《比的应用》教学设计
文学网整理的《比的应用》教学设计(精选6篇),供大家参考,希望能给您提供帮助。
《比的应用》教学设计 篇1
教学内容:教材第145页期末复习第13—16题。
教学要求:
使学生进一步认识本册教材里学过的应用题及其结构,加深理解对这些应用题数量关系的理解,认识一些应用题之间的联系和区别,能比较熟练地分析推理并正确地解答应用题,提高解答应用题的能力。
教学过程:
一、揭示课题
本学期我们学习了三步计算的应用题。这节课,我们复习本学期学过的应用题。(板书课题)通过复习,要进一步认识本册教材里的应用题的特点,更加熟练地分析应用题的数量关系,正确地确定要先算的中间问题,进一步认识一些应用题之间的联系和区别,能正确地解答本学期学过的应用题。
二、复习三步计算应用题
1.整理思路。
这学期我们学习了许多三步计算应用题。请同学们想一想,我们学过的三步计算应用题,解答时可按怎样的方法来想要先求出的中间问题?还可以按照怎样的方法来想要先求出的中间问题
2.做期末复习第13题。让学生读题理解题意。
提问:这两题有什么相同和不同的地方?两道题的数量关系是怎样的
指名两人板演,其余学生做在练习本上。集体订正。
提问:第(2)题还可以怎样解答
学生口答,老师板书。
小结:这两题都是求两商之差的三步计算应用题,而第(2)题有一重复条件,所以也可以两步计算列式解答。
3.做期末复习第14题。学生读题,比较:两道题有什么联系和区别
第(1)题根据问题可以怎样想?根据条件又可以怎样想
第(2)题可以怎样想呢
指名学生说一说这两题的解题思路。指名两人板演,其余学生做在练习本上。集体订正。
小结:这两题都可以从条件想起,或者从问题想起。但第(1)题的已知条件、所求问题和第(2)题的互换,所以解题思路有所不同,但都有一个共同的`中间问题:即6天装配电脑的台数要先求出来。
请同学们看下面一道题。
山边林场栽槐树和杉树各12行,槐树每行24棵,杉树每行30棵。栽的槐树和杉树一共多少棵
提问:这道题可以用几种方法解答
第一种方法怎样解答?(板书综合算式)这样做是怎样想的
第二种方法可以先求什么,再求什么?怎样列算式?(板书综合算式
谁来说一说,这道题为什么可以用两种方法做
四、课堂小结
这节课我们复习了什么内容?解答应用题可以用哪两种方法来分析
指出:解答应用题,可以根据条件来想能求什么问题,也可以根据问题来想需要什么条件,确定每一步算什么。在列式时,要根据条件和条件、条件和问题的联系,尽考每一步用什么方法算。在本学期学的三步计算应用题里,如果有一个条件是两个数量共同的条件,也可以用两种方法来解答。
五、课堂作业
1.期末复习第15题。要求先说一说解题思路,再列式解答。
2.期末复习第16题。要求能用几种方法就用几种方法解答。
《比的应用》教学设计 篇2
教学内容:人教课标版一年级上册教科书第46、47页的内容。
教学目标
1.巩固7的加减法,提高计算的速度和正确率。
2.使学生知道大括号和问号在图中表示的意义,正确理解题意和图中表示的数量关系,并能列式计算.
3.初步培养学生的观察、分析能力和语言表达能力.
4.通过教学培养学生学习数学的兴趣,养成认真倾听、积极思考的学习习惯.
教学重点
正确识图,知道大括号和问号所表示的意义。教学难点
结合图意正确地选择算法.
教学过程
一、复习导入
1.口算(课件依次出现不同的口算形式以达到复习的'目的)
2.出示:教材46页的兔子图和47页青蛙图(不加“括号”和“?只”)
(学生看图列式并指名说出原因)
3.谈话引入板书课题:图画应用题。
二、学习新知
1.认识新朋友大扩号和问号。
2.示例学习新知:
(1)课件出示兔子采蘑菇图
①课件展示在兔子图下面加上大括号,在括号的下面加写“?只”,边展示边说明:括号表示把两边的兔子合并起来,下面加一个“?只”表示求一共有多少只兔子?
②引导学生试着用三句话完整地叙述图意并根据图意列式计算。
(2)课件出示青蛙图
①课件展示在青蛙图上画括号,在括号下面写“7只”,在左边的青蛙图上面写“?只”。问:现在这幅青蛙图和刚才有什么不同?(多了括号、7只和?只)这幅图表示什么意思呢?
②引导学生试着用三句话完整地叙述图意并根据图意列式计算。
(3)课件分别展示问号打在不同地方的苹果图。
(4)通过比较与观察得出儿歌: 大括号和问号,问号在里用减法。问号在外用加法,问你一共有多少,牢牢记住用加法。比多比少剩多少,切莫忘记用减法。
三、巩固提高
1.独立完成书上46、47页的例题。
2.课件出示小鱼图,小鸟图让学生独立完︷︸成。
四、扩展 师生玩猜一猜游戏
板书设计
图画应用题
大括号:︸表示一共的意思。问号:?
《比的应用》教学设计 篇3
一、教学目标
知识技能:
1.通过相关数据在excel中的建立数据表格,并能创建相应的图表。
2.通过对excel图表的学习,理解并掌握图表(柱形图、折线图和饼图)类型的选择。
过程方法:
1.通过小组合作学习、交流讨论等方法,掌握表格的建立、图表的创建。
2.通过在项目活动中的学习,学会用所学的知识来解决日常生活中的实际问题。
情感态度价值观:
通过对excel的学习使学生养成善于发现问题、积极思考、并乐于与同伴交流等良好品质。
二、教学重、难点
教学重点:
1.利用图表向导建立图表的操作。
2.图表类型的选择(柱形图、折线图和饼图)。
3.图表源数据的选择。
教学难点:图表类型的选择与图表源数据的选择。
教学关键:对图表所要表现内容的理解。
三、教学方法
教师引导、任务驱动下的学生自主、探究、交流学习。
四、教学过程
1.回顾对比引入
回顾ppt中图表的插入方法以及图表的作用,强调excel中首先建立数据表格,其次借助图表来更直观地展示。
此外,教师演示下载并交代本节课任务。
2.操作交流领悟
类比ppt中插入图表的方法,在阅读书本的基础上,在excel中绘制如下数据的图表,要求:绘制的图表位置在工作表任务1中,操作试回答以下问题:
问题a:运用图表向导创建图表共有几步骤?
问题b:图表向导的几个步骤分别完成哪些工作?
问题c:在创建图表的步骤中,可跳过不做的步骤有哪些?
问题d:倘若当前图表类型选择有误,怎样修改?
使用数据为:
世界大河水量径流模数比较
河流名称
尼罗河
长江
亚马逊河
密西西比河
刚果河
径流模数
0.79
17.6
17
5.8
10.6
达成目标:基本掌握创建图表的'四个步骤:图表类型、源数据、选项和图表位置以及各步骤的功能作用及注意事项。
3.设问探究巩固
a、要求根据给定表格数据,自行选择图表类型绘制图表,并说明理由。
20xx年世界人口(单位:亿)
人口
亚洲
52.68
北美
3.92
欧洲
8.28
拉美
8.09
非洲
17.68
教师引导提问:你选择了什么图表类型?这种类型的图表所要反映的内容是什么?
学生回答问题归纳得出选择图表类型的原则:为了对比每个项目的具体数目时可选择柱形图;为了清楚地反映事物的变化情况可选择折线图;而饼图能清楚地表示出各部分在总体中所占的百分比。
根据以上结论,将上题补充完整,制作柱形图和饼图。
b、绘制世界人口随时间变化图
世界人口变化情况(单位:亿)
年份
人口
1957
30
1974
40
1987
50
1999
60
20xx
80
20xx
90
此处为学生常犯错误之所在,学生习惯性全选数据,而忽略有效数据的选择。图表中真正有效数据需要分析得出,此处由教师重点展开讲解(数据选择方面问题,系列选项卡中的“分类(x)轴标志”)。
达成目标:理解并掌握基本图表类型的选择以及图表数据源的选择(步骤1和步骤2)。
4.练习评价互助
利用教师给定的数据进行图表的创建。
此部分内容具体图表类型不指定,由学生根据需求自行选择并制作。
某地一天气温变化
时间
2
4
6
8
10
12
14
16
18
20
22
温度/℃
25
24
23
25
26.5
29
30.5
33
30.5
28
26
25.5
某地多年月平均降水量
月份
1
2
3
4
5
6
7
8
9
10
11
12
降水量/毫米
10
5
22
47
71
81
135
169
112
57
24
12
地球陆地面积分布统计
大洋州
欧洲
南极洲
南美洲
北美洲
非洲
亚洲
6%
7.10%
9.30%
12%
16.10%
20.20%
29.30%
操作完成后提交作业至电子档案袋平台,并借助平台开展同学间互评,推荐优秀作业,展示交流。
互评尺度:任务1(10分)+任务2(2x10分+10分)+任务3(20x3分)=100分
图表类型错一处扣10分,图表源数据选择错一处扣10分,少做漏做不得分。
此外,可根据同学情况酌情加分,并说明加分理由。
达成目标:当堂开展学生检测,反馈课堂教学情况。
五、教学反思
1.在本课的教学设计中,以任务驱动为手段,激发学生的兴趣,引导学生自主学习,提高学生的操作技能,培养他们获得知识、应用知识的能力,培养学生的审美能力,提高信息素养。
2.学生通过学习能掌握建立和编辑图表,达到了教学的预期目标。
《比的应用》教学设计 篇4
本节课选自九年义务教育五年制小学数学第八册第一单元列方程解应用题。
本节课素质教育目标
(一)知识教学点
1、初步学会列方程解比较容易的两步应用题。
2、知道列方程解应用题的关键是找应用题中相等的数量关系。
(二)能力训练点
1、使学生能用方程的方法解较简单的两步计算应用题。
2、引导学生能根据解题过程总结列方程解应用题的一般步骤。
3、能独立用列方程的方法解答此类应用题。
(三)德育渗透点
1、培养学生用不同的方法解决问题的思维方式。
2、渗透在多种方法中选择最简单的方法解决问题。
教学重点:列方程解应用题的方法步骤。
教学难点:根据题意分析数量间的相等关系。
要本节课中,我安排了这样几个教学环节,首先通过复习准备呈现解应用题的两种基本方法——用算术法解和用方程解,并通过学生的讨论分析让学生理解这两种解法的根本区别点,是从问题出发思考问题还是从等量关系出发思考问题,第二个环节就要求学生运用这两种方法分析同一道题,让学生理解用等量关系分析这类应用题要简单、容易得多,从中切实理解用方程解应用题的优越性,提高学生学习列方程解应用题的自觉性和积极性。第三个环节就紧紧抓住等量关系这个关键问题,引导学生分析解答应用题,从中掌握用方程解答应用题的一般步骤。第四个环节是通过例2的教学让学生直接运用这个解题步骤用方程解答应用题,放手给学生一个实践机会,形成在层次、有坡度、符合学生认知特点、符合知识发展逻辑顺序的合理的课堂教学结构。
学解应用题工程问题思路指点
工程问题是研究工作效率、工作时间和工作总量之间相互关系的一种应用题。我们通常所说的:“工程问题”,一般是把工作总量作为单位“1”,因此工作效率就是工作时间的倒数。它们的基本关系式是:工作总量÷工作效率=工作时间。
工程问题是小学分数应用题中的一个重点,也是一个难点。下面列举有关练习中常见的几种题型,分别进行思路分析,并加以简要的评点,旨在使同学们掌握“工程问题”的解题规律和解题技巧。
例1一项工程,由甲工程队修建,需要12天,由乙工程队修建,需要20天,两队共同修建需要多少天?
[思路说明]①把这项工程的工作总量看作“1”。甲队修建需要12天,修建1天完成这项工程的1/12;乙队修建需要20天,修建1天完成这项工程的1/20。甲、乙两队共同修建1天,完成这项工程的1/12+1/20=2/15,工作总量“1”中包含了多少个2/15,就是两队共同修建完成这项工程所需要的天数。
1÷(1/12+1/20)=1÷2/15=15/2(天)
②设这项工程的全部工作量为60(12和20的最小公倍数),甲队一天的工作量为60÷12=5,乙队一天的工作量为60÷20=3,甲、乙两队合建一天的工作量为5+3=8。用工作总量除以两队合建一天的工作量,就是两队合建的天数。
60÷(60÷12+60÷20)=60÷(5+3)
=60÷8=15/2(天)
评点这是一道工程问题的基本题,也是工程问题中常见的题型。上面列举的两种解题方法,前者比较简便。这种解法把工作量看作“1”,用完成工作总量所需的时间的倒数作为工作效率,用工作总量除以工作效率和,就可以求出完成这项工程所需的时间。工程问题一般采用这种方法求解。
练习:一段公路,甲队单独修要10天完成,乙队单独修要12天完成,丙队单独修要15天完成,甲、乙、丙三队合修,需要几天完成?
例2一项工程,甲队独做8天完成,乙队独做10天完成,两队合做,多少天完成全部工程的3/4?
[思路说明]①把这项工程的工作总量看作“1”,甲队独做8天完成,一天完成这项工程的1/8;乙队独做10天完成,一天完成这项工程的1/10。甲、乙两队合做一天,完成这项工程的1/8+1/10=9/40,工作总量“1”中包含多少个甲乙效率之和,就是甲乙合做所需要的天数。甲乙合做所需时间的3/4,就是甲乙合做完成全部工程的3/4所需的时间。
1÷(1/8+1/10)×3/4
=1÷9/40×3/4=10/3(天)
②把甲、乙两队合做的工作量3/4,除以甲、乙两队的效率之和1/8+1/10=9/40,就是甲乙合做完成全部工程的3/4所需要的时间。
3/4÷(1/8+1/10)=3/4÷9/40=10/3(天)
评点思路①是先求出两队合做一项工程所需的时间,再用乘法求出完成全部工程的3/4所需的时间。思路②是把“3/4”看作工作总量,工作总量除以两队效率之和,就可以求出完成全部工程的3/4所需的时间。两种思路简捷、清晰,都是很好的解法。
练习:一项工程,单独完成,甲队需8天,乙队需12天。两队合干了一段时间后,还剩这项工程的1/6没完成。问甲、乙两队合干了几天?
例3东西两镇,甲从东镇出发,2小时行全程的1/3,乙队从西镇出发,2小时行了全程的1/2。两人同时出发,相向而行,几小时才能相遇?
[思路说明]①由甲2小时行全程的1/3。可知甲行完全程要2÷1/3=6(小时);由乙2小时行全程的1/2,可知乙行完全程要2÷1/2=4(小时)。求出了甲、乙行完全程各需要的时间,时间的.倒数便是各自的速度,进而可求出两人速度之和,把东西两镇的路程看作“1”,除以速度之和,就可求出两人同时出发相向而行的相遇时间。
综合算式:
1÷(1/(2÷1/3)+1/(2÷1/2))
=1÷(1/6+1/4)=1÷5/12=12/5(小时)
②由甲2小时行了全程的1/3,可知甲每小时行全程的1/3÷2=1/6;由乙2小时行全程的1/2,可知乙每小时行全程的1/2÷2=1/4。把东西两镇的路程“1”,除以甲、乙的速度之和,就可得到两人同时出发相向而行的相遇时间。
综合算式:
1÷(1/3÷2+1/2÷2)
=1÷(1/6+1/4)=1÷5/12=12/5(小时)
评点本题没有直接告诉甲、乙行完全程各需的时间,所以求出甲、乙行完全程各需的时间或各自的速度,是解题的关键所在。
练习:打印一份稿件,小张5小时可以打完份稿件的1/3,小李3小时可以打完这份稿件的1/4,如果两人合打多少小时完成?
例4一项工程,甲、乙合做6天可以完成。甲独做18天可以完成,乙独做多少天可以完成?
[思路说明]把一项工程的工作总量看作“1”,甲、乙合做6天可以完成,甲、乙合做一天,完成这项工程的1/6,甲独做18天可以完成,甲做一天完成这项工程的1/18。把甲、乙工作效率之和,减去甲的工作效率1/18,就可得到乙的工作效率:1/6-1/18=1/9。工作总量“1”中包含了多少个乙的工作效率,就是乙独做这项工程的需要的时间。
1÷(1/6-1/18)=1÷1/9=9(天)
评点这是一道较复杂的工程问题,是工程问题的主要题型之一。主要考查同学们运用分数的基本知识及工程问题的数量关系,解决实际问题的能力。解答这类工程问题的关键是:先求出独做的队或个人的工作效率,然后用工作总量“1”除以一个队或个人的工作效率,就可以求出一个队或个人独做的工作时间。
有的同学在解这道题时,由于审题马虎,而且受基本工程问题解法的影响,错误地列成:1÷(1/6+1/18),这是同学们应引起注意的地方。
练习:一批货物,用大小两辆卡车同时运送,5小时可以运完。如果用小卡车单独运,15小时可以运完。问大卡车单独运几小时可以运完?
例5加工一批零件,单独1人做,甲要10天完成,乙要15天完成,丙要12天完成。如果先由甲、乙两人合做5天后,剩下的由丙1人做,还要几天完成?
[思路说明]题目要求剩下的工作量由丙1人做,还要几天完成,必须知道剩下的工作量和丙的工作效率。
加工一批零件,单独1人做,甲要10天完成,甲一天加工一批零件的1/10;乙要15天完成,乙一天加工一批零件的1/15;丙要12天完成,丙一天加工一批零件的1/12。甲、乙合做一天,完成这批零件的1/10+1/15=1/6,合做5天完成这批零件的1/6×5=5/6,工作总量“1”减去甲、乙合做5天的工作量,就得到剩下的工作量。把剩下的工作量除以丙的工作效率,就可以求出剩下的工作量由丙1人做还要几天完成。
综合算式:
[1-(1/10+1/15)×5]÷1/12
=[1-1/6×5]÷1/12
=1/6÷1/12=2(天)
评点这是一道较复杂的工程问题,是工程问题中的主要题型之一,也是升学或毕业考试中最常见的试题之一。它的特点是求剩余部分的工作量完成的时间。关键是正确求出剩余部分的工作量。从工作总量“1”中减去已完成的工作量,就是剩余部分的工作量。有的同学由于审题不细,又受前面几例工程问题的解法的影响,容易错误地列成:[1÷(1/10+1/15)×5]÷1/12.
练习:加工一批零件,甲独做要8天完成,乙独做要7天完成,丙独做要14天完成,三人合作2天后,甲因病休息,乙、丙两人继续合做还要几天完成?
例6一件工程,甲、乙合作6天可以完成。现在甲、乙合作2天后,余下的工程由乙独做又用8天正好做完。这件工程如果由甲单独做,需要几天完成?
[思路说明]一件工程,甲、乙合作6天可以完成,可知甲、乙合作1天完成这件工程的1/6,甲、乙合作2天,完成这件工程的1/6×2=1/3。用工作总量“1”减去甲、乙合作2天的工作量1/3,所得的差1-1/3=2/3,就是余下的工作量。又知余下的工程由乙独做用了8天正好做完,用余下的工作量除以8,就可以求出1天的工作量,即乙的工作效率。把甲、乙工作效率之和减去乙的工作效率,就可得到甲的工作效率。求出了甲的工作效率,只要把工作总量“1”除以甲的工作效率,就可得到甲独做这件工程所需要的天数了。
综合算式:
1÷[1/6-(1-1/6×2)÷8]
=1÷[1/6-(1-1/3)÷8]=1÷[1/6-2/3÷8]
=1÷[1/6-1/12]=1÷1/12=12(天)
评点这也是一道复杂的工程问题。解题的关键是正确求出甲的工作效率。要求出甲的工作效率,解题的步骤较多,只有熟悉和掌握工程问题的结构特点和解题思路,熟练掌握前面5道例题的解题方法及解题的技能、技巧,才能正确顺利地解答本题。
练习:一项工程,甲、乙两队合做9天完成,乙、丙两队合做12天完成,现在甲、乙两队合做了3天,接着乙、丙两队又合做了6天,最后由丙队单独12天完成了整个工程。如果整个工程由甲、丙两队合做需要几天完成?
《比的应用》教学设计 篇5
20xx年8月3日,我有幸参加了教育局组织的《多媒体环境下的教学设计与资源应用》多媒体培训活动。在本次学习中通过刘红强、郭军礼、罗永刚、马记刚和马相军老师的耐心讲解和演示,使我更加深刻地了解了多媒体的特征,理解了教学设计的过程,学习了课件制作的方法及技巧,提升了多媒体应用的能力。
在培训中各位教师运用了我们教学生的方法:小组合作法,六个人一组,选出水平高的为组长,在学习过程中一起研习多媒体的作用、多媒体教学环境、多媒体教学、多媒体环境下的教学设计。采取自学、讲解、练习和小组合作相结合的方法,采取点名、点组等提问方式,根据问题回答情况及作业上交情况进行个人和小组评价,极大的调动了个人和小组学习的.极积性和主动性。它不仅是一种学习方式,更是一种教育思想和教学策略,需要我们积极参与。
通过刘红强老师的讲解,使我对教学资源有了更深层次的认识,它是为师生有效开展教学提供帮助的各种可利用的条件。最宝贵的资源是思维方式,最重要的资源是学生的大脑,最生动形象的资源是多媒体资源,最容易复制和传播的资源是数字化资源。
总之,通过这次学习使我学到了许多知识,不仅开阔了视野,又提高了自己的能力,使自己以后能更好的胜任教育教学工作。特感谢讲解教师在百忙之中给予我们的讲解。希望以后,多进行这样的培训。
《比的应用》教学设计 篇6
教学目标:
知识与能力:了解汉字的构造
过程与方法:通过课堂上的学习活动,对汉字的形体结构做出正确分析,可以深入理解和掌握汉字所代表的词语的本义和引申义
情感态度与价值观:培养良好的语文学习兴趣,提高学习的主动性和自觉性。
教学重点:是理解笔画、部件、偏旁等概念
教学难点:拆解汉字部件的规范性,不能胡乱拆字。
教学关键:帮助学生发现学习中的问题,培养学习兴趣,提高学习的主动性和自觉性。
课型:复习
教学方法:阅读启发
教具:多媒体
教学过程
一、导入新课
有一天,祝枝山去访唐伯虎,刚一进门,唐伯虎就迎上前来说:“祝兄来得正巧,我刚做了一则四个字的灯谜,你若猜对了,才能接待你。”祝枝山笑着说:“猜谜是我的拿手戏,你有什么好谜,倒要领教。”唐伯虎说:“那你就听着:言说青山青又青,二人土上说原因;三人牵牛缺只角,草木之中有一人。”
祝枝山听完,推开唐伯虎就走进堂中,在太师椅上一坐,然后说:“唐老弟,先送杯茶来如何?”唐伯虎一听,知道他已猜中了,就恭恭敬敬地捧上一杯香茶,笑说:“祝兄猜谜高手,果然名不虚传!”
二、汉字的结构
(一)、汉字的笔画
1、笔画是汉字中最小的单位;
2、汉字都是由不同形状的笔画组成,汉字笔画形态万千,有长有短,有直有弯;
3、最基本的、较常见的有5种:
一(横)、丨(竖)、丿(撇)、
丶(点)、乛(折)
4、小小测试:
下面汉字笔画数完全相同的一项是()
A、女乃及弓
B、世丐弗功
C、卯达廷邪
D、巨区乌切
(二)、汉字的部件
1、五种基本笔画可以派生很多其他更复杂的笔画
2、笔画组合又能形成一些比笔画更大的部件;
3、笔画、部件再进行组合就能拼装成汉字。
(三)、汉字的偏旁
1、汉字有“独体字”和“合体字”的区别,独体字在结构上不能再拆分;
2、偏旁是比部件更高一级的构字单位,也是构成汉字的最直接的单位;
(四)、汉字笔画的组合
1、笔画组合的三种位置:笔画彼此分离;
笔画和笔画相连;
笔画和笔画相交叉。
2、笔顺的基本规则:
先横后竖,先撇后捺,先上后下,先左后右,先外后内,先中间后两边,先进去后封口,重叠套嵌结构要根据层位定顺序……
(五)、汉字部件的拆分规则和层次
1、分隔沟是部件和部件分界的显性标志,相离的组合要沿着分隔沟进行拆分,其中分隔沟多于一条的,应先拆长的后拆短的。如:“想——相、心”
2、相接的组合应从接点处拆分,相交的组合不能拆分。如:“古——十、口”;“丰”不能拆分
3、层次拆分不能破坏汉字结构基本类型。
“价目析字表”:
利用汉字的结构特征,采用字谜谜面的方式暗示所要表达的价格。
比如:“一”可以说成“旦底”(取“旦”字的底)
“二”可说“中工”(“二”中间加一画就是“工”字)
三、小试牛刀
1、下面是其余几个数字的暗语,请按照前面说的思路猜一猜,看看都对应哪些数字。
分头,缺丑,断大,早下,毛尾,旭边
2、汉字结构确实精巧奇妙,下面是一则关于拆字的'妙对趣闻,流传已久。请同学们读一读,猜一猜。
纪、丁二人的联句,一直被后人视为“离合拆字联”的典范。第一联:“竹寺等僧归,双手拜四维羅漢。”“月门閒客在,二山出大小尖峰。”
将“等”字拆开,为“竹”和“寺”;“双手”为“拜”字(草体“拜”,即是“双手”);“四维”则为繁体“羅”字;“月”字在“门”内,为繁体“閒”字;两个“山”为“出”字;“大”、“小”为“尖”字。
第二联“门内有才方是闭”“寺边无日不知時”
“才”字在“门”内为“闭”字;“寺”加“日”为繁体的“時”字,真可谓貌离神合。
3、在实际语言运用中,人民可以巧用“拆字”和“合字”的方法,达到含蓄而打动人心的表达效果。下面这联(采用当时的繁体字)出现在袁世凯复辟帝制时期,请联系本课学到的知识并结合历史背景,讲讲此联的寓意和道理。
或入園中,拖出袁来还我國;
余立道上,不堪回首望前途;
四、课堂练习,活学活用
字谜多是靠拆解字形来设的,从字谜中往往能窥见汉字的构造规则。请同学们猜猜下面的字谜,并从中体会汉字的构型特点。
1、野径无人草丛生茎
2、一口咬去多半截名
3、大火烧到耳朵边耿
4、牛角上边来一刀解
五、总结
俗话说:“没有规矩,不成方圆。”汉字是方块形的,它的构造大有讲究:汉字的各个部件构成,构成的部件都合理的安排在方框内,相互平衡,使得每一个字从视觉上看都疏密得当,重心平稳,结构对称,肥瘦适中。这就是——“方块的奥秘”。
六、课后作业
作业1—3
七、课后反思
返回首页