返回首页
文学网 > 短文 > 教学教案 > 正文

六年级上册数学比的教案

2025/12/17教学教案

文学网整理的六年级上册数学比的教案(精选6篇),供大家参考,希望能给您提供帮助。

六年级上册数学比的教案 篇1

六年级上册数学比的教案

作为一名教职工,总不可避免地需要编写教案,通过教案准备可以更好地根据具体情况对教学进程做适当的必要的调整。那么大家知道正规的教案是怎么写的吗?下面是小编整理的六年级上册数学比的教案,希望能够帮助到大家。

六年级上册数学比的教案 篇2

【教学内容】

教材第2页例1。

【教学目标】

知识与技能:

在学生已有的分数加法及分数基本意义的基础上,结合生活实例,通过对分数连加算式的研究,使学生理解分数乘整数的意义,掌握分数乘整数的计算方法,能够应用分数乘整数的计算法则,比较熟练地进行计算。

过程与方法:

通过观察比较,指导学生通过体验,归纳分数乘整数的计算法则,培养学生的抽象概括能力。

情感、态度与价值观:

引导学生探求知识的`内在联系,激发学生学习兴趣。通过演示,使学生初步感悟算理,并在这过程中感悟到数学知识的魅力,领略到美。

【重点难点】

重点:理解分数乘整数的意义,掌握分数乘整数的计算方法。

难点:总结分数乘整数的计算法则。

【导学过程】

【情景导入】

(一)探索分数乘整数的意义

1、教学例1(课件出示情景图)

师:仔细观察,从图中能得到哪些数学信息?这里的“ 个”表示什么?你能利用已学知识解决这个问题吗?(学生独立思考)

师:想一想,你还能找出不一样的方法验证你的计算结果吗?

2、小组交流,汇报结果

预设:(1)x(个);(2)x(个);(3)x(个);(4)3个x就是6个x就是x,再约分得到x(个)。(根据学生发言依次板书)

3、比较分析

师:我们先来比较第(1)和第(2)两种方法,请分别说说你是怎么想的?预设:

生1:每个人吃x个,3个人就是3个x相加。

生2:3个x相加也可以用乘法表示为 。

提出质疑:3个x相加的和可以用乘法计算吗?为什么?

预设:乘法是求几个相同加数的和的简便计算,只是这里的相同加数是一个分数。

引导说出:分数乘整数的意义与整数乘法的意义相同。(板书)

师:我们再来比较第(2)和第(3)两种方法,这样算可以吗?为什么?

引导说出:这两个式子都可以表示“求3个x相加是多少”。

师:再来看这里的第(4)种方法,你能理解它表示的意思吗?结合图形把你的想法跟同桌进行交流。

4、归纳小结

通过刚才的学习,我们知道了这三个算式解决的是同一个问题。并且知道了分数乘整数的意义与整数乘法的意义相同。接下来我们再看看它们的计算方法有什么联系和区别。

六年级上册数学比的教案 篇3

教学内容:

人教版小学数学教材六年级上册第2~3页例1、例2及相关练习。

教学目标:

1、联系学生的生活实际创设情境,引导学生通过观察、讨论、比较、验证等环节探索并理解分数乘整数的意义;一个数乘分数的意义就是求“这个数的几分之几是多少”。

2、让学生在自主探索的基础上进行合作交流,从而归纳分数乘整数的计算方法,并能够正确地进行计算。

3、能利用所学知识解决生活中的简单问题,并进一步培养学生的分析和推理能力。

教学重点:

掌握分数乘整数的计算方法。

教学难点:

理解分数乘整数和一个数乘分数的意义。

教学准备:

课件。

教学过程:

一、情境创设,探求新知

(一)探索分数乘整数的意义

1、教学例1(课件出示情景图)

师:仔细观察,从图中能得到哪些数学信息?这里的“2/

9个”表示什么?你能利用已学知识解决这个问题吗?(学生独立思考)

师:想一想,你还能找出不一样的方法验证你的计算结果吗?

2、小组交流,汇报结果

预设:(1)2/

9+2/

9+2/

9=6/

9=2/

3(个);

(2)2/

9×3=6/

9=2/

3(个);

(3)3×2/

9=6/

9=2/

3(个);

(4)3个2/

9就是6个1/

9就是6/

9,再约分得到2/

3(个)。(根据学生发言依次板书)

3、比较分析

师:我们先来比较第(1)和第(2)两种方法,请分别说说你是怎么想的?预设,

生1:每个人吃2/

9个,3个人就是3个2/

9相加。

生2:3个2/

9个相加也可以用乘法表示为2/

9×3。

提出质疑:3个2/

9相加的和可以用乘法计算吗?为什么?

预设:乘法是求几个相同加数的和的简便计算,只是这里的相同加数是一个分数。

引导说出:分数乘整数的意义与整数乘法的意义相同。(板书)

师:我们再来比较第(2)和第(3)两种方法,这样算可以吗?为什么?

引导说出:这两个式子都可以表示“求3个2/

9相加是多少”。

师:再来看这里的第(4)种方法,你能理解它表示的意思吗?结合图形把你的想法跟同桌进行交流。

4、归纳小结

通过刚才的学习,我们知道了这三个算式解决的是同一个问题。并且知道了分数乘整数的意义与整数乘法的意义相同。接下来我们再看看它们的计算方法有什么联系和区别。

【设计意图:呈现生活情景,引导学生观察思考“一共吃了多少个?”,使学生迅速进入学习状态。以原有的知识和经验为基础,经历独立思考、自主计算并验证、小组交流等环节,鼓励学生大胆地呈现个性化的方法,兼顾了不同层次的学习状态。采用因势利导的方式,通过比较分析沟通新旧知识间的联系,引导学生自主得出结论,加深了对分数乘整数意义的理解。】

(二)分数乘整数的计算方法

1、不同方法呈现和比较

师:刚才的第(4)种方法用语言描述得出计算结果的过程,结合自己的解题方法回顾一下,2/

9×3的计算过程用式子该如何表示?预设,

生1:按照加法计算2/

9×3=2/

9+2/

9+2/

9=6/

9=2/

3(个)。

生2:2/

9×3=6/

9=2/

3(个)。

师:比较一下,这两种方法计算结果相同吗?它们的相同点在哪里?(分母都是9)不同之处又是什么?(根据学生回答分别打上方框)这里的2+2+2和2×3都是在求什么?预设:有多少个1/

9。

2、归纳算法

师:你觉得哪一种方法更简单?那么这种方法是怎样计算的呢?

引导说出:用分子与整数相乘的`积作分子,分母不变。(板书)

3、先约分再计算的教学

师:刚才我看到有一位同学是这样计算的。与这里的第二种算法又有什么不同呢?

预设:一种算法是先计算再约分,另一种是先约分再计算。

师:比较一下,你认为哪一种方法更简单?为什么?

小结:“先约分再计算”的方法,使参与计算的数字比原来小,便于计算。但是要注意格式,约得的数与原数上下对齐。

【设计意图:通过比较,明确了自主探索的方向,使得对算法的感知上升到理解。教学过程中有意识地留给学生充足的思考时间,程度地发挥学生的主体性。“为什么分母不变,只用分子与整数相乘”这是教学的难点,通过多次追问,适度引导转化,促进学生的理解。对于“先约分再计算”这种方法的教学,充分利用课堂生成资源,引导学生经历观察与思考的过程,从而使学生“知其然”,更“知其所以然”。】

二、巩固练习,强化新知

1、例1“做一做”第1题

师:说出你的思考过程。

2、例1“做一做”第2题

师:在计算时要注意什么?(强化算法,突出能约分的要先约分,再计算。)

三、探索一个数乘分数的意义

教学例2(课件出示情景图)

(1)师:根据提供的信息你能提出什么问题?该怎样计算?说说你的想法。

预设1:求3桶共有多少升?就是求3个12 L的和是多少。

预设2:还可以说成求12 L的3倍是多少。

预设3:单位量×数量=总量,所以12×3=36(L)。

(2)师:我们再来看这个问题,你能列出算式吗?(学生思考,自主列式。)

交流:是根据什么列式的?引导说出思考的过程并板书:“求12 L的一半,就是求12 L的1/

2是多少。”

(3)出示第2小题学生自练。引导说出:“12×1/

4表示求12 L的1/

4是多少。”在这里都是把12 L看作单位“1”。

(4)师:依据单位量×数量=总量,你还能提出类似的问题并解决吗?(学生练习,交流。)

归纳小结:在这里,我们依据单位量×数量=总量的关系式可以得出:一个数乘几分之几表示的是求这个数的几分之几是多少。

四、课堂练习,深化理解

1、出示例2“做一做”。一袋面粉重3千克。已经吃了它的3/

10,吃了多少千克?

师:你能说说这个算式表示的意义吗?“求3千克的3/

10是多少。”

2、比较两种意义

出示:一袋面包重3/

10千克,3袋重多少千克?

师:列出算式,并与前一个式子进行比较。这两个式子有什么不同?

预设1:一个是分数乘整数,另一个是整数乘分数。

预设2:它们表示的意义相同但有所区别。

引导说出:分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算(或者就是求一个数的几倍是多少)。而一个数乘分数的意义表示的是求这个数的几分之几是多少。

师:那么,它们有什么是相同的呢?(计算方法和结果)

【设计意图:对一个数乘分数意义的理解,从复习旧知导入,依据单位量×数量=总量这一数量关系,分别列出相应的乘法算式,在此基础上,重点让学生说出解决后两个问题列式的依据是什么?再通过尝试练习和交流,不断加深学生的感性认识,丰富归纳的素材,最终导出此类分数乘法的意义。比较的环节充分挖掘教材资源,通过对两种不同算式的分析比较,抽象出两个算式的共同点,异中求同,进而深化学生对分数乘法意义的理解。】

五、联系实际,灵活运用

1、算式3/

16+3/

16+3/

16+3/

16可以列成_________× _________,表示;或者表示_________;

也可以列成_________ ×_________,表示。

师:选择一个算式进行计算,想一想,计算时要注意什么?

2、比较练习

(1)一堆煤有5吨,用去了2/

11,用去了多少吨?

(2)一堆煤有2/

11吨,5堆这样的煤有多少吨?

你能编写出类似的问题并加以解决吗?

3、拓展练习

1只树袋熊一天大约吃6/

7 kg桉树叶。10只树袋熊一星期吃多少千克桉树叶?

【设计意图:练习的设计密切联系教学的重难点,同时习题的编排体现由易到难的层次性,选取的素材紧密联系学生的生活实际,具有一定的趣味性。】

六、课堂小结,拓展延伸

1、这节课你有什么收获?明白了什么?说一说分数乘整数的计算方法?

2、谁会用含有字母的式子表示分数乘整数的计算方法?a/

b×c=ac/

b,其中a,b,c均为整数且a≠0。

【设计意图:通过回顾,强化对所学知识的理解。要求学生用含有字母的式子表示计算方法,很好地培养了学生的符号表达能力。】

六年级上册数学比的教案 篇4

教学目标:

1、理解折扣的意义。

2、掌握折扣和百分数的关系,能解答有关折扣的实际问题。

教学重点:

在理解“折扣”意义的基础上,懂得求折扣应用题的数量关系与“求一个数的百分之几是多少”的应用题数量关系是相同的,并能正确计算。

教学难点:

能灵活运用分数知识解决生活中的“折扣”问题。

教学准备:

教师:多媒体课件,投影仪。

学生:课前了解有关商场打折的信息。

教学过程:

一、提示课题

师:每到周末、节假日,我们总会看到商家为了招揽顾客,经常采用一些促销手段,你知道哪些促销手段?(学生结合经验自由回答,教师用课件出示打折的情境图。)

师:今天我们来学习有关“折扣”的问题(板书课题)。

二、出示目标

师:本节课我们的目标是:(课件出示)

1、理解折扣的意义。

2、掌握折扣和百分数的关系,能解答有关折扣的实际问题。

师:为了达到目标,下面请大家认真地看书。

2 三、出示自学指导

(课件出示)认真看课本第97页“做一做“上面的内容,思考

1、什么是打折扣?打八五折出售是什么意思?

2、求“买这辆车用了多少钱”就是求什么?

3、160×(1—90℅)中1—90℅求的是什么?你还会用别的方法解答这道题吗?

5分钟后,比谁能做对与例题类似的题!

四、先学

(一)看书

学生认真看书,教师巡视,督促人人都在认真地看书。

(二)检测

1.填空。

(1)商品打八折出售,就是按原价的()%出售,也就是降价()%;打七五折出售,就是按原价的()%出售,也就是降价()%。

(2)某种商品实际售价是原价的95%,也就是打()折出售;某种商品降价30%出售,也就是打()折出售。

(学生口答)

2.课本第97页做一做

(找三名学生板演,其余学生做在练习本上,教师认真巡视,发现错例,板书于黑板上对应位置。)

五、后教

(一)更正

师:写完的.同学请举手。下面,请大家一起看黑板上这些题,发现问题的同学请举手。(由差-中-好依次进行更正)

(二)讨论

1、看百分数,认为对的举手。为什么?

小结:商店有时降价出售商品,叫做打折扣销售,统称“打折”,几折就是十分之几,也就是百分之几十。一般情况下,不把折扣写成十分之几的分数形式。

2、看三道算式,认为对的举手。为什么?

3、看计算过程和结果,认为对的举手。

4、评正确率、板书,并让学生同桌对改,更正错题。

5、议一议:原价、现价、折数之间有什么关系?怎样解决求折扣的问题?

(学生先独立思考再小组讨论)

教师小结:现价=原价×折数(“求折扣”的应用题的数量关系与“求一个数的十分之几或百分之几十是多少”的应用题的数量关系是相同的,关键是要先理解折扣的含义,再运用分数应用题的觖题方法来解决。)

六、全课总结

师:同学们,今天我们学习了有关折扣的知识,意义是什么?该怎样计算呢?计算时需要注意什么?

下面,我们就运用今天所学的知识来做作业,比谁的课堂作业能做得又对又快,字体还又端正。

七、当堂训练

作业

1、填一填

(1)下列折扣化成百分数各是多少?填在()里。

九五折()% 七折()%八八折()% 五折()%

(2)一种商品现在打八折出售,比原价便宜了()%。

2、妈妈给小强买了一套运动服,原价120元,现在打七五折出售,比原来便宜多少元?

板书设计:

折扣

1、折扣的意义:商店有时降价出售商品,叫做打折扣销售,统称“打折”,几折就是十分之几,也就是百分之几十。

2、折扣的计算方法:原价×折扣=现价

六年级上册数学比的教案 篇5

第3单元分数除法

【教学内容】教材37页例4及练习八的1-5题

【教学目标】

知识与技能:

1.使学生学会掌握“已知一个数的几分之几是多少,求这个数”的应用题的解答方法,能熟练地列方程解答这类应用题。

过程与方法:

2.进一步培养学生自主探索问题解决的能力和分析、推理和判断等思维能力,提高解答应用题的能力。

情感、态度与价值观:

3.培养学生良好的学习习惯。

【教学重难点】

重点:能熟练地列方程解答这类应用题

难点:提高解答应用题的能力。

【导学过程】

【自主预习】

1、下面各题中应该把哪个量看作“1”。

⑴小军的体重是爸爸体重的3/8;

⑵故事书的本数占图书总数的3/5;

⑶棉田的面积占全村耕地面积的2/5;

⑷汽车的速度相当于飞机速度的2/3。

2、填空

⑴白兔的只数占总只数的2/3,总只数×2/3=();

⑵男生人数的2/5恰好和女生同样多,()× 2/5=();

⑶甲数正好是乙数的3/8,()×()=()。

3、一个儿童体重35千克,他体内所含的水分占体重的4/5。他体内的水分有多少千克?

请写出它的数量关系并解答。

4、请把上题改为一道除法应用题。

5、自学教材37页的内容。

【合作探究】

小组讨论交流,说说自己的想法:

1、说一说占体重的.4/5这句话是什么意思?并根据题意判断把哪个量看作单位“1”?

2、请用线段图表示题中的条件和问题。请结合自己画的线段图分析解答。

①4/5是哪个数量的4/5?以哪个数量为标准把它看作单位“1”?单位“1”是已知的还是未知的?

②哪个数量占体重的4/5?换句话说,体重的4/5是什么?可以用怎样的数量关系式表示?

③要求这个儿童的体重可以用什么方法解答?

A、用方程的方法

B、还可以用算术方法

3、比较例1和自学题(小组讨论)

①这两道题在结构上的异同点,相同点:题中给出的数量(),数量间的关系也();不同点:已知条件和问题不同。

②这两道题在解法上的异同点,相同点:都要先确定单位“1”;不同点:自学题中的单位“1”是已知的,用乘法算;例1中的单位“1”是未知的,可以用方程(或除法)解答。

③解答分数应用题的一般步骤:

A、要认真审题,确定好单位“1”.

B、分析它是已知的还是未知的

C、正确找出题中的数量关系。

D、根据数量关系确定方法并解答。

【知识梳理】

本节课你学习了哪些知识?

【随堂练习】

1、完成37页“回顾与反思”。

2、文字题

⑴56米的是多少?

⑵一个数的是,这个数是多少?

3、王新买了一本书和一枝钢笔。书的价格是4元,正好是钢笔价格的。钢笔的价格是多少元?

4、练习八的1-5题。

六年级上册数学比的教案 篇6

一、教学目标:

1、使学生在掌握稍复杂的求一个数的几分之几是多少的分数应用题的基础上,利用其数量关系列方程解答稍复杂的已知一个数的几分之几是多少,求这个数的应用题。

2、在分析解答的过程中拓宽学生的思维空间,培养学生分析问题的能力。

二、教学重点:

确定单位,理清题中的数量关系。利用题中的等量关系用方程解答。

三、教学过程:

(一)复习准备

1、找出单位。

2、(1)画图分析并列式解答。

(2)说说你是怎样思考和解答的?

(3)学生分析教师板演线段图。

3、导入。

今天我们继续学习分数应用题。

(二)学习新课。

现在老师把这道题改动一下。分析解答。

(1)读题,找出已知条件和问题。

(2)提问:这两道题有没有相同的.条件?(有,都已知吃了这袋大米的不同的地方在哪儿?(前者已知一袋大米的重量,求还剩的重量,后者已知还剩的重量,求这袋米的重量。)

(3)我们把这道题也用线段图表示出来,应从哪个条件入手找单位

(4)谁来分析这个条件?

学生分析的同时教师板演线段图。

(5)上道题是已知单位1的重量,求还剩的重量,这道题呢?谁能把条件和问题标在图上?

生在黑板上画出。

(6)对比两道题的线段图说一说是怎样变化的。(条件和问题互相转化了。)

(7)无论谁为条件,谁为问题,题中所涉及的数量关系变了吗?(没变)

(8)说一说上题在解答的过程中涉及到哪些数量关系?(总重量-它

(9)现在买来大米的重量是未知的,根据这个等量关系可以用什么方法解答?(列方程)

(10)试着在练习本上列方程解答。

(11)谁能说说你是怎样解答的?

①生口述:

答:买来大米40千克。

②买来的重量还剩几分之几=还剩的重量。

③小结:

通过刚才的分析解答,你认为这两道题实际上什么相同。

数量关系相同。

④解答方法相同吗?为什么?

解答方法不同。单位已知,可根据数量关系用算术方法解答;单位未知,可用x代替,运用数量关系式列方程解答。

⑤出示例7。读题,找出已知条件和所求问题。

画图分析解答。

a、从这个条件可以看出题中是几个数量相比?

两个数量相比。

追问:哪两个?

四月份实际烧煤量和四月份计划烧煤量。

我们应把哪个数量看作单位?为什么?

把原计划烧煤量看作单位。因为和它相比,以它为标准,所以把它看作单位。

②画图时我们要用两条线段表示两个数量,先画谁呢?

先画原计划烧煤吨数。

下一步画什么?

实际烧煤吨数。

指名回答:把计划烧煤量看作单位,平均分成9份,实际比计划节约的烧煤量相当于这样的1份,即节约的烧煤量占计划烧煤量。

这两条线段谁为已知?谁为未知?

③指图提问:计划烧煤量与实际烧煤量之间有什么样的等量关系?

计划烧煤吨数-节约吨数=实际烧煤吨数。

计划烧煤吨数未知怎么办?

设计划烧煤吨数为x,用方程解答。

④试做在练习本上。

⑤反馈:说说你的解答方法及依据。

a、学生独立画图分析并列式解答。

b、反馈提问

c、你用什么方法解答的?依据的等量关系式是什么?

(三)课堂总结。

今天我们学习的例6、例7与前边学过的分数应用题相比有什么相同点?有什么不同点?

数量间的等量关系相同,解答方法不同。

(四)巩固反馈。

(1)课本第74页1题。

(2)根据列式补充条件。

(五)布置作业。