返回首页
文学网 > 短文 > 教学教案 > 正文

认识负数的教案

2025/12/20教学教案

文学网整理的认识负数的教案(精选6篇),供大家参考,希望能给您提供帮助。

认识负数的教案 篇1

教学内容:

第87页例1、例2,88页课堂活动第1、2题,练习二十二第1~4题。

教学目标:

1.在现实情境中初步认识负数和理解负数的意义,了解负数的产生与作用,感受负数使用带来的方便。

2.会正确地读、写正、负数,知道0既不是正数,也不是负数。

3.使学生体验数学和生活的密切联系,激发学生学习数学的兴趣,培养学生应用数学的意识。

教学重点:

负数的意义和负数的读法与写法。

教学难点:

理解0既不是正数,也不是负数。

教具准备:

多媒体课件

教学方法:

教师讲授、合作交流

教学过程:

一、复习导入

提出问题:举例说明我们学过了哪些数?

教师小结:为了实际生活的需要,在数物体个数时,1、2、3出现了自然数,物体一个也没有时用自然数0表示,当测量或计算有时不能得出整数,我们用分数或小数表示。

提出问题:我们学过的`数中最小的数是谁?有没有比零还小的数呢?

二、创设情境、学习新知

1.教学例1。

(1)出示:中央电视台天气预报的一个场面,主持人说:哈尔滨零下6至3摄氏度,重庆6至8摄氏度

同学们,你们对情境中的内容一定相当熟悉吧?你能给大家讲讲哈尔滨零下6至3度这句话是什么意思吗?

为什么阿姨说的零下6摄氏度,屏幕上打出的字幕就变成了-6℃呢?

这里有零下6℃、零上6℃,都记作6℃行吗?

你有什么简洁的方法来表示他们的不同呢?

教师小结:同学们的想法都很好。现在,国际数学界都是采用符号来区分,我们把比0摄氏度低的温度用带有-号的数来表示,例如把零下6℃记作-6℃,读作负6摄氏度;零上6℃记作+6℃,读作正6摄氏度或6摄氏度。

(2)巩固练习。

同学们,你能用刚才我们学过的知识,用恰当的数来表示温度吗?试试看。

学生独立完成第87页下图的练习。

教师巡视,个别辅导,集体订正写得是否正确,并让学生齐读。

2.自主学习例2。(进一步认识正数和负数)

认识负数的教案 篇2

教学内容:

人教版《义务教育课程标准实验教科书数学》六年级下册第2~4页例1、例2。

教学目标:

1.引导学生在熟悉的生活情境中初步认识负数,能正确地读、写正数和负数;知道0不是正数也不是负数。

2.使学生初步学会用负数表示一些日常生活中的实际问题,体验数学与生活的联系。

3.结合负数的历史,对学生进行爱国主义教育;培养学生良好的数学情感和数学态度。

教学重、难点:负数的意义。

教学过程:

一、谈话交流

谈话:同学们,刚才一上课大家就做了一组相反的动作,是什么?(起立、坐下。)今天的数学课我们就从这个话题聊起。(板书:相反。)我们周围有很多的自然和社会现象中都存在着相反的情况,请看屏幕:(课件播放图片。)太阳每天从东方升起,西方落下;公交车的站点有人上车和下车;繁华的街市上有买也有卖;激烈的赛场上有输也有赢……你能举出一些这样的现象吗?

二、教学新知

1.表示相反意义的量。

(1)引入实例。

谈话:如果沿着刚才的话题继续“聊”下去的话,就很自然地走进数学,我们一起来看几个例子(课件出示)。

① 六年级上学期转来6人,本学期转走6人。

② 张阿姨做生意,二月份盈利1500元,三月份亏损200元。

③ 与标准体重比,小明重了2.5千克,小华轻了 1.8千克。

④ 一个蓄水池夏季水位上升米,冬季水位下降米。

指出:这些相反的词语和具体的数量结合起来,就成了一组组“相反意义的量”。(补充板书:相反意义的量。)

(2)尝试。

怎样用数学方式来表示这些相反意义的量呢?

请同学们选择一例,试着写出表示方法。

……

(3)展示交流。

……

2.认识正、负数。

(1)引入正、负数。

谈话:刚才,有同学在6的前面写上“+”表示转来6人,添上“-”表示转走6人(板书:+6 -6),这种表示方法和数学上是完全一致的。

介绍:像“-6”这样的数叫负数(板书:负数);这个数读作:负六。

“-”,在这里有了新的意义和作用,叫“负号”。“+”是正号。

像“+6”是一个正数,读作:正六。我们可以在6的前面加上“+”,也可以省略不写(板书:

6)。其实,过去我们认识的很多数都是正数。

(2)试一试。

请你用正、负数来表示出其它几组相反意义的量。

写完后,交流、检查。

3.联系实际,加深认识。

(1)说一说存折上的数各表示什么?(教学例2。)

(2)联系生活实际举出一组相反意义的量,并用正、负数来表示。

① 同桌交流。

② 全班交流。根据学生发言板书。

这样的正、负数能写完吗?(板书:… …)

强调指出:像过去我们熟悉的这些整数、小数、分数等都是正数,也叫正整数、正小数、正分数;在它们的前面添上负号,就成了负整数、负小数、负分数,统称负数。

4.进一步认识“0”。

(1)看一看、读一读。

谈话:接下来,我们一起来看屏幕:这是去年12月份某天,部分城市的气温情况(出示气温折线统计图)。

哈尔滨:-15 ℃~-3 ℃

北 京: -5 ℃~5 ℃

深 圳: 12 ℃~23 ℃

温度中有正数也有负数,请把负数读出来。

(2)找一找、说一说。

我们来看首都北京当天的温度,“-5 ℃”读作:“负五摄氏度”或“负五度”,表示零下5度;5 ℃又表示什么?

你能在温度计上找出这两个温度所在的刻度吗?(出示温度计,没有刻度数)为什么? 现在你能很快找出来吗?(给出温度计的刻度数,生到前面指。)

说一说,你怎么这么快就找到了?

你能很快找到12 ℃、-3 ℃吗?

(3)提升认识。

请学生观察温度计,说一说有什么发现?

在学生发言的基础上,强调:以0℃为分界点,零上温度都用正数来表示,零下温度都用负数来表示。(或负数都表示零下温度,正数都表示零上温度。)

“0”是正数,还是负数呢?

在学生发言的基础上,强调:“0”作为正数和负数的分界点,它既不是正数也不是负数。

(4)总结归纳。

如果过去我们所认识的数只分为正数和0的话,那么今天我们可以对“数”进行重新分类: (完善板书。)

5.练一练。

读一读,填一填。(练习一第1题。)

6.出示课题。

同学们,想一想,今天你学习了什么新知识?认识了哪位新朋友?你能为今天的数学课定一个课题吗?

根据学生的回答总结本节课所学内容,并选择板书课题:负数认识。

7.负数的历史。

(1)介绍。

其实,负数是“中国是世界上最早认识和运用负数的国家,早在20xx多年前,我国古代数学著作《九章算术》中对正数和负数就有了记载。魏朝数学家刘徽在该书的注文中则更进一步地概括了正、负数的意义:?两算得失相反,要令正负以名之古代用算筹表示数,这句话的意思是:?两种得失相反的数,分别叫做正数和负数并且规定用红色算筹表示正数,黑色算筹表示负数。由于记录时换色不方便,到了十三世纪,数学家还创造了在数字上面画斜杠来表示负数的方法。国外对负数的认识经历了曲折的.过程,并且也出现了各种表示负数的形式,直到20世纪初,才形成了现在的形式。但比中国晚了数百年!”

(2)交流。

简单了解了负数的历史,你有什么感受?

三、练习应用

今天,负数在我们的生产和生活中依然有着广泛的用途。让我们就一起走进生活,感受数与生活的密切联系。

课件逐一出示:

1.表示海拔高度。(“做一做”第2题。)

通常,我们规定海平面的海拔高度为0米,珠穆朗玛峰比海平面高8844.43米,可以记作_____________;吐鲁番盆地大约比海平面低155米,它的海拔高度应记作_____________。

2.表示温度。(练习一第2题。)

月球表面白天的平均温度是零上126℃,记作_________℃, 夜间的平均温度为零下150℃,记作_____________℃。

3.(出示电梯按钮图)小红的家在五楼,储藏室在地下一楼。如果她要回家,按哪个按钮?如果到储藏室取东西呢?

4.表示时间。(练习一第3题。)

四、总结延伸

1.学生交流收获。

2.总结。

简要、具体地评价学生的收获,并强调:关于负数,生活中还有更广泛的应用;走进负数,还有更多的知识等待我们去探索,相信同学们在今后的生活和学习中会有更多的收获。 板书设计

负数的认识和意义

正数+6 、+1500 、2.5

负数-6 、-1500 、-2.5

0既不是正数也不是负数

第二课时 用数轴表示正负数 总第二课时

教学目标

认识数轴,并会用数轴上的点表示正负数和0.

教学重点和难点

理解数轴表示正负数的意义,会用数轴上的点表示正负数;同时能够由数轴上的已知点说出其所表示的数。

教学设计

一、以复习负数的意义导入

2小黑板出示题目:用正数和负数表示下列各量。指名学生将答案写在小黑板上,集体订正。

(1)零上24摄氏度表示为( ),零下3.5摄氏度表示为()。

(2)足球比赛中,赢2球计作( )球,输1球记作()球。

(3)小丽上个月存了压岁钱200元,存折上显示( ),这个星期郊游费取出50元,存折上显示为( )。

(4)超过警戒水位2米,可记作(),正好到警戒水位可记作()。 3.我们已经知道了负数的意义,这节课我们将继续探究生活中的负数,并学习一个可以直观表示负数的好方法。

二、创设情境,探究新知

1.在游戏中体会运动变化中的负数

(1)以讲台为起点,面朝教室门为前,也为正,分为两组,每组派2名代表,一名代表负责根据我的口令向相反的方向走,而另一名同学则在黑板上记录自己同伴走的情况,我们看哪一组反应又快又正确。

(2)游戏过后,提问:如果不用按照相反的口令,直接按照口令执行,那么“记作6步” 他应怎么走?“记作—4步”呢?(指名学生回答)

2.教学第5页例3,学会用数轴表示正负数。

(1)像我们刚才的游戏,例题中以大树为起点,向东为正,那么向西应记为什么?怎么走记为“0”?例题中四个小朋友运动后的情况分别记为什么?(生答师板书)

(2)明确了这点我们可以知道,当规定一个方向为正时,与之相反的方向则为负。这还可以扩展到一切3运动变化中,指定一个运动变化方向为正,那么另一个变化方向就为负。我们的生活中还有那些相反的变化运动呢?

(3)为了更加直观的看,我们在一条直线上来表示他们运动后的情况。这条直线表示他们要走的东西方向的路线,树的位置记为什么?

(4)假设直线打上箭头的方向为东,即为正方向。在直线上从起点开始分出相等的线段,用1cm表示实际的1m.

(5)大家观察一下这条直线,在0的左边,都是什么数?右边呢?像这样的直线就叫数轴。数轴有什么特征?它与直线有什么区别?

(6)它长得比较像什么啊?(出示温度计)大家看这个温度计,我们把它放平放,是不是在0的一边是零下,一边是零上?

(7)现在哪个同学能在这个数轴上表示出—1.5?

(8)根据例题的要求,往东为正,那么如果你从起点要运动到—1.5?

3.教学第6页例4,学习负数大小的比较。

(1)大家看课本上未来一周的天气情况,里面有没有负数?把它读出来。

(2)教师板书数轴,一边画一边讲解画数轴的方法,注意强调,要在直线上确定一点为0,然后再截取等分线段,要求学生在练习本上画数轴。

(3)让我们把每天最低气温在这个数轴上表示出来。

(4)从最低气温来看,周五和周四哪天更冷呢?你是怎么知道的?

(5)我国新疆地区冬季时温度达到—30℃,大概在温度计的那儿?在数轴上表示大约在哪个位置?

(6)正、和0负数之间的大小顺序是怎样的?

(7)我们刚才比较了—8℃和—6℃,知道—8℃更冷,说明哪个温度高呢?哪个数字更大一些呢?

(8)大家观察一下—8和—6在数轴上的点哪个离0近一些?在正方向上,我们知道2比1大,那哪个离0近一些?从数轴的左边到右边的数字有什么规律?从这个情况可以小结出什么呢?小结:在数轴上从左到右的顺序就是数从小到大的顺序,左边的数比右边的小。

(9)如果不用数轴,直接比较两个负数的大小,还可以怎么判断?

三、巩固练习

1.第7页的做一做的第一题。

2.第7页的做一做的第3题。

四.课堂小结

这节课我们学会了什么内容?比较负数的大小可以怎么比较呢?

教学反思

本课时的设计充满着轻松的氛围,以游戏导入,一开始就抓住学生的注意力。将例题用直观有趣味的方式体现,学生在快乐中掌握知识,这其实是新课标要求所提倡和极力达到的要求,能够很好地保护和激发学生的学习兴趣。此外,本课时的设计还有一大特点是在对知识点引起的环节上,注意由学生熟悉的情境引入,注重例题及知识点的教学衔接,避免生硬的知识点教学转化,设计好过渡和引导,使教学环节浑然一体,知识点的衔接也显得水到渠成。

第二单元 圆柱与圆锥

单元目标:

1、使学生认识圆柱和圆锥,掌握它们的特征;认识圆柱的底面、侧面和高;认识圆锥的底面和高。

2、 使学生理解求圆柱的侧面积和表面积的计算方法,并会正确计算。

3、 使学生理解求圆柱、圆锥体积的计算公式,会运用公式计算体积、容积,解决有关的简单实际问题。

单元重点:

掌握圆柱的表面积的计算方法和圆柱、圆锥体积的计算公式。

单元难点:

圆柱、圆锥体积的计算公式的推导

1、圆柱 总第三课时

(1)圆柱的认识

教学内容:教科书第10—12页圆柱的认识,练习二的第1—4题.

教学目标:

1、借助日常生活中的圆柱体,认识圆柱的特征和圆柱各部分的名称,能看懂圆柱的平面图;认识圆柱侧面的展开图。

2、培养学生细致的观察能力和一定的空间想像能力。

3、激发学生学习的兴趣。

教学重点:认识圆柱的特征。

教学难点:看懂圆柱的平面图。

教学过程:

一、复习

1.已知圆的半径或直径,怎样计算圆的周长?(指名学生回答,使学生熟悉圆的周长公式:C=2πr或C=πd)

2.求下面各圆的周长(教师依次出示题目,然后指名学生回答,其他学生评判答案是否正确)

认识负数的教案 篇3

【教学内容】

教科书第117~118页例

1、例2,课堂活动第1、2题,练习二十五第1、3、4、5题。

【教学目标】

1.在现实情境中初步认识负数和理解负数的意义,了解负数的产生与作用,感受负数使用带来的方便。

2.会正确地读、写正、负数,知道0既不是正数,也不是负数。

3.使学生体验数学和生活的密切联系,激发学生学习数学的兴趣,培养学生应用数学的意识。

【教学重点】

负数的意义和负数的读法与写法。

【教学点】

理解0既不是正数,也不是负数。

【教学过程】

一、复习导入

提出问题:举例说明我们学过了哪些数?

活动:先独立思考并举例,然后小组交流,互相补充,最后抽学生反馈:整数,自然数,分数,小数,奇数,偶数??

教师小结:为了实际生活的需要,在数物体个数时,1、2、3??出现了自然数,物体一个也没有时用自然数0表示,当测量或计算有时不能得出整数,我们用分数或小数表示。

提出问题:我们学过的数中最小的数是谁?有没有比零还小的数呢?

活动:同学们思考,头脑中产生疑问。

二、创设情境、学习新知 1.教学例1。

(1)课件出示:中央电视台天气预报的一个场面,主持人说:“哈尔滨零下6至3摄氏度,重庆6至8摄氏度??”

同学们,你们对情境中的内容一定相当熟悉吧?你能给大家讲讲“哈尔滨零下6至3度”这句话是什么意思吗?

为什么阿姨说的零下6摄氏度,屏幕上打出的字幕就变成了-6℃呢?

这里有零下6℃、零上6℃,都记作6℃行吗?

你有什么简洁的方法来表示他们的不同呢?

学生讨论思考后反馈,教师适时点拨、评价和引导。

教师小结:同学们都成了发明家。有的同学说用不同颜色来区分,比如:红色5℃表示零下5℃,黑色5℃表示零上5℃;也有的同学说,在数字前面加不同符号来区分,比如:△5℃表示零上5℃,×5℃表示零下5℃??这些想法都很好。其实,中国古代数学家就曾经采用不同的颜色来区分,古时叫做“正算黑,负算赤”。如今这种方法在记账的时候还使用。所谓“赤字”,就是因此而来的。现在,国际数学界都是采用符号来区分,我们把比0摄氏度低的温度用带有“-”号的数来表示,例如把零下6℃记作-6℃,读作负6摄氏度;零上6℃记作+6℃,读作正6摄氏度或6摄氏度。(2)巩固练习。

同学们,你能用刚才我们学过的知识,用恰当的数来表示温度吗?试试看。

学生独立完成第117页下图的练习。

教师巡视,个别辅导,集体订正写得是否正确,并让学生齐读。2.自主学习例2。(进一步认识正数和负数)教师:同学们,你们知道吗?世界第一高峰——珠穆朗玛峰从山脚到山顶,气温相差很大,这是和它的海拔高度有关的。最近经国家测绘局公布了珠峰的最新海拔高度。老师把有关网页带来了。(课件出现网页,上面有简单的文字介绍)谁来读一读这段介绍。

今天,老师还带来一张珠穆朗玛峰的海拔图,请看。(课件演示珠穆朗玛峰的海拔图,教科书第118页上图的左部分,数字前没有符号)从图上你看懂了些什么?

引导学生交流:珠穆朗玛峰比海平面高米。

我们再来看新疆的吐鲁番盆地的海拔图。(课件演示吐鲁番盆地的海拔情况,教科书第118页上图的右部分,数字前没有符号)你又能从图上看懂些什么呢?

引导学生交流:吐鲁番盆地比海平面低155米。

教师小结:珠穆朗玛峰比海平面高,吐鲁番盆地比海平面低。大家再想想:你能用一种简单的方法来记录一下这两个地方的海拔高度吗?

学生交流:珠穆朗玛峰的海拔可以记作:+米或米。吐鲁番盆地的海拔可以记作:-155米。(板书)教师追问:你是怎么想到用这种方法来记录的呢?

预设一:我是把海平面的高度看作0,比海平面高就可以用+几或几来表示,比海平面低就可以用-几来表示。(教师评价:这位同学会运用刚才学习的知识运用到现在的学习中,学会知识的迁移是一种很好的学习方法,我们应该向他学习)预设二:如学生答不上,教师做适当引导。

最后教师将课件中数字改动成:海拔+米或米;海拔-155米。

教师小结:以海平面为界线,+米或米这样的数表示比海平面高米;-155米这样的数表示比海平低155米。(2)巩固练习:教科书第118页试一试。

教师巡视,集体订正。

3.小组讨论,归纳正数和负数。

教师:通过刚才的学习,我们收集到了一些数据,(课件显示)我们可以用这些数来表示零上温度和零下温度,还可以表示海平面以上的高度和海平面以下的'高度。那么,你们观察一下这些数,它们一样吗?它们可以怎样分类呢?

学生交流、讨论。

预设:①

4、+、3193等这些数归一类;-

6、-155、-等归一类;0归为一类。②6、3193等归一类;+归一类;-

6、-155、-等归一类;0归为一类。③

6、+、3193、0归一类;-

6、-155、-等归一类。

指出:因为+也可以写成米,所以有正号和没正号都可以归于一类。提出疑问:0到底归于哪一类?(如有学生提出更好)引导学生争论,各自发表意见。

①如果都同意分三类的,老师可以出难题:我觉得0可以分在6它们一类啊,你们怎么来说服我?

②如果有学生发表分三类的,有的分两类的,可以引导他们互相争论。(对于发表意见出色的学生要及时的给予鼓励和表扬)小结:(结合图)我们从温度计上观察,以0℃为界限线,0℃以上的温度用正几表示,0℃以下的温度用负几表示。同样,以海平面为界线,高于海平面的高度我们用正几来表示,低于海平面我们用负几表示。0就像一条分界线,把正数和负数分开了,它谁都不属于。但对于正数和负数来说,它却必不可少。我们把像+6、3、+等这样的数叫做正数;像-

6、-155等这样的数我们叫做负数;而0既不是正数,也不是负数。(板书)通常正号可以省略不写。负号可以省略不写吗?为什么?

最后,让学生看书勾划,并思考两个“??”还代表那些数?(让学生对正负数的理解更全面和深刻)

三、运用新知

1.课堂活动第1题。让学生先自己读读,并举例说说是什么意思?全班订正后,同桌间自选5个互相说说。

2.课堂活动第2题。同桌先讨论,然后反馈。3.练习二十五第3题。同桌互说,然后全班反馈。

四、小结

通过今天的学习你有什么收获?(学生说,教师适当启发)

五、作业

1独立作业:练习二十五第1、4题。2课外调查:练习二十五第5题。板书设计:

负数的初步认识 正数:+3(3)++15 0: 既不是正数也不是负数

负数:-3-155-10

认识负数的教案 篇4

教学内容:

教材第3-4页的例3、例4,以及“试一试”、“练一练”,练习一第5-8题。

教学目标:

1.能在盈与亏、收与支、升与降、增与减及相反方向运动等现实的情境中准确地应用负数,进一步理解负数的意义。

2.通过用正数和负数表示一些具有相反意义的量,体会数学的.应用价值。

教学重点:

在现实情境中应用负数,体验负数。

教学难点:

用正、负数表示相反方向的量,体验负数的意义。

教学过程:

一、自主准备

你知道生活中有哪些相反意义的量?试着举例用正数或负数来表示。

二、自主探究

1.阅读课本第3页的例3。从表中你能知道些什么?(大声地读一读,并说一说表中的数所表示的意义)

2.从例3的学习中,你知道( )和( )是一对具有相反意义的量,通常情况下,怎样用正数和负数来表示?

3.填写课本第3页的“试一试”。

4.阅读课本第3页的例4。思考:如何用图来表达学校、邮局、公园之间的相对位置?(在下面画一画)

5.如果把向东走2千米记作+2千米,那么向西走2千米可以记作什么?

6.在直线上用点表示邮局和公园的位置

看了上图,你有什么发现?

三、自主应用

1.电梯上升15米记作+15米,下降10米记作( )米,-20米表示电梯( )米。

2.公交车上的售票员将下车3人记作-3人,上车4人记作( )人,-5人表示( )人。

3.知识竞赛抢答的评分规定:答对一题得10分,记作+10分;答错一题扣10分,应记作( )分。王明答对12题,答错3题,他得了( )分。

四、自主质疑

你认为本节课应学会什么?你还有什么疑问?

认识负数的教案 篇5

教学内容:

正数和负数的初步认识,数轴的相关知识,相反数的相关知识,绝对值的相关知识。

教学目的:

1、 教学正数和负数的意义,会判断一个数是正数还是负数,会初步运用正数和负数表示相反意义的量。

2、 能将学过的整数在数轴上表示出来,能说出数轴上已知点所表示的数。

3、 了解相反数的概念,掌握相反数的表示法,能正确地求出一个数的相反数。

4、 掌握绝对值的表示法,给一个数,会求它的绝对值。

教材分析:

本单元教材是为进一步学习正数和负数加减法打下基础,为初中数学学习做准备,是衔接小学数学和初中数学的重要环节.教学的重点是相反数和绝对值,难点是正数和负数及数轴概念的理解。

教学课时:

约6课时。

教学准备:

小黑板、投影片。

1、 正数和负数

教学内容:完成例题,“试一试”及练习一a组的1-7题,b组的1-3题。

教学目的:

1、 认识正数和负数,会用正数和负数表示一些常见的数量。

2、 培养学生对相对的理解,培养创新的思维品质。

教学重点:

负数的认识是本课的重点。

教学过程:

一创设情景:

师:我们已经学过哪些数?

出示气温图,说一说各数字表示的意思,找一找哪些是没有学过的`?

二探究新知:

1师:你会读这些数字吗?试一试.

师:像-1、-4、-8……这样的数都是负数。

师:为了和负数相对应,我们把以前学过的除零以外的数叫作正数,并可在前面加上符号“+”,读作正。

2自学课本第二页的内容。

师:你还能举出一些正、负数的例子吗?

3教学例题

出示例题,读题后说一说自己的想法。

明确:海平面以上用正数表示,海平面以下用负数表示。

4试一试

完成试一试的相关题目。

三巩固拓展

1完成练习一a组的1-7题。

第4题要重点订正。

2完成练习一b组的第1、2、3题。

四小结

师:本节课你有什么收获?

认识负数的教案 篇6

教学片断:

(1)师出示:四个城市气温图:哈尔滨:-15~3℃北京:-5~5℃上海:0~8℃海口:12~20℃

师:有负数吗?读出来。北京-5℃和5℃一样吗?

零上的温度用什么表示?零下的温度用什么表示?0呢?

师:0正好是零上温度和零下温度的分界点。

(2)温度计。(教具:表示水银的位置可挪动)

师:每格代表1℃,请生拔出5℃。

拔-5℃。为什么拔不出来?

要先找到什么温度?

生:先找到0℃,这是分界点。

师:将温度计上的数揭开,越往上温度就越……

生:高。

师:再拿一个温度计请该生再拔-5℃。

拔-15℃。

比较两个温度(-5℃和-15℃)哪个更冷?怎么能说明-15℃比-5℃更冷了?

生:温度计上有表示。

生:-15℃在-5℃下面。

师:用你的动作和表情告诉我-15℃时的感觉。

我国新疆地区最冷时温度达到-40℃,大概在温度计的哪儿?

生:比划。

师:你能说几个正数和负数吗?

生:-10、-11。

师:一对一对说。

生1:+10、-20。

师:说得完吗?用省略号表示。

所有正数和0比,有什么关系?

所有负数和0比,有什么关系?(板书:负数<0<正数)

用一个圈把所有正数圈出来,用一个圈把所有的负数圈出来。

学生圈出了板书的正数和负数。

生:不同意,因为还有很多正、负数。要把省略号圈进去。

师:0,正数不要,负数不要。怎么办?

生:0是分界点。

六人小组讨论:0算正数吗?算负数吗?

学生汇报

生1:0算是自然数。

生2:0是正负数。

生3:它一个不是,是特殊的数。

师:正数比0?(大)负数比0?(小)0比0小吗?(0不是)0既不是正数,也不是负数。是分界点。

教后反思:

本案例教学以“学生”为本,体现数学是生活所需,实际所需,从而产生要学数学,要学有用的数学;体现数学的应用性和实践性,反映数学的价值观而设计的,我觉得数学教学要超越生活,数学知识虽然源于生活,但与现实的生活还是有一定距离的,毕竟数学是一门高度抽象、高度严密的学科。当数学教学找到了与生活的连接点,把数学现象规律用生活实际问题的解决来表现时,数学知识的学习就变的“通俗易懂”了。如本案例教学中从温度计认识与动手操作展开教学,教师先出示了各地的'温度情况,接着引导学生认识温度计上的0刻度,然后进行0上和0下的温度读数教学。充分体现由整体认识到局部探索的教学策略,有效的突破了学生认识与探索的难点。总之学生通过观察、操作等活动,将原有的生活经验数学化,使学生从具体实物操作和形象感知发展到抽象地认识负数,进一步体验到正数与负数之间的区别与联系。