返回首页
文学网 > 短文 > 教学教案 > 正文

梯形的面积教学设计

2025/12/09教学教案

文学网整理的梯形的面积教学设计(精选6篇),供大家参考,希望能给您提供帮助。

梯形的面积教学设计 篇1

教材分析:

本节课是在学生学会计算平行四边形、三角形的面积的基础上进行教学的,这部分知识是将来进一步学习组合图形面积计算的基础。学生学习了平行四边形、三角形的面积计算公式,初步理解了平移、旋转的思想,具备了初步的归纳、对比和推理的数学活动经验,对梯形面积公式的推导,有一定的启发。本节课内容共分为两个层次。一是推导梯形面积的计算公式;二是应用梯形面积的计算公式计算梯形面积,解决实际问题。通过观察新旧图形的内在联系得出梯形面积的计算公式。

教学目标:

1、探索并掌握梯形的面积计算公式,能应用公式正确计算梯形的面积;

2、使学生经历操作、观察、讨论、归纳等数学活动,进一步体会转化方法的价值,发展学生的空间观念和初步的推理能力;

3、让学生在探索活动中获得积极的情感体验,进一步培养学生学习数学的兴趣。

教学重点:理解并运用梯形的面积计算公式。

教学难点:梯形面积公式的推导过程。

教学关键:怎样把梯形转化为学过的图形来推导出梯形的面积公式,找到转化后图形与梯形各要素之间的关系。

教学过程:

一、课前复习

同学们,前几天我们学习了平行四边形和三角形的面积的计算方法,回忆一下,平行四边形的面积公式是怎样推导出来的?三角形的呢?

(这样是为学习梯形的面积计算做好了铺垫。因为三角形面积公式及其推导过程与梯形有许多相似之处,有了前几节课的基础,学生推导出梯形面积公式就并不困难。)

请同学们看这幅图片,汽车玻璃是什么形状的 (课件出示课本88页汽车图) ?你会计算这块玻璃形的面积吗?(大多数学生会否定)今天我们就来学习梯形的面积,相信学习完这节课你就能解决这个问题了。板书课题:梯形的面积

(在实际情景中,认识计算梯形面积的必要性。这样导入,使学生感受到数学与实际生活的密切联系,恰到好处地激发学生求知的欲望,使学生产生一种探求知识的动力。)

二、探索转化:

1、引导学生提出解决问题方向:

我们在学习平行四边形和三角形面积时,采用了割补的方法、拼摆的方法,把要研究的新图形转化为已经会计算面积的图形,再利用已学过的图形推导出新图形的面积计算方法。现在我们又要计算梯形面积,怎么办呢?(转化)你准备用什么方法把梯形转化为我们学过的图形?

(运用迁移规律,注意从旧到新、引导学生在整理旧知的基础上学习新知,体现温故知新的教学思想。)

2、动手转化:

(老师为每组同学都准备好一些梯形,其中有一组是两个完全相同的梯形)

小组活动一:

(1)梯形可以合理转化为什么图形?怎样转化?(2)转化后的图形与梯形有什么联系?

小组合作交流,老师巡视指导。

全班汇报。

学生可能出现的情况:

(新课程标准的基本理念就是要让学生人人学有价值的数学,强调教学要从学生已有的经验出发,让学生亲身经历知识的学习过程。所以,在教学中,我留给学生充分的时间,小组合作,鼓励做法多样。)

3、公式推导:

同学可真聪明,想出了这么多的转化方法,我们先根据第一种转化方法来推导梯形的面积公式。

小组活动二:

现在请同学们思考一下,拼成的平行四边形的各部分与梯形的各部分有什么关系?它们的面积又有什么关系?梯形的面积计算方法又是怎样的呢?

小组交流一下,把你们组的发现或结论写下来。

全班交流自己的发现或结论。

归纳总结梯形的面积计算方法。

梯形面积 =(上底+下底)x高2 为什么要除以2呢?

(在操作探究的基础上,我引导学生自己来总结梯形面积的计算公式,通过这样的设计,体现了让学生自主探究、自主学习的教学理念,满足了学生希望自己是一个发现者、研究者、探索者的需要,进一步的促进了学生的学习兴趣。让学生把他想到的推导方法展示出来,既达到突出重点,又化解难点的目的。)

4、用字母表示梯形面积公式

同学们,如用a表示梯形上底,b表示下底, h表示高,s表示面积, 谁能用字母表示出梯形的面积公式?指名说,老师板书。

其实利用这几种转化方法(指前面画的图)也可以推出梯形的面积公式,小组合作推导一下。然后全班交流推导过程。

(鼓励学生采用多种方法进行推理,让学生各抒已见,进一步体会转化方法的价值。)

三、应用公式解决问题

1、我们已推导出了梯形的面积公式,那么我们就用梯形的面积公式解决一些实际问题吧!

您现在正在阅读的《梯形的面积》教学设计及反思文章内容由收集!本站将为您提供更多的精品教学资源!《梯形的面积》教学设计及反思课件出示例3主题图

同学们知道这是哪儿吗?(三峡水电站)三峡水电站是我国最大的水电站,

它的的横截面的一部分是梯形,现在我们要求这个横截面的面积。谁知道横截面是什么意思?

同学们请看图,你能求出这个梯形的面积吗?学生试做,二生板书。

订正时,让学生评价,重在理顺学生的解题思路。

(通过动手操作,自主探究,学生获得梯形面积的计算公式后,出示了课本的例题,求梯形大坝的横截面面积。通过实际问题的解决,将学生探究发现的数学知识转化为自身的能力, 学以致用,来解决生活的实际问题。)

2、现在请同学们再来看这幅汽车图片,现在你能计算这汽车的玻璃面积了吗? 课件出示玻璃的数据,学生试做,二生板书。集体评价。

(解决了前面导课提出的的问题,回应引入,使学生更加深刻地感受到数学与实际生活的密切联系。)

四、练习检测:

1、填空:

两个完全一样的梯形可以拼成一个平行四边形,拼成的平行四边形的底等于(), 拼成的平行四边形的高等于( ) 、梯形的.面积等于拼成的平行四边形面积的( )。梯形的面积等于( )。

(理清学生思路,规范学生的数学语言,培养学生思维的逻辑性)

2、是判断题,判断出对错并且说出原因,提高学生对新课的理解。

(1)两个面积相等的梯形可以拼成一个平行四边形。 ( )

(2)梯形的上底扩大2倍,下底也扩大2倍,面积扩大4倍。( )

(3)梯形的面积等于平行四边形面积的一半。( )

(4)两个梯形面积相等,但形状不一定相同。( )

五、反思总结,拓展延伸

1、学生谈收获,谈学习方法。

2、组内互评:这节课你最想表扬谁,为什么?

【教学反思】

新的数学课程标准指出:教师不只做教材忠实的实施者,而应该做教材的开发者和建设者,教材的教育价值和智力价值能否得到充分发挥,关键在与教师对教材的把握。《梯形的面积》一课,是在学生掌握了平行四边形和三角形面积计算的基础上进行教学的。学生已掌握了一定的学习方法,形成了一定的推理能力。为了充分利用原有的知识,猜想、探索、验证,从而获得新知,给每个学生提供思考、表现、创造的机会,使他们成为知识的发现者、创造者,培养学生自我探究和实践能力。

一、动手操作,培养探索能力

在推导梯形面积计算公式时,安排学生合作学习,放手让学生自己利用前面的学习经验,动手把梯形转化成已经学过的图形,并让学生通过找图形之间的联系,自主从不同的途径探索出梯形的面积计算方法。首先让学生猜想可以把梯形转化成已经学过的什么图形?再通过拼、剪、割的动手操作活动,看一看能转化成什么图形,然后学生思考讨论:想想转化的图形与原梯形有什么关系?通过学生自主探索实践活动,学生亲自参与了面积公式的推导过程,真正做到知其然,必知其所以然,而且思维能力、空间感受能力、动手操作能力都得到锻炼和提高。让学生主动操作、讨论,在充分感知、理解的基础上总结出梯形面积的计算方法,达成了教学目的。

二、发散验证培养解决问题的能力

在学生验证自己的想法是否正确时,鼓励学生大胆地表达自己的想法,以说促思,开启学生思维的闸门,引导学生说一说,议一议,互相交流,达成共识。在此基础上让学生归纳出梯形面积的计算方法。通过拼、剪、说的活动过程,让学生在活动中发散,在活动中发展,学得主动、扎实,更重要的是培养了学生求异思维、创造能力和解决实际问题的能力。在本课教学中,老师应比较注重培养学生的推理、操作探究及自主学习的能力。让学生在拼一拼、剪一剪以及推理归纳的学习过程中,多种感观参与学习,既理解、掌握了梯形的有关知识,同时又培养了学生获取知识的能力。

梯形的面积教学设计 篇2

教学内容:

教材95—96页梯形的面积及例3;第96页“做一做”;第98页练习二十一第6,7,8题。

教材分析:

本课试在学生认识了梯形的特征,掌握了长方形,正方形,平行四边形和三角形面积的计算,并形成了一定空间观念的基础上进行教学的,因此教材没有安排数方格的方法求梯形的面积,而是直接给出一个梯形,引导学生想,怎样仿照求三角形面积的方法,把梯形转化成我们已经学过的图形来计算它的面积,引导学生在主动参与探索的过程中,发现并掌握提醒的面积计算方法,让学生在学习的再创造过程中实现对新知识的意义的构建,解决新问题,获得新发展。

教材中多角度地推导出了梯形面积公式,并展示了三种方法:一是两个一样的梯形拼成一个平行四边形;二试把一个梯形剪成两个三角形;三是把梯形剪成一个平行四边形和一个三角形。通过学习能够提升学生的合作意识,培养学生多角度思考问题的能力。

教学目标:

知识与能力:

在探索活动中深刻体验和感悟梯形面积计算公式的推导过程,并能运用梯形的面积公式解决生活中的实际问题。

过程与方法:

通过动手操作,观察比较,发展学生的空间观念,并在动手操作的活动中,逐步培养学生归纳,推理和语言表达的能力。

情感,态度与价值观:进一步培养空间观念,不断发展空间想象力,体验数学再创造的乐趣,并获得个性化的发展。

教学重难点及突破:

重点:理解并掌握梯形面积公式的推导过程,会计算梯形的面积。

难点:理解梯形面积公式的推导过程。

教学设想:

本课教学由学生谈对梯形的认识和讲述平行四边形,三角形面积公式的推导方法引入,为后面的探究活动提供保障。在新课中,教师要向学生讲明探究梯形的面积的方法及合作的要求,可以通过多媒体展示出来,让学生完全按要求完成学习。接下来为学生的探究过程,学生利用自己准备好的梯形,通过分割法和组合法对图形进行重组,并用文字写出梯形面积的计算方法,然后在交流中找到最为简便的公式,并在教师的引导下写出字母公式。学生完成公式的推导之后要独立完成例3及“做一做”,在练习的同时提高学生对公式的理解和认识。除此之外,为了巩固学生所学知识,还要多收集一些习题,开拓学生的视野,提高学生的能力。

教学准备:

教师准备:

多媒体课件,练习题

学生准备:

前置作业,梯形若干个,彩笔,练习本。

教学设计:

一,复习旧知

师谈话:说一说你对梯形的了解。

学生自由发言,教师进行评价。

生1:梯形有上底,下底和高。

生2:梯形有等腰梯形和直角梯形。

……

师接着谈话:同学们,我们前面学习的平行四边形和三角形的面积公式是怎样推导出来的?

学生举手,教师指名回答。学生发言预设:

生1:平行四边形的面积试用割补法把它变成与它面积相等的长方形,由长方形面积推到出来的。

生2:三角形的面积是把两个完全相同的三角形拼成一个平行四边形,因为三角形的面积是这个平行四边形面积的一半,所以用平行四边形面积除以2,得到的就是三角形的面积。

……

师小结:同学们能不能用学过的这些方法设计一种推导方案,推导出梯形的面积计算公式呢?

板书课题:梯形的面积。

设计意图:通过师生交流揭示课题,提示学生可以把已学过的学习方法运用到新的学习情境中,为学生提供了创新的机会,变“要我学”为“我要学”,为下面的学习作好了铺垫。

二,探索新知

1,方法迁移,自主探究梯形的面积公式。

师谈话:下面请同学们运用我们学习的平行四边形和三角形的面积公式的'方法推导一下梯形的面积公式吧!要看清要求,在小组研究中要分好工。

多媒体出示自学要求:

(1)做一做:利用手中准备好的梯形纸片,或拼或剪,转化成一个以前我们学过的图形。

(2)想一想:可以转化成什么图形?与梯形有哪些联系?

(3)说一说:你发现了什么?试着推导梯形面积的计算公式。

(4)瑶以小组为单位,进行合作学习。

学生小组探究梯形面积的计算方法,教师参与学生的交流。

学生汇报结果,教师评价并板书。学生汇报预设:

生1:我们组把梯形剪成一个平行四边形与一个三角形(如下图),梯形的面积等于一个平行四边形的面积与一个三角形面积之和,平行四边形的面积等于梯形的上底乘高,三角形的高就是梯形的高,三角形的底是梯形的下底减去上底,分别求出面积再相加,梯形的面积=上底×高+(下底—上底)×高÷2。

生2:我们小组把梯形剪成两个三角形(如下图),小三角形的底试梯形的上底,大三角形是梯形的下底,高是一样的,所以梯形的面积=上底×高÷2+下底×高÷2

生3:我们组用两个完全一样的梯形拼成一个平行四边形(如下图),得出拼成的平行四边形的面积试梯形面积的2倍,平行四边形的高与梯形的高相等,平行四边形的底等于梯形的上底加下底之和,从而推出梯形面积=(上底+下底)×高÷2。

师:大家通过探究推导出了梯形面积的计算公式,从不同的角度去想,推导出的公式也不相同,请同学们观察一下三个公式,哪一个最简便?

生齐:第三种。

师:通过我们多角度的实验,可以推导出梯形面积公式=(上底+下底)×高÷2(师板书)。如果上底用子母a表示,下底用字母b表示,高用字母h表示,那么梯形面积公式用字母公式可以表示为什么呢?

学生举手,教师指名回答。

S=(a+b)×h÷2

设计意图:在这个环节中,教师防守让学生去实践,去探索,学生在研究梯形面积的过程中,不仅掌握了梯形的面积计算公式,更有力地促进了学生思维能力的发展和问题策略意识的形成。

2,教学例3

出示例3

学生独立完成,教师对学生进行指导。

学生完成后全班交流,教师进行方法指导。

学生发言预设:从图中可知大坝的上底是36m,下底是120m,高是135m,利用梯形的面积计算公式S=(a+b)h÷2可求出大坝的面积是(36+120)×135÷2=10530(m2)

3,完成教材96页“做一做”

请你说一说“做一做”的习题所表达的意思。

学生举手,教师指名回答。

学生独立完成习题,教师对学困生进行指导。

学生汇报,教师评价。

设计意图:通过学生阐述解题过程,能够深化学生对公式的理解。

三,巩固应用

(一)预习答疑

1,完成“旧知链接”习题

学生回答对梯形的认识及研究平行四边形,三角形面积的方法。

说明:通过复习这些知识点,让学生加深对平行四边形,三角形面积公式的推导过程的认识,为本课学生推导梯形面积公式奠定基础。

2,完成“新知速递”习题。

学生全班订正答案。

教师对方法进行小结。

(二)教材习题

1,练习二十一第6题

师提问:怎样计算梯形的面积?

学生举手,教师指名回答。

学生独立完成习题,教师对学困生进行指导。

学生汇报,全班评议。

2,练习二十一第7题

师:怎样列方程解决问题?

学生举手,教师指名回答。

学生独立完成练习,并全班汇报订正,教师进行方法小结。

(三)课堂作业

1,想一想,填一填。

两个完全相同的梯形可以拼成一个(),这个平行四边形的底等于(),这个平行四边形的高等于(),每个梯形的面积等于拼成的平行四边形面积的(),因为平行四边形的面积等于(),所以梯形的面积等于()。

2,计算下面梯形的面积。(单位:cm)

3,把一块平行四边形的铁片剪去一个角(如下图中的阴影部分,单位:cm),剩下部分的面积试多少平方厘米?

4,求下图阴影部分的面积

教学反思:

新的数学课程标准指出:教师不能只做教材忠实的实施者,而应该做教材的开发者和建设者,教材的教育价值和智力价值能否得到充分发挥,关键在于教师对教材的把握。梯形的面积一课,是在学生掌握了平行四边形和三角形面积计算的基础上进行教学的,学生已掌握了一定的学习方法,形成了一定的推理能力。为了充分利用原有的知识进行教学,整个教学设计充分运用猜想,探索,验证等学习方式,给每个学生提供思考,表现,创造的机会,使他们称为知识的发现者,创造者,能否培养学生自我探究和实践的能力。针对本课教学设计主要有以下几点思考:

1,动手操作,培养探索能力。在推导梯形面积计算公式时,教学设计安排学生合作学习,防守让学生自己利用前面的学习经验,动手把梯形转化成已经学过的图形,并让学生用过找图形之间的联系,自主从不同的途径探索出梯形的面积计算方法。首先让学生猜想可以把梯形转化成已经学过的什么图形,再通过“拼,剪,割”的动手操作活动,看一看能转化成什么图形,然后引导学生思考讨论:转化的图形与原梯形有什么关系?通过学生自主探索的实践活动,让学生亲自参与面积公式的推导过程,真正做到“知其然,也知其所以然”,而且能让学生的思维能力,空间感受能力,动手操作能力都能得到锻炼和提高。

2,重视学生解决问题的能力的培养。在学生验证自己的想法是否正确时,瑶鼓励学生大胆地表达自己的想法,以说促思,开启学生思维的“闸门”,引导学生说一说,议一议,互相交流,达成共识,在此基础上归纳出梯形面积的计算方法。这种方式的学习,既能够使学生理解,掌握梯形的面积公式,同时又能够培养学生获取知识的能力。

梯形的面积教学设计 篇3

【教学目标】

1.在实际情境中,认识计算梯形面积的必要性。

2.在自主探索活动中,经历推导梯形面积公式的过程。

3.能运用梯形面积的计算公式,解决相应的实际问题。

【教学重、难点】

教学重点:在自主探索中推导出梯形面积公式。

教学难点:能理解和运用梯形面积公式。

【教学准备】

尺子、两个完全相同的梯形纸片、ppt课件。

【教学过程】

一、创设情境,引出问题。

1.出示堤坝横截面,感受求梯形面积的必要性。

说一说:如何求出图中梯形的面积?

预设:联想到三角形等面积公式推导方法,可尝试把梯形转化成以前学过的图形,再比较转化前后图形之间的关系,也许就能求出梯形的面积。

二、自主探索,解决问题。

1.把梯形转化成学过的图形,并比较转化前后图形的面积。

(1)预设一:把两个完全相同的梯形,“拼组”成一个平行四边形。

发现:一个梯形的面积是拼成的平行四边形面积的一半;平行四边形的.底等于梯形的上底加下底的和;平行四边形的高等于梯形的高。

推导:由“平行四边形的面积=底×高”得出“梯形的面积=(上底+下底)×高÷2”。

预设二:可以把梯形通过“割补”转化成一个平行四边形。

发现:梯形的面积等于拼成的平行四边形面积;平行四边形的底等于梯形的上底加下底的和;平行四边形的高等于梯形高的一半。

推导:由“平行四边形的面积=底×高”得出“梯形的面积=(上底+下底)×高÷2”。

2.怎样计算梯形的面积?

(1)通过比较转化前后图形之间的关系,得出“梯形的面积=(上底+下底)×高÷2”。

(2)用字母表示梯形面积公式“S=(a+b)×h÷2”

(3)运用公式求出堤坝横截面的面积“(20+80)×40÷2=20xxm?”

3.师生小结。

三、练习应用,巩固提升。

1.滑梯侧面的形状是一个梯形,已知梯形的上底是2m,下底是5m,高是1.8m,求出它的面积。

2.在方格纸上画一个梯形,高是4cm,上底是5cm,下底是7cm,这个梯形的面积是多少平方厘米?(每个小方格的边长表示1cm)。

3.先测量,再计算下列图形的面积,并与同伴交流。

四、全课总结,强化延伸。

这节课,我们运用拼组法、割补法等,通过平行四边形的面积推导出梯形的面积,再一次感受了“转化”的思想。

梯形的面积教学设计 篇4

教学目标:

1、在理解的基础上掌握梯形面积计算公式的推导,并能运用公式正确计算梯形的面积。

2、通过动手操作、观察、比较,发展学生空间观念。培养学生分析、综合、抽象、概括和解决实际问题的能力。

3、掌握“转化”的思想和方法,进一步明白事物之间是相互联系,可以转化的。

教学重点:

梯形面积计算公式的推导和运用。

教学难点:

理解梯形面积公式的推导过程。

教学过程:

一、导入新课

1、平行四边形、三角形的面积公式是什么?它们的面积公式是怎样推导得到的?学生回答后,指名学生操作演示转化的方法。

2、出示梯形,让学生说出它的上底、下底各是多少厘米,并画出它的高。

3、教师导语:我们已经学会了计算长方形、正方形、平行四边形、三角形的面积计算方法,生活中还有很多物体面的形状是梯形,(出示一辆汽车侧面图)如汽车玻璃就是梯形的,那梯形的面积又该如何计算呢?我们已学会了用转化的方法推导三角形面积的计算公式,那怎样计算梯形的面积呢?这节课我们就来解决这个问题。(板书课题,梯形面积的计算)

二、新课展开

第一层次,推导公式

(1)猜想:

让学生先猜测一下梯形的`面积可能和哪些量相关。

(2)操作学具

①启发学生思考:你能仿照求三角形面积计算公式的推导办法,把梯形也转化成已学过的图形计算出它的面积吗?

②学生拿出两个完全一样的梯形,拼一拼,教师巡回观察指导。

③指名学生操作演示。

学生预设:

方法一:把两个完全一样的梯形拼成一个平行四边形;

方法二:把一个梯形分成两个三角形;

方法三:把一个梯形分成一个平行四边形和一个三角形。

……

师:刚才同学们用自己的方法将梯形转化成我们学过的图形,利用这些方法都可以推导出梯形的面积计算公式。下面我们先选择其中的一种方法来共同推导梯形的面积。

④教师带领学生共同操作:拿两个完全一样的梯形,先重合,再按住梯形右下角的顶点,使一个梯形逆时针旋转180度,使梯形上、下底成一条走线,然后把第一个梯形的左边沿着第二个梯形的右边平行移动,直到成为一个平行四边形为止。

(2)观察思考

①教师提出问题引导学生观察。

a.用两个完全一样的梯形可以拼成一个平行四边形。这个平行四边形的底和高与梯形的底和高有什么关系?

b.每个梯形的面积与拼成的平形四边形的面积有什么关系?

(3)反馈交流,推导公式。

①学生回答上述问题。

②师生共同总结梯形面积的计算公式。

板书:梯形的面积=(上底+下底)×高÷2

问:梯形的面积公式中“(上底+下底)×高”求的是什么?

为什么要除以2?

③在小组内尝试上面另外几种不同的转化方法,如何推导出梯形的面积公式。

方法一:梯形的面积=上底×高÷2+下底×高÷2

=(上底+下底)×高÷2

方法二:梯形的面积=平行四边形面积+三角形面积

=上底×高+三角形的底×高÷2

=(2个梯形上底+三角形底)×高÷2

=(梯形上底+梯形下底)×高÷2

④字母表示公式。教师叙述:如果有S表示梯形的面积,用a、b和h分别表示梯形的上底、下底和高,怎样用字母表示梯形面积的计算公式呢?

学生回答后,教师板书:“S=(a+b)h÷2”。

第二层次,公式应用。

(1)出示课本第89页的例题。同学们知道我国最大的水电站是哪个吗?下面是水电站大坝的横截面图,教师指导学生理解“横截面”。

(2)学生尝试解答。

(3)展示台出示例题的解答,反馈矫正。

(4)完成例题下面的“做一做”。强调计算时不要忘记除以2。

三、巩固练习

(1)完成练习十七第1、2和3题。

(2)讨论完成练习十七第4和6题。

四、全课小结。(略)

板书设计:

梯形的面积计算

平行四边形的面积=底×高例3S=(a+b)h÷2

梯形的面积=(上底+下底)×高÷2=(36+120)×135÷2

S=(a+b)h÷2=156×135÷2

=10530(平方米)

梯形的面积教学设计 篇5

教学内容:

九年义务教育六年小学制数学第九册第74—75页。

教学目标:

1、在理解的基础上掌握梯形面积的计算方法,能正确地计算梯形的面积。

2、通过操作、观察、比较,发展学生的空间观念,培养学生分析、综合、抽象、概括和运用转化的方法解决实际问题的能力。

3、渗透旋转和平移的思想,充分发挥学生的主观能动性,启发学生探索合作,让学生在实验中感受数学知识的内在美,体验创新的乐趣。

教学重点:

理解并掌握梯形面积公式的推导,会计算梯形的面积。

教学难点:

理解梯形面积公式的推导过程。

教具准备:

两个完全一样的梯形若干个。

学具准备:

各小组准备两个完全一样的梯形一对。

教学过程

一、复习导入:

1.cai出示已学过的平面图形,说出它们的面积公式并计算出它们的面积。

(学生回答,cai依次出现相应图形面积的计算公式)

提问:三角形的面积公式为什么是用底×高÷2?

2.教师设疑:cai出示一个梯形,想一想你能仿照求三角形面积的方法,把梯形也转化成已学过的图形,计算出它的面积吗?

二、教学新课:

(一)、引入课题:那我们也用两个完全一样的梯形来做实验,共同研究“梯形面积的计算” 。(板书课题:梯形面积的计算)

(二)、实验探究:

1.猜一猜:① 两个完全一样的梯形可能拼成什么图形?

② 梯形的面积会跟梯形的什么有关呢?

2.小组合作实验,推导梯形面积的计算公式:

(1)教师谈话:利用手里的学具(标出上底、下底和高),仿照求三角形面积的方法试着推导出梯形面积的'计算公式。

(2)思考:

①两个完全一样的梯形可以拼成已学过的什么图形?怎么拼?

② 拼成的这个图形的面积跟梯形的面积有什么关系?

③ 你觉得梯形的面积可以怎样计算?

(3)小组合作,学生实验。

3. 实验汇报。

4. 引导学生看图并提问:这个梯形的面积可以怎样计算?

现在给你一个任意梯形,你都能求出它的面积吗?怎么求?为什么?

5.概括总结、归纳公式。

教师提问:

①为什么计算梯形的面积要用(上底+下底)×高÷2?

②要求梯形的面积必须知道哪些条件?

三、练习:

(一).基本练习:

(二)解决问题:

四、小结:

通过这节课的学习你有哪些收获?你能详细的说说梯形面积的推导过程吗?

五、巩固提高。

板书设计:

梯形面积的计算

梯形的面积=(上底+下底)×高÷2 )

s = (a+b)×h÷2

教学反思:

新的数学课程标准指出:教师不只做教材忠实的实施者,而应该做教材的开发者和建设者,教材的教育价值和智力价值能否得到充分发挥,关键在与教师对教材的把握。《梯形面积的计算》一课,是在学生掌握了平行四边形和三角形面积计算的基础上进行教学的。学生已掌握了一定的学习方法,形成了一定的推理能力。为了充分利用原有的知识,探索、验证,从而获得新知,给每个学生提供思考、表现、创造的机会,使他们成为知识的发现者、创造者,培养学生自我探究和实践能力。

一、动手操作 培养探索能力

在推导梯形面积计算公式时,安排了两次操作活动。首先让学生用两个完全一样的梯形拼一拼,看一看能拼成什么图形,然后引导学生思考讨论:梯形与你拼成的平行四边形有什么联系?引导学生发现每个梯形的面积是拼成平行四边形面积的一半,然后再让学生用一个梯形,想办法把它转化成已学过的图形来推导梯形的面积公式。通过两次实践活动,学生亲自参与了面积公式的推导过程,真正做到“知其然,必知其所以然”,而且思维能力、空间感受能力、动手操作能力都得到锻炼和提高。

二、发散验证 培养解决问题的能力

在学生验证自己的想法是否正确时,鼓励学生大胆地表达自己的想法,以说促思,开启学生思维的“闸门”,对学生的五花八门的想法不急于评价,应不失时机地引导学生说一说,议一议,互相交流,达成共识。在此基础上让学生理一理,归纳出梯形面积的计算方法。通过“拼、移”的活动过程,让学生在活动中发散,在活动中发展,学得主动、扎实,更重要的是培养了学生求异思维、创造能力和解决实际问题的能力。

在本课教学中,我比较注重培养学生的推理、操作探究及自主学习的能力。学生在动手操作以及推理归纳的学习过程中,多种感观参与学习,既理解、掌握了梯形的有关知识,同时又培养了学生获取知识的能力。

但也存在一些不足之处,例如:在推导验证的过程中,学生表达得不够清晰,对于推导的过程理解得还不够透彻。如果让他们充分地操作体会,时间又不允许。如何解决这样的矛盾,也是我需要反思的问题。

梯形的面积教学设计 篇6

教学目标

1、理解、掌握梯形面积的计算公式,并能运用公式正确计算梯形的面积。

2、发展学生的空间观念。培养抽象、概括和解决实际问题的能力。

3、掌握转化的思想和方法,进一步明白事物之间是相互联系的,可以相互转化的。

重点难点

重点:掌握梯形面积的计算公式。

难点:理解梯形面积公式的推导过程。

教具学具

多媒体课件。每人准备两个完全一样的梯形。(有等腰、直角、一般梯形)

教学过程

一、导入

1、师:同学们,之前我们学过的平行四边形和三角形的面积是如何计算的?

生:平行四边形的面积=底×高,也就是S=ah。

三角形的面积=底×高÷2,也就是S=ah÷2。

2、指名让学生说出平行四边形、三角形的面积公式的推导过程。

3、师:根据前面的学习,我们把要研究的图形转化成已学过的平面图形,就能找到所求图形面积的计算方法,今天我们要研究的梯形的面积,可以怎样转化呢?下面我们就来实践操作一下吧。

二、探究

1、师:请同学们拿出准备好的梯形,这些梯形有什么特点?

生:各种梯形,每种两个。

提出要求:(1)选择自己喜欢的梯形把它拼成我们学过的图形。

(2)想一想,拼成怎样的图形,是利用怎样的方法拼成的?

(3)它们的高与梯形的高有怎样的关系?它们的底与梯形的上、下底有怎样的`关系?它们的面积与梯形的面积有着怎样的联系?

2、学生先独立思考,后小组交流。

教师巡视指导,引导学生把转化前后的图形各部分之间的关系找准。

3、师:(出示课件)现在画面展示的是两个完全相同的梯形重叠在一起,哪个小组能说一说刚才你们将其拼成了什么图形?是怎样拼的?

各小组推选1人向全班汇报过程与结果。(教师逐一配以课件演示)

三、汇报

四、总结

师:学完这节课,你收获了什么呢?跟大家说说吧!

学生讨论。

老师小结:通过本节课的学习,同学们经历了梯形的转化过程,推导出梯形的面积计算公式,能灵活运用知识解决问题。