返回首页
文学网 > 短文 > 教学教案 > 正文

高中数学的教学反思

2025/11/14教学教案

文学网整理的高中数学的教学反思(精选6篇),供大家参考,希望能给您提供帮助。

高中数学的教学反思 篇1

高中数学的教学反思汇编15篇

作为一位刚到岗的教师,我们要有一流的课堂教学能力,对学到的教学新方法,我们可以记录在教学反思中,怎样写教学反思才更能起到其作用呢?下面是小编为大家收集的高中数学的教学反思,希望对大家有所帮助。

高中数学的教学反思 篇2

作为一名高中数学教师来说不仅要上好每一堂课,还要对教材进行加工,对教学过程以及教学的结果进行反思。因为数学教育不仅仅关注学生的学习结果,更为关注结果是如何发生,发展的。我们可以从两方面来看:一是从教学目标来看,每节课都有一个最为重要的,关键的,处于核心地位的目标。高中数学不少教学内容适合于开展研究性学习;二是从学习的角度来看,教学组织形式是教学设计关注的一个重要问题。如果我们能充分挖掘支撑这一核心目标的背景知识,通过选择,利用这些背景知识组成指向本节课知识核心的,极富穿透力和启发性的学习材料,提炼出本节课的研究主题,这样就需要我们不断提高业务能力和水平。以下就是我结合高中教师培训联系自己在平时教学时的一些情况对教学的一些反思。。

一、对数学概念的反思——学会数学的思考

对于学生来说,学习数学的一个重要目的是要学会数学的思考,用数学的眼光去看世界。而对于教师来说,他还要从"教"的角度去看数学,他不仅要能"做",还应当能够教会别人去"做",因此教师对教学概念的反思应当从逻辑的,历史的,关系的等方面去展开。

以数列为例:从逻辑的角度看,数列的概念包含它的定义,表示方法,通向公式,分类,以及几个特殊的数列,结合之前学习过的函数来说,它在某种程度上说,数列也是一类函数,当然也具有函数的相关性质,但不是全部。从关系的角度来看,不仅数列的主要内容之间存在着种种实质性的联系,数列与其他中学数学内容也有着密切的联系。数列也就是定义在自然数集合上的函数;。

二、对学数学的反思

对于在数学课堂每一位学生来说,他们的头脑并不是一张白纸——对数学有着自己的认识和感受。教师不能把他们看着“空的容器”,按照自己的意思往这些“空的容器”里“灌输数学”这样常常会进入误区,因为师生之间在数学知识、数学活动经验、兴趣爱好、社会生活阅历等方面存在很大的差异,这些差异使得他们对同一个教学活动的感觉通常是不一样的。应该怎样对学生进行教学,教师会说要因材施教。可实际教学中,又用一样的标准去衡量每一位学生,要求每一位学生都应该掌握哪些知识,要求每一位学生完成同样难度的作业等等。每一位学生固有的素质,学习态度,学习能力都不一样,对学习有余力的学生要帮助他们向更高层次迈进。平时布置作业时,让优生做完书上的习题后,再加上两三道有难度的题目,让学生多多思考,提高思含量。对于学习有困难的学生,则要降低学习要求,努力达到基本要求。布置作业时,让学困生,尽量完成书上的习题,课后习题不在家做,对于书上个别特别难的题目可以不做练

总之,在上好一堂的同时,结合新课程的教学理念进行相应的教学反思可以不断提高业务能力和水平,从而更好的服务于学生。

高中数学的教学反思 篇3

对于许多学生来说,学习数学的目标仅仅是应对考试,其实不然,学习数学的一个更重要的目的是要学会数学的思考,用数学的眼光去看世界,去了解世界。而对于我们数学教师而言,我们还要从教的角度去看待数学,去发现数学,不仅要自己能做、能理解,更重要的是要能够教会学生去做、去理解,因此教师对教学概念的反思应当从逻辑的、历史的、辨证的等方面去发展。比如:

从逻辑的角度看

函数概念主要包含定义域、值域、对应关系三个要素,以及函数的单调性、奇偶性、周期性、对称性等性质和一些具体的特殊函数,如指数函数、对数函数、幂函数等这些内容是函数教学的基础,但不是函数的全部。

从关系的角度来看

不仅函数的主要内容之间存在着种种实质性的联系,比如定义域和对应关系确定了值域,函数与其他数学内容之间也存在着密切的联系。

方程的根可以作为这个方程对应函数的图象与坐标轴交点的横坐标;不等式的解就是这个不等式对应函数的图象在轴上方或者下方的那一部分所对应的横坐标的集合;数列也就是定义在自然数集合上的函数;同样的几何部分也与函数有着密切的联系。

在新课程背景下的数学课堂教学中,要提高教学质量,提高学生的学习效率,我们应该多思考,多准备,充分做到备教材、备学生、备教法,提高自身的教学机智,发挥自身的主导作用。不仅要求学生学会,而且要让学生会学,特别是自学,尤其是在课堂上,不仅要发展学生的智力因素,而且要在有限的时间内,出色的完成教学任务,不能穿新鞋走老路。

教师在教学生时不能把他们看作是空的容器,按照自己的意愿往这些空的容器里灌输数学知识就完了,这样往往会进入误区,因为师生之间在数学知识、数学活动经验、兴趣爱好、社会生活阅历等方面都存在着非常大的差异,这些差异会使得他们对同一个教学活动的感觉常常是不一样的。在教学中,为了更好的教会学生学习,一个比较有效的方式就是在教学的过程中尽量把学生头脑中问题挤出来,让他们把解决问题的思维过程显露出来。

在数学教学方法上,要有明确的教学目标,要能突出重点、化解难点,要善于应用现代化教学手段,要根据具体的教学内容选择恰当的教学方法,对学生及时鼓励、关爱学生,充分调动学生的积极性,发挥学生学习的主体作用,重视基础知识、基本技能和基本方法,渗透教学思想方法,培养学生的综合运用能力。

高中数学的教学反思 篇4

从事高中数学教学工作已有23年的时间了。刚开始教学时,由于不熟悉教材,备课经常查找很多教辅资料、参考教案选,讲课只按自己的设想讲课、较少关注学生。通过主动请教有经验的老教师,积极学习,不断努力,教学能力和水平有较大提高。现在反思一下我的高中数学教学,我认为在常规教学方面做得还是很不错的:

一、认真学习课程标准,钻研教材,教学时有明确的教学目标。

教学目标分为三大领域,即认知领域、情感领域和动作技能领域。因此,在备课时我都能围绕这些目标选择教学的策略、方法和媒体,把内容进行必要的重组。备课时要依据教材,但又不拘泥于教材,灵活运用教材。

二、讲课时能突出重点、化解难点。

我的每一堂课都有教学重点,而整堂的教学都是围绕着教学重点来逐步展开的。我经常通过声音、手势、板书等的变化或应用模型、投影仪等直观教具,刺激学生的大脑,使学生能够兴奋起来,对所学内容在大脑中刻下强烈的印象,激发学生的学习兴趣,提高学生对新知识的接受能力。在选择例题时,例题都是呈阶梯式展现,我在准备一堂课时,通常是将一节或一章的题目先做完,再针对本节的知识内容选择相关题目,往往每节课都涉及好几种题型。

三、善于应用现代化教学手段

在课堂教学中,对于板演量大的内容,如立体几何中的一些几何图形、一些简单但数量较多的小问答题、文字量较多应用题,复习课中章节内容的总结、选择题的训练等等都可以借助于投影仪来完成。有时,我还自编电脑课件,借助电脑来生动形象地展示所教内容。如讲授正弦曲线、余弦曲线的图形、棱锥体积公式的推导过程都可以用电脑来演示。

四、根据具体内容,选择恰当的教学方法

数学教学的方法很多,对于新授课,我往往采用讲授法来向学生传授新知识。而在立体几何中,我还时常穿插演示法,来向学生展示几何模型,或者验证几何结论。如在教授立体几何之前,要求学生每人用铅丝做一个立方体的几何模型,观察其各条棱之间的相对位置关系,各条棱与正方体对角线之间、各个侧面的对角线之间所形成的角度。这样在讲授空间两条直线之间的位置关系时,就可以通过这些几何模型,直观地加以说明。此外,我还经常结合课堂内容,灵活采用谈话、读书指导、作业、练习等多种教学方法。

五、关爱学生,及时鼓励

对学生在课堂上的表现,我能及时加以总结,适当给予鼓励,并处理好课堂的偶发事件,及时调整课堂教学。在教学过程中,为了了解学生对所讲内容的掌握情况,我经常在讲完一个概念后,让学生复述;讲完一个例题后,经常给一两个变式练习,请中等水平学生上台板演。有时,对于基础差的学生,可以对他们多提问,让他们有较多的锻炼机会,同时根据学生的表现,及时进行鼓励,培养他们的自信心,让他们能热爱数学,学习数学。

六、充分发挥学生主体作用,调动学生的学习积极性

刚从事教学时,每次上课,看到学生一道题目往往要思考很久才能探究出答案,我就有点心急,每次都忍不住在他们即将做出答案的时候将方法告诉他们。现在,在教学过程中,我经常让学生唱主角,使学生变被动学习为主动学习,让学生成为学习的主人。在一堂课中,我尽量少讲,让学生多动手,动脑操作。

七、重视基础知识、基本技能和基本方法的教学

教学中我注重揭示概念的内涵与外延,重视公式、定理的推导过程。对于有些数学问题,我引导学生分析、总结解决问题的通法,逐步提高学生对数学问题的解决能力。

八、渗透教学思想方法,培养综合运用能力

在平时的教学中,我在传授基础知识的同时,有意识地、恰当在讲解与渗透基本数学思想和方法,帮助学生掌握科学的方法,从而达到传授知识,培养能力的目的。只有这样,学生才能灵活运用和综合运用所学的知识。

高中数学的教学反思 篇5

新课改下,高中数学课堂提问环节已经被广泛的应用到数学课堂教学中,教师通过课堂教学能够有效的激发学生的兴趣,通过师生面对面的即时交流,能够有效的启发学生进行学习和思考,有利于课堂教学质量的提高。但是,当前课堂教学实践中,不应当将课堂提问环节作为授课的主要途径,如何有效的提高高中数学课堂提问的有效性仍然是当前需要重点解决的问题。

一、当前高中数学课堂提问存在的问题

1.提的问题不明确

实践中,教师对学生的自主学习不够重视,很多教师在进行课堂教学前准备工作不够充分,凭借以往的教学经历来上课,没有做好课前预习的准备,在课堂上提的问题也是比较随机的,不在意学生回答问题的信息反馈情况,对课堂提问的问题的随意性,直接影响到了课堂教学的质量。同时,一些教师认为只有多提问,才能够让学生更多的参与到课堂中来,课堂气氛才能够活跃起来,所以,就会在有限的课堂时间里提出很多不具有针对性的问题,这样不利于学生思考,反而减低了教学的质量。

2.受到传统教学模式的影响

高中数学课堂教学中,由于每节课都有时间的限制,这样教师真正能够留给学生思考的时间是非常有限的,而很多教师由于受到传统的教学模式的影响,在课堂教学过程中,习惯性的先入为主,留给学生思考的时间很少,习惯性的在等待学生回答的过程中就把答案说出来。也就是说,传统的教学模式仍然存在于当前的数学教学课堂中,学生连自己思考的'时间都没有,完全是按照老师的思路进行学习,这时候会出现学生厌学的情绪比较大,课堂上课不认真,课堂教学达不到理想的效果。

3.回答问题反馈的信息不够重视

学生在回答老师提问的过程中,也从一个侧面反映出学生掌握该问题的程度,在一定程度上也反映着全班部分同学对这个问题掌握的程度,所以教师应当重视每一次提问中,学生掌握知识的情况,及时调整教学计划。但是,实际工作中,教师让学生回答完问题以后,就将学生晾在一边,自己考试传授自己的方法,这样的教学往往使得学生依赖老师,学生自主学习能力不强,思维没有得到有效的开拓。

二、新课改下高中数学课堂提问有效性策略

1.明确课堂提问的问题

高中数学课堂提问环节,教师在课堂教学中应当避免过度的经验主义,不应当完全的依赖以往的教学经验,对每一节课应当做的课前准备工作忽略。课堂上虽然老师授课的内容是不变的,但是授课的对象和具体的环境却是完全不相同的,所以,教师在课前预习阶段,应当结合教学的具体环境背景,对授课的内容作出必要的调整,对于课堂需要提问的题目也应当慎重选择,围绕课堂教学目的和学生的接收能力展开。课堂提问亦是老师和学生交流的过程,设计的提问问题明确清晰,那么将有效的促进学生和老师之间的交流,为接下来教学过程中的师生互动奠定基础。对于提问问题的本身,问题有难易之分,应当根据问题的难易程度,让学生对本堂课学习的重点和难点有清晰的认识,达到教学需要的广度和深度即可。

2.合理控制提问的频率

问题的提问要有一个合理的广度和深度,提问的问题不能过于困难,避免打击学生的学习兴趣,除了这个以外,教师在课堂上应当科学合理的控制提问的频率,把提问控制在一个合理的限度内。如果频发的进行提问,则学生在课堂中进行必要思考的时间将会打折扣,这样则打击了学生自主学习性。如若一直不提问或提问很少,则会出现教师一直在滔滔不绝,而学生则一直只是听,被动的接收知识,课堂互动基本没有,则不利于激发学生的学习兴趣,老师也不能够及时获得学生掌握知识的情况。所以,提问的目的是为了吸取学生的注意力和兴趣,通过提问能够调动学生的热情,认识到问题的本身并积极的寻找解决问题的思路,提高课堂教学的质量。

3.课堂提问的问题应当以探究式为主

课堂提问主要是为了吸引学生的注意力,激发学生进行思考,同时根据学生回答问题的情况,来判断学生掌握知识的情况,进而决定下一步的课堂教学计划,所以课堂教学中提出的问题应当以探究式问题为主,已达到启发学生思考,引导学生按照教学思路进行。比如,在进行几何教学中,可以要求学生结合图形思考,教学生遇到具体的题目应当如何画图、分析和证明,发散思维,引导学生从多方面多角度进行思考,寻找不同的解题思路。

三、结语

总之,新课改下高中数学课堂提问应该结合具体的教学环境,同时根据学生对知识的掌握情况来决定提问的问题,从课堂问题的目的、有效性入手,提出符合实际教学要求的问题,以利于提高高中数学课堂教学的质量。

高中数学的教学反思 篇6

本文根据基础教育中数学教育的基本目标,围绕数学教学活动中培养学生的反思能力的内容、方法。提出了在数学教学解题过程中,经常引导学生进行反思,让学生充分暴露思维过程,让学生自我发现、自主探索解题思路和方法,从而提高学生分析问题解决问题的能力。掌握数学所特有的分析问题和解决问题的基本原理,达到使自觉将这些基本原理运用到一生的学习、工作、生活之中,这一基础教育数学教学的首要目标。

云南省普通高中数学课程改革实验已进行一年有余。在课改实验中,我和大多数教师一样经历了茫然与彷徨,体验了无所适从到慢慢摸索的课堂教学组织,其间不乏有各种思维的碰撞,穿插着同行间争辨的火花。而正是这些体念、碰撞与火花不断的引起我对高中数学课堂教学组织形式的反思,更加坚定了课改的信念,并从中得到启迪聚焦于课堂教学。

华东师范大学数学系张奠宙教授,在透视《高中数学课程标准》的报告中指出:数学教学的根本是把握数学实质。数学课堂教学的目的主要看学生是否理解数学本质,是否掌握了数学知识,是否形成数学能力。我们把人类几千年积累的知识,取其精华,在很短的时间内,要让学生掌握,并形成能力,不但需要教师讲解引导,而且对教师的讲解引导提出更高的要求。这种课堂应是充满火热思考的课堂,而不是游离于数学本身的表面形式上的活跃和探究。而教师角色的定位是在动态的教学过程中,基于对学生的观察和谈话,“适时”地点拨思维受阻迷茫的学生,“适度”地根据不同心理特点及不同认知水平的学生设计不同层次的思考问题,“适法”地针对不同类型知识选择引导的方法和技巧。

数学中概念性知识(包括数学思想方法)的教学需要学生对每一个数学概念构造自己的理解,使得教的作用不再是演讲、解释、或者企图去传送知识,而是为促使学生进行心智建构,适时、适度、适法地创设问题情境启发教学。对于学生来说,学习数学的一个重要目的是要学会数学的思考,用数学的眼光去看世界。而对于教师来说,他还要从“教”的角度去看数学,他不仅要能“做”,还应当能够教会别人去“做”,因此教师对教学概念的反思应当从逻辑的、历史的、关系的等方面去展开。

以函数为例:从逻辑的角度看,函数概念包含定义域、值域、对应法则等,以及单调性、奇偶性、周期性、对称性等性质和一些具体的函数,这些内容是函数教学的基础,但不是全部。从关系的角度来看,不仅函数的主要内容之间存在着种种实质性的联系,函数与其他中学数学内容也有着密切的联系。方程的根可以作为函数的图象与坐标轴交点的横坐标;不等式的解就是函数的图象在坐标轴上的那一部分所对应的横坐标的集合;数列也就是定义在自然数集合上的函数;同样的几何内容也与函数有着密切的联系。

这些问题促使学生对函数定义进行反思,并透过函数定义的文字,用已有的知识去构造对函数概念本质的自我理解。

数学是一种思维的体操,它的各种思维方法不仅存在于数学之中,而且也存在于物理学、化学、甚至人文学科中,都是对生活现象与经验的提炼。弗赖登塔尔认为人类知识有两类:思辩性知识和程序性知识,思辨性知识适合“探究”方式学习。张奠宙教授认为数学中经验的知识如:无理数,复数、函数、公理化方法等,学生日常经验得不出这样的数学思想;象无理指数幂,为什么要使用弧度,线性规划求解等难以证明的知识,以及对数运算、向量运算,三角恒等变换这些主要是记忆的程序性知识不宜“探究”,学生适用“接受性”学习方式。这类似于语言的学习,方法是记单词,熟语法,多练习,而数学的学习也要多注意数学符号语言的学习。数学中思辨性知识是指“怎么想”、“怎么做”的,它的本质是指个人的理解力和领悟性,存于个人经验的体验中,又嵌入于实践活动,只能在探究活动中通过体验去意会升华,对这种知识学生适用“探究”方式学习。

个人程序性知识的积累到质的飞跃就内化为方法性知识,而方法性知识的理解和领牾又外化于程序性知识的学习的效率和质量。引导学生关注不同类型的知识,选用不同的学习方式,掌握数学知识,提高数学能力。

课堂是师生“对话的场所”,学生是数学学习的主人,数学教学主要是交流合作。教师和全班学生互动讨论,也是一种师生交流合作地学习。但数学是个人思考的学科,教师所提的问题要能引起学生的主动思维、独立思考,才能促使高质量的师生的互动。那么教师怎样提问呢?在学生思维的“最近发展区”内提问题,也就是在知识形成过程的“关键点”上,或在解题策略的“关节点”上,或在知识间联系的“联结点”上,或在数学问题变式的“发散点”上提问。好的提问就是“导而弗牵,强而弗抑,开而弗达”。

另外课堂上的分组讨论也是合作学习的一种方式。由于思考需要比较长的时间,而没有经过充分的独立思考,表面热闹的合作学习是形式上合作,是没有意义,也没有实效的。要提高合作学习实效,需要课堂内外合作结合,教师还必须正确面对合作中是主动参与还是被动参与,是平等还是独裁,是独立思考还是照抄别人等问题,及时地给予指导,把内容和要求交代清楚。《数学课程标准》强调数学与现实生活的联系,要求选材必须贴近学生生活实际,要求数学教学必须从学生熟悉的生活情境出发,引导学生从现实生活中学习数学、理解数学、体会数学,感受数学的趣味和作用,体验数学的魅力。

如在《数学(必修2)》直线的倾斜角与斜率的学习时,为了加强对斜率的意义和作用的理解,教师布置学生课前阅读并思考《魔术师的地毯》问题,把想法在组内讨论,然后选出一人在课堂上交流思辩。这样有了课前充分的独立思考与合作,课堂上的交流合作就能节省时间,又能深刻理解交流问题的实质,因此提高课堂效率和合作效果。

新课程提出教师的教要“以学生的学为中心”,教师是课堂“舞台”上的“导演”,是学习数学的组织者、引导者与合作者,而培养理性思维能力是数学教育的主要目标。但学生的日常经验还不能支撑全部数学,因此数学教学要把隐藏在背后的理性思考激活,要把数学的文化价值点穿,帮助学生体会“蓦然回首,那人却在灯火阑珊处”的数学解题意境,学生才会喜欢数学。每一堂课都有规定的教学任务和目标要求。所谓“教学有法,但无定法”,教师要能随着教学内容的变化,教学对象的变化,教学设备的变化,灵活应用教学方法。数学教学的方法很多,对于新授课,我们往往采用讲授法来向学生传授新知识。而在立体几何中,我们还时常穿插演示法,来向学生展示几何模型,或者验证几何结论。如在教授立体几何之前,要求学生每人用铅丝做一个立方体的几何模型,观察其各条棱之间的相对位置关系,各条棱与正方体对角线之间、各个侧面的对角线之间所形成的角度。这样在讲授空间两条直线之间的位置关系时,就可以通过这些几何模型,直观地加以说明。此外,我们还可以结合课堂内容,灵活采用谈话、读书指导、作业、练习等多种教学方法。在一堂课上,有时要同时使用多种教学方法。“教无定法,贵要得法”。只要能激发学生的学习兴趣,提高学生的学习积极性,有助于学生思维能力的培养,有利于所学知识的掌握和运用,都是好的教学方法。

高中新课程的宗旨是着眼于学生的发展。对学生在课堂上的表现,要及时加以总结,适当给予鼓励,并处理好课堂的偶发事件,及时调整课堂教学。在教学过程中,教师要随时了解学的对所讲内容的掌握情况。如在讲完一个概念后,让学生复述;讲完一个例题后,将解答擦掉,请中等水平学生上台板演。有时,对于基础差的学生,可以对他们多提问,让他们有较多的锻炼机会,同时教师根据学生的表现,及时进行鼓励,培养他们的自信心,让他们能热爱数学,学习数学。

学生是学习的主体,教师要围绕着学生展开教学。在教学过程中,自始至终让学生唱主角,使学生变被动学习为主动学习,让学生成为学习的主人,教师成为学习的领路人。在一堂课中,教师尽量少讲,让学生多动手,动脑操作,刚毕业那会,每次上课,看到学生一道题目往往要思考很久才能探究出答案,我就有点心急,每次都忍不住在他们即将做出答案的时候将方法告诉他们。这样容易造成学生对老师的依赖,不利于培养学生独立思考的能力和新方法的形成。学生的思维本身就是一个资源库,学生往往会想出我意想不到的好方法来。

众所周知,近年来高考数学试题的新颖性、灵活性越来越强,不少师生把主要精力放在难度较大的综合题上,认为只有通过解决难题才能培养能力,因而相对地忽视了基础知识、基本技能、基本方法的教学。教学中急急忙忙把公式、定理推证拿出来,或草草讲一道例题就通过大量的题目来训练学生。其实定理、公式推证的过程就蕴含着重要的解题方法和规律,教师没有充分暴露思维过程,没有发掘其内在的规律,就让学生去做题,试图通过让学生大量地做题去“悟”出某些道理。结果是多数学生“悟”不出方法、规律,理解浮浅,记忆不牢,只会机械地模仿,思维水平较低,有时甚至生搬硬套;照葫芦画瓢,将简单问题复杂化。如果教师在教学中过于粗疏或学生在学习中对基本知识不求甚解,都会导致在考试中判断错误。不少学生说:现在的试题量过大,他们往往无法完成全部试卷的解答,而解题速度的快慢主要取决于基本技能、基本方法的熟练程度及能力的高低。可见,在切实重视基础知识的落实中同时应重视基本技能和基本方法的培养。

常用的数学思想方法有:转化的思想,类比归纳与类比联想的思想,分类讨论的思想,数形结合的思想以及配方法、换元法、待定系数法、反证法等。这些基本思想和方法分散地渗透在中学数学教材的条章节之中。在平时的教学中,教师要在传授基础知识的同时,有意识地、恰当在讲解与渗透基本数学思想和方法,帮助学生掌握科学的方法和通性通法,从而达到传授知识,培养能力的目的,只有这样。学生才能灵活运用和综合运用所学的知识。

总之,在新课程背景下的数学课堂教学中,要提高学生在课堂40分钟的学习效率,要提高教学质量,教师就应该多思考、多准备,充分做到用教材、备学生、备教法,提高自身的教学机智,发挥自身的主导作用。著名数学教育家波利亚说:“聪明的人从结果开始”。通过对结果的反思,就能发现和纠正运算中失误之处,或对解题合理性进行检验,找到症结所在,然后作出适当的补充和调整。