返回首页
文学网 > 短文 > 教学教案 > 正文

比的应用教学设计

2025/11/25教学教案

文学网整理的比的应用教学设计(精选6篇),供大家参考,希望能给您提供帮助。

比的应用教学设计 篇1

教学内容:

人教版三年级数学上册第八单元,教科书第100页例1及相应的内容。

学情分析:

1、在本单元前几课时的学习中,学生已经初步认识了几分之一和几分之几(基本上是真分数),知道了分数各部分的名称,会读、写简单的分数,会比较分子是1的分数,以及同分母分数的大小。还学习了简单的同分母分数加、减法。

2、学生已经学习了把一个物体平均分成若干份,这样的一份或几份可以用分数来表示。本节课是要理解把许多物体看作一个整体,平均分成若干份,也可以用分数来表示这样的一份或几份。学生在学习中可能对单位“1”的理解存在一定的困难,特别是对把许多物体组成的一个整体看作单位“1”难以理解。因此,教学中应把理解分数的意义,单位“1”,分数单位作为重点,并通过不同类型的习题帮助学生巩固掌握所学。在理解分数的意义时要通过学具操作,帮助学生建立单位“1”的概念。重点要放在单位“1”,平均分,平均分成几份分母就是几,取几份分子就是几,在理解的基础上使学生学会准确表达。

教学目标:

1、通过说一说,分一分,涂一涂,画一画等活动,让学生经历单位“1”由“1个”到“多个”的过程,知道把一些物体看做一个整体平均分成若干份,其中的一份或几份也可以用分数表示。

2、借助解决具体问题的活动,使学生能用简单的分数描述一些简单的生活现;发展学生的抽象概括能力、类比推理能力,发展学生的数感。

3、使学生在学习分数的意义的基础上解决实际问题,感受分数与生活的联系,体验学习数学的乐趣。

教学重难点:

重点:知道把一些物体看做一个整体平均分成若干份,其中的一份或几份也可以用分数表示。

难点:从分母和分子的意义这一角度理解“整体”与“部分”的关系。 教学准备:

多媒体课件,答题纸,小棒。

教学过程:

师:你想到的这个数表示什么意思?

(预设:平均分、分数线、分子、分母、分数的意义。师选择板书)

二、探究新知。

1、初步感受整体由“1个”变“多个”

(1)、用课件展示教材第100页的例1右侧图,让学生观察,说说看到了什么?

(2)、现在你又想到了哪个数?它表示什么意思?

(3)、师:涂色部分是四个正方形中的几份?这样的一份还能用分数表示吗?

(4)教师对学生的.回答给与评价。根据学生的回答讲解:在这里,我们可以把这样的2份是这4个小正方形的几分之几呢?3份呢?

2.理解部分与整体的关系。

(1)课件出示六个苹果,动态演示平均分的过程。

学生观察图后集体交流(一共有6个苹果;平均分成了3份;每份有2个苹果)

(2)提出问题:如果把这6个苹果看成一个整体,的意思吗?(说清楚分母3表示什么?分子1表示什么?)

3、回顾建模。

课件出示:

引导学生回顾总

结:我们不仅可以把一个完整的物体

或者图形看成一个整体平均分,也可以把几个物体看成一个整体平均分。

三、动手操作,加深认识。

1、“均匀地分”。

(1)提出要求:老师给大家准备了12个苹果,

请你也来平均分一分,想一想可以用哪个分数,表示其中的1份或几份。拿出答题纸,分一分。

(2)生独立思考,动手操作。

(3)、汇报交流。

(4)对比提升。

课件出示所有的分法,追问:“都是1份,为什么用不同的分数来表示? 预设:因为平均分的份数不一样。

2、“创新地画”。

(2)生独立思考,动手操作。

(3)、汇报交流,展示学生作品。

预设:因为都是把整体平均分成了2份,取其中的1份。

师:哪儿不同?

预设:总数不同,每份数也不同。

四、闯关游戏,加深理解。

第一关:“准确地拿”。

第二关:“独具慧眼”。

五、回顾反思,结束全课。

1、引导学生回顾反思:今天你有什么收获?

2、师给与评价

比的应用教学设计 篇2

一、教材分析

本节课是必修三第十三章《电磁感应与电磁波初步》第三节的内容,本节内容把电与磁彻底的联系在一起。从物理学的角度看,电磁感应在电磁学中的地位,正是由于电磁感受现象的发现,把人类社会带入了电气化时代,体现了“划时代的发现”。另外本课的实验部分是在于引导学生通过活动和思考来主动地获得知识。教科书所呈现的实验既为本节研究感应电流的产生条件提供了实验情景,又成为后续楞次定律教学的基础。

二、学情分析

学生对闭合电路的部分导线切割磁感线能产生电流,在初中已经有一定的认识,但在空间想象能力、问题本质的分析方面还较为薄弱。因此,在教学中国从学生的已有知识出发,通过学生自己的自主学习、探究实验、产生问题等学习方法,解决问题得出产生感应丁柳德条件的结论。

三、基于核心素养的教学目标设计

物理观念:知道感应电流的产生条件及相应实验方法;知道用感应电流的产生条件去判断回路中是否产生感应电流。

科学思维:通过物理学史的学习,体会电磁相互转化的思想。

科学探究:通过学生实验,进行实验观察、归纳分类,达到能够判断回路中磁通量如何变化和因为什么而变化的目的。

科学态度与责任:领会科学家对自然现象、自然规律的探究,以科学不怕困难、勇于面对挫折的坚强意志激励自己。体会物理与生产生活的紧密联系。

四、重、难点

重点:通过实验观察和实验探究,理解感应电流的产生条件。

难点:感应电流的产生条件。

五、教学方法

讲授法、探究实验法

六、教学过程

(一)新课引入

(二)划时代的发现

1.奥斯特:电生磁

(动图展示奥斯特实验)

奥斯特发现的电流的磁效应,震动了整个科学界,它证实电现象与磁现象是有联系的。

电能生磁,根据对称性,为什么不能用磁来生电呢?

法拉第他就坚信磁也能生电。

2.法拉第:磁生电

于是从1822年开始进行了将近十年的实验。直到1830年8月他发现给一个线圈通电和断电的瞬间,另一个线圈中出现了电流。

于是,他又设计并动手做了几十个实验,发现了各种深藏不露的各种"磁生电"的现象。从实验现象中领悟到:“磁生电”是在一种变化、运动的过程中才能出现的效应。总结起来是这么五类:

①变化的电流

②变化的磁场

③运动的恒定电流

④运动的磁铁

⑤在磁场中运动的导体

并且他把这些现象命名为电磁感应。在这种情况下产生的电流叫做感应电流。

小结:

法拉第的这一伟大发现完善了电与磁的内在联系,所以便有电磁学这一门学科的诞生。

(三)产生感应电流的条件

法拉第发现了电磁感应现象,那么具体产生感应电流的条件是什么呢?

1、实验探究:感应电流产生的条件

导体切割磁感线,会在闭合回路中产生感应电流

2、实验验证

(1)ab静止的时候,电路中没有感应电流;

(2)ab沿着磁感线运动的时候,电路中没有感应电流;

(3)仅有ab切割磁感线的时候,才会产生感应电流。

·分析:ab切割磁感线时,磁场的大小和方向没有变化,变化的只有电路abcd的面积。

那么,与磁场相关的哪个物理量发生了变化呢

我们学过磁通量的的表达式是φ=BS,闭合电路abcd的面积发生了变化,也就是说,穿过电路abcd的磁通量发生了变化。

那么,感应电流的产生是否与磁通量的变化有关呢

下面我们通过实验来研究这个问题。

3、实验探究1:

磁铁插入、抽出

实验操作:指针偏转情况

磁铁插入——指针偏转

磁铁静止在线圈中——指针静止

磁铁拔出——指针偏转

或停在线圈中时,电流表指针如何动作?

如图,线圈A通过变阻器和开关连接到电源上,线圈B的两端连接到电流表上,把线圈A装在线圈B的里面。观察下面几种情况下线圈 B中是否有电流产生。通过动图依次观察实验。

开关和变阻器的状态——指针偏转情况

开关闭合瞬间——指针偏转

开关断开瞬间——指针偏转

开关闭合时,滑动变阻器不动——指针静止

开关闭合时,迅速移动滑动变阻器的`滑片——指针偏转

4、归纳总结

请你根据实验现象总结,什么情况下闭合导体回路中产生感应电流。

(动图展示线圈A中的磁感线条数变化的过程)

磁场强弱的变化我们可以通过磁感线的条数来观察,观察动图可以看到闭合开关穿过B的磁感线从无到有;滑动滑片,穿过B的磁感线的条数不断的变化;断开开关,穿过B的磁感线从有到无。这种情况下,根据公式φ=BS,B的面积没有改变,但是磁场感应强度B变化了,所以说穿过线圈 B的磁通量也发生了变化,线圈B中有感应电流。

5、得出结论

以上实验及其他事实表明∶

当穿过闭合导体回路的磁通量发生变化时,闭合导体回路中就产生感应电流。这就是产生感应电流的条件。

(四)电磁感应现象的应用

·发电机

1831年圣诞节前夕的一次科学报告会上,向大众展示了人类历史上最早的发电机——法拉第圆盘发电机,开辟了人类社会的电气化时代。

比的应用教学设计 篇3

设计说明

1.注重培养学生学习的自主性。引导和培养学生的自主学习能力是切实可行的,对学生养成终身学习的习惯起着不可估量的重要作用。本设计通过让学生找玩具汽车数量与小人书数量之间存在的比例关系和列举比例等,调动学生的学习热情,使学生的学习兴趣和求知欲望得到激发,思维得到拓展。

2.培养学生的解题能力。本设计以扶代讲,巧妙地引导学生主动探究,使学生在解决问题的过程中,不但能理解和掌握解比例的方法,而且能体会到数学与生活的密切联系,使学生的解题能力、合作能力及归纳能力得到提高。

教学目标

1、经历多种方法解决“物物交换”问题的过程,体会解决问题方法的多样性,提高综合运用知识解决问题的能力。

2、在解决问题的过程中,列出含有未知数的比例,并自主探索解比例的方法,理解根据“两个内项的积等于两个外项的积,求比例中的未知项,”会正确解比例。

3、在生活中感受数学探索的乐趣,提高学生学习数学的兴趣。

教学重点:

使学生自主探索出解比例的方法,并能轻松解出比例中的未知项。

教学难点:

用比例的知识解决实际问题

教法学法

讲授法、讨论法、练习法、自主学习法

教学准备:

多媒体课件

教学过程:

一、回顾旧知,复习铺垫

1.上节课我们学习了有关比例的知识,谁能说一说什么叫做比例?比例的基本性质是什么?

2 .下面两个长方形的长和宽能组成比例吗?(白板出示长方形)

二、创设情境 引出新知

师讲《完璧归赵》的故事。秦王打算用什么来换和氏璧?其实这种物物交换的现象在我们现实生活中同样存在,学生举例,课前,老师就收到了这样一则信息,淘气是玩具汽车的收藏爱好者,笑笑喜欢收藏小人书,两人一商量,打算资源共享。引出新知——《比例的应用》

三、实践探究、精讲点拨

活动(一)“物物交换”,提出问题

呈现问题情境,引导学生读懂题意,并尝试提出问题。

他们经过商量,打算用4个玩具汽车换10本小人书, 14个玩具汽车,可以换多少本小人书?(设计意图:通过“物物交换”,激发学生的兴趣,接着呈现“玩具汽车换小人书”这一情境并提出问题,激发学生学习的热情,为探究新知奠定基础。

活动(二)尝试解决,体会联系

1、14个玩具汽车可以换多少本小人书?把你的想法记录在答题卡上。

2、 教师引导学生交流各自的想法,体会在“物物交换”的过程中,玩具汽车的数量与小人书的数量之间存在的比例关系。

3、学生介绍每种方法的.思考过程,强调尽管思路不同,但各种方法都围绕玩具汽车个数与小人书本数之间的比例关系而展开。

活动(三) 拓展策略 列比例解答

1、教师引导:假设14个玩具汽车可以换x本小人书,同学们能否根据题意列出比例?并说说你是根据哪两句话写出比例的,你是怎么想的?

2、学生尝试列式。

3、交流汇报写出比例的主要依据。

4、学生独立解比例。

5、汇报结果。

6、验算:把求出的结果代入比例验算一下,看等式是否成立。 (学生自主验算)

7、教师小结。解比例的关键是根据“内项的积等于外项的积”写成等式,再用等式的性质解方程。

设计意图:将解比例的学习融入到问题解决的过程中,引导学生自主独立解决,然后组织学生汇报自己的解法,这样学生对新知识就会更加理解。

四、分层练习、生生过关

(1)完成练一练1、2题

(2)完成练一练3、题

五、拓展延伸、优化提升

1、根据小组评价结果编一道有关比例的应用题。

2、你能结合生活中的例子编一道有关比例的应用题吗?

比的应用教学设计 篇4

教学目标:

1.经历解决问题的过程,学会用两步乘法解决问题,感受解决问题策略的多样化。

2.能从多个角度解决同一问题,提高解决问题的能力,发展思维。

3.感受数学知识在生活中的.应用价值,体验成功的快乐。

4.结合教学渗透思想教育。

教学重点:

正确分析数差关系,能用两步乘法解决问题。

教学难点:

解决问题的思考过程。

教学过程:

一、情境引入,激活思维

师:“六一”儿童节快到了,学校准备举行一次乒乓球比赛,借这个机会,我们三(1)班也举行一次乒乓球比赛。现在由班长小芳去超市购买乒乓球,需要买的个数如图所示,请你仔细观察,从图中你发现了什么?(出示情境图)

让学生回答:每袋有6个球,共有6袋。

师:同学们观察得真仔细,看到图你最想知道什么?

让学生提出:①我想知道一共买了多少个乒乓球?②我想知道一共用了多少元?

师:(对着第一个学生的回答)你是想知道一共买了多少个乒乓球吗?(对着第二个学生的回答)你想知道一共用了多少元?是吧?你们对这两个问题还有什么想说的?

让学生说出:要求一共用了多少元,还必须知道每个乒乓球多少元?(根据学生提问出示:补充条件和问题)

比的应用教学设计 篇5

教学目标:

使学生进一步理解和掌握用比例知识解答应用题的方法。

抓住解题关键进行熟练准确的判断,从而找准题中的等量关系。

通过与算术方法解答相比较,加强知识之间的.联系,使学生进一步理解能用比例知识解答应用题的数量关系。

教学过程:

师:谁能够说说用比例知识解应用题的关键是什么?

判断下题中各量成什么比例?并说明理由?

指导学习题例。

让学生独立解答例7。

在弄清题意后,把例5未完成的部分写完整然后比较这两种解答方法的异同点。

相同点:都是抓住商一定来建立等量关系列出方程或比例式解答的。

不同点:第一种解法是直接设所求问题为X。

第二种解法是间接设,即解出X后,还要用X减3才是所求问题。

师:除了这两种方法解答外,还能用其它方法吗?请用算术方法解答例7。

学习例6

师:请同学们在教材上完成例6后,再用算术方法解答。说说用比例解例6的关键。

对比小结

比较例5例6有什么不同?分别是根据什么关系来解答的?

(强调用比例知识解应用题,关键是判断题中的数量成什么比例,再根据题中比例关系找准等量关系,把其中未知数量用X代替,列出方程解答)

算术解法和比例解法的比较和联系。

观察算式(例5)

练习巩固

笔答题:教材117页1~3题。

全课总结(略)

比的应用教学设计 篇6

(集合)比的应用教学设计15篇

作为一名教学工作者,通常需要用到教学设计来辅助教学,教学设计是把教学原理转化为教学材料和教学活动的计划。优秀的教学设计都具备一些什么特点呢?下面是小编帮大家整理的比的应用教学设计,欢迎大家分享。