数学教学设计
文学网整理的数学教学设计(精选6篇),供大家参考,希望能给您提供帮助。
数学教学设计 篇1
教学目标:
1、学习合理利用时间的方法,提高学习效率的效率。
2、体会举例子、制图表、列数字在说明中的作用。
3.体会文章简洁准确的语言。
教学难点:学习合理利用时间的方法,提高学习效率的效率
教学重点:体会本文简洁准确的语言。教学过程教师活动预设学生活动预设设计意图
教学准备:
导入:
新授:拓展作业安排学生利用信息课收集华罗庚的相关信息,布置预习。展示收集到的资料并介绍。
思考以下的问题:
一、文中主要是借助什么事情来介绍统筹方法的?
二、三种方法的区别主要在哪里?
三、作者比较三种方法,提出最好的方法,主要是哪个方面的`考虑?
四、根据以上问题,结合课文内容,用自己的话概括什么是统筹方法?结合日常生活或班级中存在的效率低下的问题,应用统筹方法提出解决办法。
1.抄写课文后积累部分词语。预习课文,收集资料。 .学生交流、展示得到的资料。学生思考问题,可以让学困生先概括,然后由其他概括能力较好的导生补充、精练。学生对语段阅读并概括,进行比较概括。学生思考文中最好方法好在哪里,体会统筹方法的最大优点,并用词语概括(如提高效率、加快时间)学生思考,从文章中学长依据,不必拘泥定论,不可脱离文本。采取学生小组讨论的形式。
2.用统筹方法安排自己的一天。熟悉文本、提高上课效率。培养学生利用现有条件收集有用信息的习惯。培养学生的概括能力。训练学生的浓缩比较能力。训练学生对信息的处理、分析能力。培养学生准确的概括和提炼能力。培养学生的知识迁移能力以及运用知识解决实际问题的能力。
数学教学设计 篇2
教学过程:
(一)明确目标
首先师生一起复习已学过的线段垂直平分线或角的平分线的性质,提醒学生线段垂直平分线上的点,到线段的两个端点有什么性质.学生很快得出“相等”,如果再换一点看有什么特征.从而帮助学生归纳出“线段垂直平分线上的点到线段两个端点的距离相等”。当学生都承认这个事实后教师再提出:如果线段AB外有一点D,且满足DA=DB.那么这个点D会在什么位置上呢?让学生充分研究,在教师指导下得出,如果DA=DB,那么点D必在线段AB的垂直平分线上.有了以上感性认识教师提出:本节课我们就来研究具有这种性质的点的有关问题,——轨迹。
(二)整体感知
首先引导学生复习用集合的观点定义圆的方法,“圆是到定点的距离等于定长的点的集合。”这就使学生理解点动成线的这一事实.再复习从定义可看出圆上的点具有两个性质:
(1)圆上各点到定点(圆心O)的距离都等于定长(半径的长r);
(2)到定点距离等于定长的点都在圆上。
这时再引导学生把“到定点的距离等于定长”这一事实看成是条件,那么所得符合这个条件的点都应该在圆上.这时就可给轨迹这个概念下定义了。有了这个定义学生就很容易得出第一个点的轨迹:“到定点距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆。”
有了这些知识,在复习线段的垂直平分线、角的平分线的概念的基础上,很快就能得出第二个、第三个点的轨迹来。
(三)重点、难点的学习与目标完成过程
在学生对三种点的轨迹没有感性、直观的印象之前就抽象出学生难以理解的点的轨迹概念,学生就会感到糊涂.为此我们首先帮助学生学习已有的知识:圆的定义、线段的垂直平分线的性质、角的平分线的性质.这种复习不应是简单的重复,而是应该接轨迹概念的要求进行.
提问:从集合的观点,圆是怎样定义的?绝大多数学生都能说出“圆是到定点的距离等于定长的点的集合”。这就是说圆是由一些点组成的,那么这些点都满足什么条件呢?学生经过讨论后能说出:“到定点的距离等于定长”就可以了。前面我们还学习了圆的内部的点、圆上的点、圆外部的点,从这个观点看,满足到定点距离等于定长的点是否都在圆上,学生的回答是肯定的.。这就完成了轨迹的两条性质,把它写在黑板的最左边。
已知线段AB,求作AB的垂直平分线ML,学生都会作,作完后再问:如果在直线ML上任取一点D,这一点到线段AB两个端点的距离如何?学生很快就能证明出DA=DB.由于D点在线段AB的垂直平分线上任取的,这个任意性说明什么问题.要求学生用数学语言把它概括出来.教师点拨学生说出线段垂直平分线上的点到线段两个端点的距离相等.再问学生到线段AB两个端点的距离相等的点应该在什么位置上?由前一个例子,学生能回答出“在线段垂直平分线上”。
已知∠AOB,求作角的平分线OM,问学生:在角的平分线OM上任取一点D,过D点分别作角的两边OA,OB的垂直线,垂足分别为E、F,请同学们观察,这两条垂线段DE,DF有什么特征?学生通过思考,能回答出DF=DE.再问学生如果在∠AOB内任取一点D′,过D′分别作OA,OB的垂线,垂足分别为E′,F′,且D′E′=D′F′,那么点D′应在什么位置上呢?让学生讨论回答.通过以上三个问题的复习学生的回答是肯定的。
有了以上的充分准备现在我们来研究轨迹的问题.
首先用一根细绳,一端固定在黑板上,另一端拴上粉笔,教师在黑板上慢慢的让粉笔动拉紧绳子,让学生仔细观察,这样给学生以点动成线的感觉,在动的过程中教师指出拉紧绳子的是条件——轨,笔画出来的线就是印迹——迹,这就是数学上的轨迹问题.
符合某一条件——拉紧绳子;所有点组成的图形——画出的圆,叫做符合这个条件的点的轨迹(这里指画出的图而言).由于前面的准备讲轨迹所含的两层意思:
1.图形上任何点都符合条件;
2.符合条件的点都在圆形上时就显得水到渠成了。
下面就是按照轨迹的定义及我们复习的圆、线段的垂直平分线、角的平分线让学生自己归纳、整理出三种常见的点的轨迹,教师只能指导、点拨,决不能代替.因为这正是锻炼学生归纳、整理、概括、迁移等能力的好机会。
学生回答轨迹,教师板书在黑板上:
轨迹1:到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆。
轨迹2:和已知线段两个端点距离相等的点的轨迹,是这条线段的垂直平分线。
轨迹3:到已知角两边的距离相等的点的轨迹,是这个角的平分线。为了使学生能进一步深入地掌握常见的前三种轨迹,巩固练习下面几个小题:
练习:画图说明满足下列条件的点的轨迹:
(1)到定点A的距离等于5cm的点的轨迹;
(2)到∠AOB的两边距离相等的点的轨迹;
(3)经过已知点A、B的圆O,圆心O的轨迹。
让学生在下面画图,回答满足这个条件的轨迹是什么?让学生归纳出每一个题的点的轨迹属于哪一个基本轨迹。
(四)总结、扩展
本节课学生学习了轨迹的概念,特别是通过对三个几何知识的学习,学生自己归纳出三个基本轨迹,使学生自己学习数学知识的能力又提高了一步。
本节课主要学的知识点:xxxx
(五)布置作业
数学教学设计 篇3
教学内容分析:
在自然界和日常生活中具有轴对称性质的图形很多。教材通过飞机、蝴蝶和_的实物图让学生观察、分析它们共同的特征,再做剪纸实验,然后揭示轴对称图形并画出对称轴,使学生进一步加深对轴对称图形的认识。教材中安排了一些实际操作内容,使学生在实践活动中认识图形的特征,理解有关概念的含义。
教学对象分析:
学生已认识了一些基本图形特征。学生学习这些知识,一方面可以加深对一些已学过的图形特征的认识,另一方面,可以认识自然界和日常生活具有轴对称性质的一些事物,并为以后进一步学习数学研究一些问题的基本性质打下基础。
教学目标:
一、知识与技能目标:
1、使学生通过生活中的实例进一步理解轴对称图形,探索轴对称图形的特征,能用折叠重合这样的词语准确地描述轴对称图形的特征。
2、能识别轴对称图形,并能确定它的对称轴。
二、过程与方法目标:
在丰富的现实情境中,让学生经历观察分析、欣赏想象、操作发现等数学活动过程,来提高学生的空间想象能力和思维能力,发展其空间观念和审美能力。
三、情感态度与价值观目标:
主动参与画图形的活动,感受图形的对称美。
教学准备:
教师:多媒体教学课件,剪好的树叶、大树、葫芦、爱心和小衣服等。学生:彩纸3张、剪刀1把,直尺1把,学习材料1份。
教学重点:
(1)认识轴对称图形的特点,建立轴对称图形的概念;
(2)准确判断生活中哪些物体是轴对称图形,并能找出简单对称图形的对称轴。
教学难点:
判断对称图形,做出轴对称图形。
教学过程:
一、创设情境,导入新知。
1、老师在眼镜店看到这样一副眼镜,请你检验一下它是否合格,为什么?(出示课件:不对称的眼镜)
生回答。师揭示”对称”,并板书。
2、请看这幅眼镜合格吗,为什么?(出示课件:对称的眼镜)
生回答。
3、这是一只美丽的蜻蜓,你看它对称吗?如果是哪里对称?
生回答。
4、在生活中哪里还见过这样的对称现象?
生回答。
5、老师也搜集了一些生活的对称现象,请你欣赏一下。
(课件出示生活中的对称现象,并配有音乐。)
6、它们美不美?这只蝴蝶美不美,美在哪里?
生回答。
7、蝴蝶的家人和朋友带来一个问题想考考大家,请你仔细观察:
(出示课件:对折之后两边完全重合)
8、你有什么发现?
生回答。师揭示“完全重合”,并板书。
9、你能用双手表示“完全重合”吗?你能用一张卡纸表示“完全重合”吗?生做,师评价。
二、动手操作,理解新知
1、就是这张简单的纸,老师可以把它变成很多漂亮的对称图形,你信吗?请
看老师手中的作品。(展示已经准备好的大树、葫芦、小衣服等简单的对称图形。)
2、你们想做吗?小手背后向前看,竖起耳朵仔细听,我们一起做一个爱心。(课件演示,教师用纸演示过程)
第一步:将纸对折,做到完全重合。
第二步:在合适的位置画出爱心的一半。
第三步:沿着刚才的画痕剪下来。
第四步:打开便是爱心。
3、请同学们准备好你的学具剪一个爱心。
生操作,师巡视。
4、展示学生的作品,并贴黑板上。
5、你们真是了不起的艺术家,能剪出这么漂亮的作品。我们把这样的两边一
样的对称叫做对称图形。
6、你还能剪出其他的对称图形吗?
生操作,师巡视。
7、展示学生的作品,并贴在黑板上。
8、打开你手中的对称图形,请你仔细观察,你首先看到的是什么?
生:一条折痕。
师:揭示“对称轴”,并出示课件解释对称轴:它通常是一条直直的虚线,并能向两端延长。请画出你手中的对称轴。
9、仔细观察老师黑板的对称轴和你画出的对称轴,有什么区别吗?
生回答,师指导:当对称轴在真实物体上时是画不出延长部分的,只能再作品的本身画。而老师的作品是在纸上,所以能画出延长的部分。
10、像这样沿着对称轴对折,两边能完全重合的图形叫做“轴对称图形”,
并板书。
三、巩固练习,运用新知
1、下面图形哪些是轴对称图形?(课件出示)
生回答。
2、判断:下面的图形是对称的吗?如果是请画出对称轴。(课件出示)生拿出练习纸做题。
3、连线。
生回答。
四、回顾新知,总结提升
1、这节课的学习之旅即将结束,请回顾一下这节课我们首先观察了什么?生回答。
2、通过剪一剪的活动我们发现轴对称图形有个显著特点:对折后两边都能完全重合,并且能留下一条很明显的对称轴。
3、同学们感受到了生活中对称的美,在课堂上也剪出了美丽的轴对称图形,此时你们的心情美不美?让我们带着这份美丽的心情来欣赏美丽的图片。(课件出示,并配有音乐。)板书设计:
轴对称图形
对称轴
对折→完全重合
教学反思:
本课的教学我是按照“知识引入——概念教学——知识应用”的顺序逐步展开的,体现了知识的形成过程。
首先通过不对称的眼镜和对称的眼镜对比,让学生初步感知对称的现象,再引入蜻蜓的实物图,让学生观察、分析它们共同的特点,引出“对称”的概念。说一说生活中哪些东西是对称的等实践活动,使学生体验轴对称在生活中的应用。接下来让学生通过折一折、画一画、剪一剪的`活动发现对称轴,由此理解轴对称图形的特点。
一、创设生动的问题情境,激发学生学习的热情和探究的欲望。
古人云:“学起于思,思起于疑”,有疑问才能思考和探究。课堂上教师是教学活动的组织者,教师只有精心设计贴近学生生活、有意义和富有挑战性的问题情境,让学生在心里产生一种悬念,进而达到以疑激学的目的。本节课一开始,用生活中的眼镜来激发孩子的兴趣,既熟悉又不熟悉的现象使孩子初步感知对称的美和价值。
二、搭建体验探索的平台,开展有序、有效的实践活动。
《数学课程标准》指出:“有效的数学活动不能单纯地依赖模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的重要方法”。本节课我在课堂上展开了观察对称图形——发现特点——动手剪对称图形——欣赏与应用等一系列有序的学习活动。例如:活动一:观察对称现象,感知对称图形。活动二:动手剪对称图形,在活动中加深体验。“剪一剪”的活动,让学生先自己探索剪对称图形的方法,并尝试着剪一剪。这一活动的开展,激起了学生动手操作的兴趣和欲望。
三、联系生活实际,感受数学乐趣。
数学与生活紧密联系,教学中,要让学生带着数学走出课堂,走进生活去理解生活中的数学,去体验数学的价值。因此根据对称的物体给人一种匀称、均衡的感觉,一种美感。我抓住对称图形的特点,精心设计:大红的中国剪纸、美丽的蝴蝶、蜻蜓、中国的京剧脸谱、各种建筑等图片,师生一起欣赏生活中一幅副精美的对称图片,给学生带来美的感受。接着,引导学生从生活中寻找对称图形,讲述生活中哪些东西是对称的,判断生活中的具体事物是否是对称图形,从而感受身边的对称图形。
数学教学设计 篇4
一、学生情况分析
学生通过对新教材学习,已经初步的适应了新课程的教材特点,并能有一定个性地去完成学习任务。两个班总的来说,基础是差不多的,(3)班的尖子生和(4)班差不多,不过,后进生方面,二(4)班多了好几个。两个班的学习习惯都较好,本这个学期的教学重点还是要放在良好听课习惯的养成上和数学思维能力训练。另外,关注学生的思想动态,积极教育与引导学生,让学生逐步爱上数学。
二、教材分析
本期课程内容涉及数学教学内容的各个领域,而且结合教学内容安排了许多体现数学文化的阅读材料,有助于学生初步认识数学与人类生活的密切联系,感受数学的价值。具体表现:
“数与代数”领域有3个单元,主要内容包括在表内除法的基础上学习有余数除法、结合实例和调查,使学生体会到生活中有比“百”大的数,激发学生学习兴趣。通过实际操作和观察,使学生体验到“一千”“一万”有多大结合具体情境,探索计算万以内加减法及连加、连减及加减混合的计算方法;通过对时、分、秒的学习,初步养成遵守和爱惜时间的良好习惯。“图形与几何”领域有3个单元,为学生提供丰富的学习资源,注重学生动手实践和积极思考。“方向与位置”借助现实的数学活动,认识并能辨认八个方向,能描述物体所在的位置,认识简单的路线图。“测量”通过大量的动手操作和实际活动,初步建立“1千米”“1分米”“1毫米”的长度观念,以及单位之间的关系,培养学生的估测意识。“认识图形”通过生活实景,认识角,能辨认直角、锐角、钝角;通过动手操作,知道长方形、正方形的特征,直观认识平行四边形。统计与概率方面,学生将初步体验数据的调查、收集、整理的过程,根据图表中的一些数据回答一些简单的问题,并与同伴交流自己的想法,初步形成统计意识。在简单的猜测活动中,初步感受感受不确定现象,体验有些事件发生是确定的,有些则是不确定的。除此之外,还有综合与实践活动“数学好玩”。
本期课程内容知识点散、多,难度相比以前增大不少,二年级的学生虽然年龄小,但是已具有一定的知识和生活经验,只要在平时的学习中,注重对思维能力、口头表达能力、动手操作能力的训练,养成踏实、细致的学习态度,应能顺利完成学习任务,并为今后的学习打下良好基础。
三、学习目标
(一)数与代数
1.结合分物活动,探索并掌握有余数除法的试商方法;通过具体情境,探索万以内加减法及连加、连减、加减混合的计算方法,养成对计算结果的大致范围进行估计的习惯,能在具体情境中提出问题,能运用学到的知识解决一些简单的实际问题。
2.结合实例和调查,使学生体会到生活中有比“百”大的数,激发学生学习兴趣。通过实际操作和观察,使学生体验到“一千”“一万”有多大,并能结合实际,对万以内的数进行估计,了解
其数位顺序,会用万以内的数进行表达和交流,会用词语或符号来描述万以内数的大小,培养学生的数感。
3.学生通过时、分、秒的学习,初步养成遵守和爱惜时间的良好习惯。在实际情景中,认识时、分、秒,初步体会时、分、秒的实际意义,掌握时、分、秒之间的进率,能够准确的读出钟面上的时间,并能说出经过的时间。
(二)图形与几何
1.借助现实的数学活动,认识八个方向。给定一个方向(东、南、西、北),能辨认其余七个方向,能用这些词语描述物体所在的位置;认识简单的路线图,能根据路线图说出出发地到目的地行走的方向和途径的地方。
2.通过动手操作和实际活动,初步建立“1千米”“1分米”“1毫米”的长度观念,以及单位之间的关系;培养学生的估测意识。
3.通过生活实景,认识角。能辨认直角、锐角、钝角。通过动手操作,知道长方形、正方形的特征,直观认识平行四边形。
(三)统计与概率
学生将初步体验数据的调查、收集、整理的过程,根据图表中的'一些数据回答一些简单的问题,并与同伴交流自己的想法,初步形成统计意识。
四、教学措施:
1、要从整体上把握教学目标。不光凭经验,过去怎样提,现在也怎样提;也不能搬课本,凡是课本上的有的内容,都作统一的教学要求,而应该根据教学指导纲要,结合教学进行适当的调整。要防止加重学生的学习负担。
2、充分利用学生的生活经验,让学生在具体生动的情境中学数学,设计生动有趣、直观形象的数学活动,如游戏、讲故事、直观表演、模拟表演等,激发学生的学习兴趣,让学生在生动有趣的情景中理解和认识数学知识;同时充分利用学具,培养学生的动手操作能力。
3、在课堂教学中,让学生结合自己的生活实际,多照顾学困生以及思维偏慢等的学生,给其进行查漏补缺,释疑解难,在平时的生活中多用多练,体现了数学来源于生活的道理,激发学习兴趣。
4、对学有余力的学生在掌握所学的基础知识的基础上,进一步提高、拓展。在教学中,结合课后练习的一些带思考性的题目,引导学生启动思维思考问题,独立解决问题,掌握科学、灵活的方法。布置一些比较有趣的作业,比如动手的作业,少一些呆板的练习。
5、加强家庭教育与学校教育的联系,与家长进行适时沟通,让家长用正确、适当的方法指导孩子学习。
6、进一步培养学生学习数学的兴趣和良好的学习习惯充分挖掘各种网上教学资源,用好各种教学媒体,组织学生开展丰富多彩的学习活动,首先从学习的内容和形式上吸引学生。引导学生养成独立思考、敢于提问、善于倾听、乐于表达的内在品质。
7、继续加强家庭教育与学校教育的联系,适当教给家长一些正确的指导孩子学习的方法。做好后进生的转化工作和优生的提拔工作。
数学教学设计 篇5
课题:
数学广角——搭配问题
教学内容:
人教版三年级上册第112页例1及练习中习题。
教学目标:
1、使学生了解生活中的一些简单搭配现象,通过观察、猜测、实验等数学活动,提出不同的搭配方案。
2、在解决问题的过程中,渗透符号化思想,以及有序全面地思考问题的意识。
教学重点:
自主探究,掌握有序搭配方法,并用所学知识解决实际问题。
教学难点:
怎样搭配可以不重复、不遗漏。
教学准备:
课件
教学过程:
一、创设情境,揭示课题
金色的秋天即将过去,一只蝴蝶在草原上忙碌,它要干什么呢?
原来它是受了智慧老人的差遣,要去给百变小樱送一封信。小樱会不会让我们看信的内容呢?
噢,是智慧老人邀请她到数学城堡去呀!
二、讨论合作,探究搭配方法
1、尝试猜想。
小樱带了2件上衣,3件下装,如果她每天都想有不同的搭配方法,她可以不重复地穿几天?
2、思考讨论。
(1)引导思考:用2件上衣和3条下装搭配,到底有多少种不同的搭配方法呢?你可以想一想、画一画、甚至算一算,用最简便的方法把各种穿法快速记录下来。
(2)独立思考,尝试表示。
(3)小组交流:把你的想法在小组内交流。教师巡视,参与指导小组活动。
3、展示汇报:现在哪组来汇报?你们是怎么想的?用什么方法记录的?请不同表示方法的学生在实物投影上展示说明,其他学生评价。
预设学生的方法可能有:(1)数字表示;(2)文字表示;(3)符号或图形表示:(4)计算。
4、观察比较
(1)刚才我们展示了这么多表示办法,你觉得它们有什么共同的特点呢?
小结:经过刚才的讨论我们发现,要解决这个问题可以有两种思路:一种是先定衣服,再配下装,第一件衣服可以配3天下,第二件衣服又可以配3天下装,一共有6种搭配方法;另一种方法是先定下装,再配衣服,第一条下装可以配2件衣服,第二条下装也可以配2件衣服,同样地第三条下装又可以配2件衣服,一共也是6种搭配方法。可见我们在解决问题的`时候可以从不同的'角度去思考。(课件演示)
(2)刚才同学们还想出了这么多记录的方法,你最喜欢哪一种?为什么?
看来有顺序地连一连、排一排能帮助我们不重复、不遗漏地把所有的搭配方法找出来。生活中处处有数学,像我们刚才说的穿衣服时不遗漏、不重复、有序就是日常生活中常见的一种数学问题——搭配问题。
板书:搭配
5、拓展延伸
(1)如果小樱想在数学城堡里待一星期,她能不能做到每天都有不同的穿法?那该怎么办?
(2)请你帮她增加一件上衣或者一条下装,想一想有几种不同的搭配方法,用你最喜欢的方法把它们记录下来,然后和同桌交流。
请不同方法的学生汇报,其他学生评价。
如果在前面学生没有想出用算式的方法,在这里教师可适当引导,使有能力的学生初步感知。
6、感知提升
如果带4件衣服,3条下装一共有几种搭配方法?如果5件衣服,4条下装呢?6件衣服,6条下装呢?
三、综合应用,解决实际问题
1、密码门
带好行装,小樱来到了数学城堡,哎呀,数学城堡的门是密码门,她是头一次来,不知道密码,怎么办呢?
这时智慧老人告诉她,密码是一个两位数,十位上是2、4、9中的一个,各位上是3、6、8中的一个,密码可能会是哪些两位数呢?你能帮助小樱把所有的情况都罗列出来吗?
学生独立尝试、汇报评价,教师板书。引导学生得出两种不同的有序思考的方法:先定十位上的数字,再配个位上的数字;先定个位上的数字,再配十位上的数字。
2、选定路线
小樱进了城堡的门,智慧老人要她到数学乐园去找聪聪和明明,她有几种不同的走法呢?
先指导学生看懂图,学生在书上画一画,小组内互相说一说,讨论交流。指名展示汇报。
3、拍照
小樱到了数学乐园,见到有几个小朋友争着要和聪聪、明明拍合影呢,他们每人都要和聪聪、明明单独拍照,小樱的魔杖能拍10次,够吗?
如果小樱也要和聪聪、明明各拍一张合影呢?
数学教学设计 篇6
教材分析:
1、 本节内容是七年级下第九章《轴对称》中的重点部分,是等腰三角形的第一节课,由于小学已经有等腰三角形的基本概念,故此节课应该是在加深对等腰三角形从轴对称角度的直观认识的基础上,着重探究等腰三角形的两个定理及其应用,如何从对称角度理解等腰三角形是新教材和旧教材完全不同的出发点,应该重新认识,把好入门的第一课。
2、 等腰三角形是在第八章《多边形》中的三角形知识基础上的继续深入,如何利用学习三角形的过程中已经形成的思路和观点,也是对理解“等腰”这个条件造成的特殊结果的重要之处。
3、 等腰三角形是基本的几何图形之一,在今后的几何学习中有着重要的地位,是构成复杂图形的基本单位,等腰三角形的定理为今后有关几何问题的解决提供了有力的工具。
4、 对称是几何图形观察和思维的重要思想,也是解决生活中实际问题的.常用出发点之一,学好本节知识对加深对称思想的理解有重要意义。
5、 例题中的几何运算,是数形结合的思想的初步体验,如何在几何中结合代数的等量思想是教学中应重点研究的问题。
6、 新教材的合情推理是一个创新,如何把握合情推理的书写及重点问题,本课中的例题也进一步做了示范,可以认真研究。
7、 本课对学生的动手能力,观察能力都有一定的要求,对培养学生灵活的思维,提高学生解决实际问题的能力都有重要的意义。
8、 本课内容安排上难度和强度不高,适合学生讨论,可以充分开展合作学习,培养学生的合作精神和团队竞争的意识。
学情分析:
1、 授课班级学生基础较差,教学中应给予充分思考的时间,谨防填塞式教学。
2、 该班级学生在平时训练中已经形成了良好的合作精神和合作气氛,可以充分发挥合作的优势,兼顾效率和平衡。
3、 本班为自己任课的班级,平时对学生比较了解,在解决具体问题的时候可以兼顾不同能力的学生,充分调动学生的积极性。
教学目标:
知识目标: 等腰三角形的相关概念,两个定理的理解及应用。
技能目标: 理解对称思想的使用,学会运用对称思想观察思考,运用等腰三角形的思想整体观察对象,总结一些有益的结论。
情感目标: 体会数学的对称美,体验团队精神,培养合作精神。
教学中的重点、难点:
重点:
1、等腰三角形对称的概念。
2、“等边对等角”的理解和使用。
3、“三线合一”的理解和使用。
难点: 1、等腰三角形三线合一的具体应用。
2、等腰三角形图形组合的观察,总结和分析。
主要教学手段及相关准备:
教学手段:
1、使用导学法、讨论法。
2、运用合作学习的方式,分组学习和讨论。
3、运用多媒体辅助教学。
4、调动学生动手操作,帮助理解。
准备工作:
1、多媒体课件片断,辅助难点突破。
2、学生课前分小组预习,上课时按小组落座。
3、学生自带剪刀,圆规,直尺等工具。
4、每人得到一张印有“长度为a的线段”的纸片。
教学设计策略:依据教学目标和学生的特点,依据教学时间和效率的要求,在此课教学方法和教学模式的设计中我主要体现了以下的设计思想和策略:
1、 回归学生主体,一切围绕着学生的学习活动和当堂的反馈程度安排教学过程。
2、 原则性和灵活性相结合,既要完成教学计划,在教学过程中又可以根据现实的情况,安排问题的难度,体现一些灵活性。
3、 教学的形式上注重个体化,充分给予学生讨论和发表意见的机会,注重学习的参与性,努力避免以教师活动为主体的教学过程。
返回首页