的"已知比一个数的几倍少几是多少,求这个数"的问题。今天我们学习用方程解答这类问题。

教师板书:稍复杂的方程

(2)分析,找出数量之间的相等关系(教师板书线段图讲解)

看图思考:白色皮和黑色皮有什么关系

学生小组讨论,汇报结果。

可能出现的等量关系是:黑色皮的块数×2-4=白色皮的块数

黑色皮的块数×2-白色皮的块数=4

黑色皮的块数×2=白色皮的块数+4

(3)同桌讨论怎样列出方程。

(4)交流汇报并让学生根据题意说出所列方程所表示的等量关系。允许学生列出不同的方程。

板书学生的方程并选择2x-4=20讨论它的解法。

学生小组讨论解法。

汇报交流板书:

解:设共有x块黑色皮。

2x-4=20

2x-4+4=20+4

2x=24

2x÷2=24÷2

x=12

检验:(引导先生口头检验)

答:共有12块黑色皮

(5)学生选择其余的方程解答。

2,变式练习。

(1)教师:如果把例1中的第二个条件改成"白色皮比黑色皮的2倍多4块"该怎样列方程(课件演示把白色皮比黑色皮的2倍少4块中的"少"换成"多")让学生列出方程解答。

(2)把它和例1加以比较,使学生清楚地看到,这种用算术方法解需要"逆思考"的应用题,不论是"几倍多几"还是"几倍少几"列方程都比较容易。

3,引导学生总结列方程解决问题的步骤:

①弄清题意,找出未知数,用x表示。

②分析,找出数量之间的相等关系,列方程。

③解方程。

④检验,写出答案。

三,巩固应用

1,只列式不计算。(课件出示)

①图书室有文艺书180本,比科技书的2倍多20本,科技书x本。

②养鸡厂养母鸡400只,比公鸡的2倍少40只,公鸡x只。

③学校饲养小组今年养兔25只,比去年养的只数的3倍少8只,去年养兔x只。

④一个等腰三角形的周长是86厘米,底是38厘米。它的腰是x厘米。

2,学生独立完成,集体汇报交流

①北京故宫的面积是72万平方米,比天安门广场面积的2倍少16万平方米。天安门广场的面积是多少万平方米

②世界上的洲是亚洲,最小的洲是大洋州,亚洲的面积比大洋州面积的4倍还多812万平方千米。大洋州的面积是多少万平方千米

③猎豹是世界上跑得最快的动物,能达到每小时110km,比大象的2倍还多30km.大象最快能达到每小时多少km

④共有1428个网球,每5个装一筒,装完后还剩3个。一共装了多少筒

3,拓展提高。

①甲乙两数的和是90,甲数是乙数的2倍。甲乙两数各是多少

②甲乙两数的和是183,甲数比乙数的2倍还多3.甲乙两数各是多少

四,全课总结

今天这节课你学到了什么知识

板书设计:

先把2x看作一个整体