返回首页
文学网 > 短文 > 教学教案 > 正文

初中数学教学设计

2026/01/06教学教案

文学网整理的初中数学教学设计(精选6篇),供大家参考,希望能给您提供帮助。

初中数学教学设计 篇1

教材分析

1.这节的重点为:去括号。因此,本节所学的知识实际上就是对前面所学知识的一个巩固和深化,要突破这个重点,只有在掌握方法的前提下,通过一定的练习来掌握。

2.去括号是整式加减的一个重要内容,也是下一章一元一次方程的直接基础,也是今后继续学习整式的乘除、因式分解、方程,以及分式、函数等的重要基础。

学情分析

1.去括号法则是教材上的教学内容,学生学习时会经常出现错用法则的现象。实验表明:完全可以用乘法分配律取代去括号法则.这是由于:(1)“去括号法则”,增加了记忆负担和出错的机会,容易出错;(2)去括号的法则增加了解题长度,降低了学习效率;(3)用乘法分配律去括号的学习是同化而非顺应,易于理解与掌握;(4)用乘法分配律去括号是回归本质,返璞归真,且既可减少学习时间,又能提高运算的正确率。

教学目标

1.熟练掌握去括号时符号的变化规律;

2.能正确运用去括号进行合并同类项;

3.理解去括号的依据是乘法分配律。

教学重点和难点

重点

去括号时符号的变化规律。

难点

括号外的因数是负数时符号的变化规律。

教学过程

一、创设情景问题

青藏铁路线上,列车在冻土地段的行驶速度是100千米/时,在非冻土地段的形式速度可以达到120千米/时。

请问:(3)在格尔木到拉萨路段,列车通过冻土地段比通过非冻土地段多用0.5小时,如果通过冻土地段需要t小时,则这段铁路的全长可以怎么样表示?冻土地段与非冻土地段相差多少千米?

解:这段铁路的全长为100t+120(t-0.5)(千米)

冻土地段与非冻土地段相差100t-120(t-0.5)(千米)。

提出问题,如何化简上面的'两个式子?引出本节课的学习内容。

二、探索新知

1.回顾:

1你记得乘法分配率吗?怎么用字母来表示呢?

a(b+c)=ab+ac

2-(-2)=(-1)*(-2)=2+(-3)=(+1)*(-3)=-3

2.探究

计算(试着把括号去掉)

(1)13+(7-5)(2)13-(7-5)

类比数的运算,去掉下面式子的括号

(3)a+(b-c)(4)a-(b-c)

3.解决问题

100t+120(t-0.5)=100t-120(t-0.5)=

思考:

去掉括号前,括号内有几项、是什么符号?去括号后呢?

去括号的依据是什么?

三、知识点归纳

去括号法则:

如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;

如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反.

注意事项

(1)去括号规律要准确理解,去括号应对括号的每一项的符号都予考虑,做到要变都变;要不变,则谁也不变;

(2)括号内原有几项去掉括号后仍有几项.

四、例题精讲

例4化简下列各式:

(1)8a+2b+(5a-b);(2)(5a-3b)-3(a2-2b).

五、巩固练习

课本P68练习第一题.

六、课堂小结

1.今天你收获了什么?

2.你觉得去括号时,应特别注意什么?

七、布置作业

课本P71习题2.2第2题

初中数学教学设计 篇2

我在这次国培中学习了“初中数学概念课堂教学设计”。虽只有短短的时间,却让我受益匪浅。

数学概念是数学命题、数学推理的基础,数学学习的真正开始是从对数学概念的学习开始的,作为一名初中数学老师,我也常常在思考,如何进行概念教学?如何充分利用有限的45分钟,让学生真正理解概念?通过这次国培,给我们今后的数学概念教学提供了一种可以借鉴的教学模式:即“创设问题情景,归纳共同特征——建立数学模型,抽象出概念——在交流中深化概念,辨析概念的内涵与外延——巩固、应用与拓展。”概念教学注意以下几点:

1、注重了数学与生活之间的`联系。

《数学课程标准》要求:“让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程。”数学的每一个概念都是一个数学模型,老师们从学生实际出发,创设了许多有利于学生学习的现实背景与材料,极大的鼓起了学生学习数学的兴趣。

2、概念的得出注重了探究过程、分析过程,体现了活动主题。

通过一组实例,分析共性,找共同特征。

3、铺垫导入恰当,让预设与生成合情合理。

课堂教学的优秀与否,既要看预设,又要看生成。做到了新知不新,新概念是在旧概念的基础上滋生和发展出来的,她们这样的引入,符合学生的最近发展区需要,教师适时搭建了一个新旧知识的桥梁,然后引导学生分析、观察,学生就会印象深刻。

4、注重了数学陷阱的设置。

把学生对概念理解中的易错点、易混淆点列出来,让学生判断、研究可以让学生对概念理解更深刻。

5、注重了学科间的渗透。

在数学教学中,如何使学生形成数学概念,正确的理解和掌握概念是极为重要的,这是学好数学的基础之一。要让学生真正理解概念,要把握好以下三点:一要注重联系生活原型,对概念作通俗解释,体验探究数学问题的乐趣;二要注重揭示概念的本质,准确理解概念的内涵与外延;三要注重概念的实际应用,实现知识的升华。

初中数学教学设计 篇3

一、教材分析

反比例函数是初中阶段所要学习的三种函数中的一种,是一类比较简单但很重要的函数,现实生活中充满了反比例函数的例子。因此反比例函数的概念与意义的教学是基础。

二、学情分析

由于之前学习过函数,学生对函数概念已经有了一定的认识能力,另外在前一章我们学习过分式的知识,因此为本节课的教学奠定的一定的基础。

三、教学目标

知识目标:理解反比例函数意义;能够根据已知条件确定反比例函数的表达式.

解决问题:能从实际问题中抽象出反比例函数并确定其表达式. 情感态度:让学生经历从实际问题中抽象出反比例函数模型的过程,体会反比例函数来源于实际.

四、教学重难点

重点:理解反比例函数意义,确定反比例函数的表达式.

难点:反比例函数表达式的.确立.

五、教学过程

(1)京沪线铁路全程为1463km,某次列车的平均速度v(单位:km/h)随此次列车的全程运行时间t(单位:h)的变化而变化;

(2)某住宅小区要种植一个面积1000m2的矩形草坪,草坪的长y(单

位:m)随宽x(单位:m)的变化而变化。

请同学们写出上述函数的表达式

14631000(2)y= tx

k可知:形如y= (k为常数,k≠0)的函数称为反比例函数,其中xx(1)v=

是自变量,y是函数。

此过程的目的在于让学生从实际问题中抽象出反比例函数模型的过程,体会反比例函数来源于实际. 由于是分式,当x=0时,分式无意义,所以x≠0。

当y= 中k=0时,y=0,函数y是一个常数,通常我们把这样的函数称为常函数。此时y就不是反比例函数了。

举例:下列属于反比例函数的是

(1)y= (2)xy=10 (3)y=k-1x (4)y= -

此过程的目的是通过分析与练习让学生更加了解反比例函数的概念 问已知y与x成反比例,y与x-1成反比例,y+1与x成反比例,y+1与x-1成反比例,将如何设其解析式(函数关系式)

已知y与x成反比例,则可设y与x的函数关系式为y=

k x?1

k已知y+1与x成反比例,则可设y与x的函数关系式为y+1= xkxkxkxkx2x已知y与x-1成反比例,则可设y与x的函数关系式为y=

已知y+1与x-1成反比例,则可设y与x的函数关系式为y+1= k x?1此过程的目的是为了让学生更深刻的了解反比例函数的概念,为以后在求函数解析式做好铺垫。

例:已知y与x2反比例,并且当x=3时y=4

(1)求出y和x之间的函数解析式

(2)求当x=1.5时y的值

解析:因为y与x2反比例,所以设y?k,只要将k求出即可得到yx2

和x之间的函数解析式。之后引导学生书写过程。能从实际问题中抽象出反比例函数并确定其表达式最后学生练习并布置作业

通过此环节,加深对本节课所内容的认识,以达到巩固的目的。

六、评价与反思

本节课是在学生现有的认识基础上进行讲解,便于学生理解反比例函数的概念。而本节课的重点在于理解反比例函数意义,确定反比例函数的表达式.应该对这一方面的内容多练习巩固。

初中数学教学设计 篇4

一、教学目标:

1.经历探索二次函数与一元二次方程的关系的过程,体会方程与函数之间的联系.

2.理解抛物线交x轴的点的个数与一元二次方程的根的个数之间的关系,理解何时方程有两个不等的实根、两个相等的实数和没有实根.

3.能够利用二次函数的图象求一元二次方程的近似根。

二、教学重点

利用二次函数的图象求一元二次方程的近似根。

教学难点:

理解二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系。

三、教学方法:

启发引导合作交流

四:教具、学具:

课件

五、教学媒体:

计算机、实物投影。

六、教学过程:

[活动1]检查预习引出课题

预习作业:

1.解方程:(1)x2+x-2=0; (2) x2-6x+9=0; (3) x2-x+1=0; (4) x2-2x-2=0.

2.回顾一次函数与一元一次方程的关系,利用函数的图象求方程3x-4=0的解.

师生行为:教师展示预习作业的内容,指名回答,师生共同回顾旧知,教师做出适当总结和评价。

教师重点关注:学生回答问题结论准确性,能否把前后知识联系起来,2题的格式要规范。

设计意图:这两道预习题目是对旧知识的回顾,为本课的教学起到铺垫的作用,1题中的三个方程是课本中观察栏目中的三个函数式的变式,这三个方程把二次方程的根的三种情况体现出来,让学生回顾二次方程的相关知识;2题是一次函数与一元一次方程的关系的问题,这题的设计是让学生用学过的熟悉的知识类比探究本课新知识。

[活动2]创设情境探究新知

问题

1.课本p16问题.

2.结合图形指出,为什么有两个时间球的高度是15m或0m?为什么只在一个时间球的高度是20m?

(结合预习题1,完成课本p16观察中的题目。)

师生行为:教师提出问题1,给学生独立思考的时间,教师可适当引导,对学生的解题思路和格式进行梳理和规范;问题2学生独立思考指名回答,注重数形结合思想的渗透;问题3是由学生分组探究的,这个问题的探究稍有难度,活动中教师要深入到各个小组中进行点拨,引导学生总结归纳出正确结论。

二次函数y=ax2+bx+c的图象和x轴交点的坐标与一元二次方程ax2+bx+c=0的根有什么关系?

二次函数y=ax2+bx+c的

图象和x轴交点

两个交点

一个交点

没有交点

教师重点关注:

1.学生能否把实际问题准确地转化为数学问题;

2.学生在思考问题时能否注重数形结合思想的应用;

3.学生在探究问题的过程中,能否经历独立思考、认真倾听、获得信息、梳理归纳的过程,使解决问题的方法更准确。

设计意图:由现实中的实际问题入手给学生创设熟悉的问题情境,促使学生能积极地参与到数学活动中去,体会二次函数与实际问题的关系;学生通过小组合作分析、交流,探求二次函数与一元二次方程的关系,培养学生的合作精神,积累学习经验。

[活动3]例题学习巩固提高

问题:例利用函数图象求方程x2-2x-2=0的实数根(精确到0.1).

师生行为:教师提出问题,引导学生根据预习题2独立完成,师生互相订正。

教师关注:(1)学生在解题过程中格式是否规范;(2)学生所画图象是否准确,估算方法是否得当。

设计意图:通过预习题2的铺垫,同学们已经从旧知识中寻找到新知识的生长点,很容易明确例题的解题思路和方法,这样既降低难点且突出重点。

[活动4]练习反馈巩固新知一元二次方程一元二次方程ax2+bx+c=0ax2+bx+c=0的根两个相异的实数根两个相等的实数根没有实数根根的判别式δ=b2-4acb2-4ac > 0b2-4ac = 0b2-4ac < 0

问题:(1)p97.习题1、2(1)。

师生行为:教师提出问题,学生独立思考后写出答案,师生共同评价;问题(2)学生独立思考后同桌交流,实物投影出学生解题过程,教师强调正确解题思路。

教师关注:学生能否准确应用本节课的知识解决问题;学生解题时候暴露的共性问题作针对性的点评,积累解题经验。

设计意图:这两个题目就是对本节课知识的巩固应用,让新知识内化升华,培养数学思维的严谨性。

[活动5]自主小结,深化提高:

1.通过这节课的学习,你获得了哪些数学知识和方法?

2.这节课你参与了哪些数学活动?谈谈你获得知识的方法和经验。

师生活动:学生思考后回答,教师对学生的错误予以纠正,不足的予以补充,精彩的适当表扬。

设计意图:

1.题促使学生反思在知识和技能方面的收获;

2.题让学生反思自己的学习活动、认知过程,总结解决问题的策略,积累学习知识的方法,力求不同的学生有不同的发展。

[活动6]分层作业,发展个性:

1.(必做题)阅读教材并完成p97习题21。2:3、4.

2.(备选题)p97习题21。2:5、6

设计意图:分层作业,使不同层次的学生都能有所收获。

七、教学反思:

1.注重知识的发生过程与思想方法的应用

《用函数的观点看一元二次方程》内容比较多,而课时安排只一节,为了在一节课的时间里更有效地突出重点,突破难点,按照学生的认知规律遵循教师为主导、学生为主体的指导思想,本节课给学生布置的预习作业,从学生已有的经验出发引发学生观察、分析、类比、联想、归纳、总结获得新的知识,让学生充分感受知识的产生和发展过程,使学生始终处于积极的思维状态中,对新的知识的获得觉得不意外,让学生“跳一跳就可以摘到桃子”。

探究抛物线交x轴的点的个数与一元二次方程的根的.个数之间的关系及其应用的过程中,引导学生观察图形,从图象与x轴交点的个数与方程的根之间进行分析、猜想、归纳、总结,这是重要的数学中数形结合的思想方法,在整个教学过程中始终贯穿的是类比思想方

法。这些方法的使用对学生良好思维品质的形成有重要的作用,对学生的终身发展也有一定的作用。

2.关注学生学习的过程

在教学过程中,教师作为引导者,为学生创设问题情境、提供问题串、给学生提供广阔的思考空间、活动空间、为学生搭建自主学习的平台;学生则在老师的指导下经历操作、实践、思考、交流、合作的过程,其知识的形成和能力的培养相伴而行,创造“海阔凭鱼跃,天高任鸟飞”的课堂境界。

3.强化行为反思

“反思是数学的重要活动,是数学活动的核心和动力”,本节课在教学过程中始终融入反思的环节,用问题的设计,课堂小结,课后的数学日记等方式引发学生反思,使学生在掌握知识的同时,领悟解决问题的策略,积累学习方法。说到数学日记,“数学日记”就是学生以日记的形式,记述学生在数学学习和应用过程中的感受与体会。通过日记的方式,学生可以对他所学的数学内容进行总结,写出自己的收获与困惑。“数学日记”该如何写,写什么呢?开始摸索写数学日记的时候,我根据课程标准的内容给学生提出写数学日记的简单模式:日记参考格式:课题;所涉及的重要数学概念或规律;理解得最好的地方;不明白的或还需要进一步理解的地方;所涉及的数学思想方法;所学内容能否应用在日常生活中,举例说明。通过这两年的摸索,我把数学日记大致分为:课堂日记、复习日记、错题日记。

4.优化作业设计

作业的设计分必做题和选做题,必做题巩固本课基础知识,基本要求;选做题属于拓广探索题目,培养学生的创新能力和实践能力。

初中数学教学设计 篇5

教学目标

1.了解的概念和的画法,掌握的三要素;

2.会用上的点表示有理数,会利用比较有理数的大小;

3.使学生初步了解数形结合的思想方法,培养学生相互联系的观点。

教学建议

一、重点、难点分析

本节的重点是初步理解数形结合的思想方法,正确掌握画法和用上的点表示有理数,并会比较有理数的大小。难点是正确理解有理数与上点的对应关系。的概念包含两个内容,一是的三要素:原点、正方向、单位长度缺一不可,二是这三个要素都是规定的。另外应该明确的是,所有的有理数都可用上的点表示,但上的点所表示的数并不都是有理数。通过学习,使学生初步掌握用解决问题的方法,为今后充分利用这个工具打下基础。

二、知识结构

有了,数和形得到了初步结合,这有利于对数学问题的研究,数形结合是理解数学、学好数学的重要思想方法,本课知识要点如下表:

定义

三要素

应用

数形结合

规定了原点、正方向、单位长度的直线叫

原 点

正方向

单位长度

帮助理解有理数的概念,每个有理数都可用上的点表示,但上的点并非都是有理数

比较有理数大小,上右边的数总比左边的数要大

在理解并掌握概念的基础之上,要会画出,能将已知数在上表示出来,能说出上已知点所表示的数,要知道所有的有理数都可以用上的点表示,会利用比较有理数的大小。

三、教法建议

小学里曾学过利用射线上的点来表示数,为此我们可引导学生思考:把射线怎样做些改进就可以用来表示有理数?伴以温度计为模型,引出的概念。是一条具有三个要素(原点、正方向、单位长度)的直线,这三个要素是判断一条直线是不是的根本依据。与它所在的位置无关,但为了教学上需要,一般水平放置的,规定从原点向右为正方向。要注意原点位置选择的任意性。

关于有理数与上的点的对应关系,应该明确的`是有理数可以用上的点表示,但上的点与有理数并不存在一一对应的关系。根据几个有理数在上所对应的点的相互位置关系,应该能够判断它们之间的大小关系。通过点与有理数的对应关系及其应用,逐步渗透数形结合的思想。

四、的相关知识点

1.的概念

(1)规定了原点、正方向和单位长度的直线叫做。

这里包含两个内容:一是的三要素:原点、正方向、单位长度缺一不可。二是这三个要素都是规定的。

(2)能形象地表示数,所有的有理数都可用上的点表示,但上的点所表示的数并不都是有理数。

以是理解有理数概念与运算的重要工具。有了,数和形得到初步结合,数与表示数的图形(如)相结合的思想是学习数学的重要思想。另外,能直观地解释相反数,帮助理解绝对值的意义,还可以比较有理数的大小。因此,应重视对的学习。

2.的画法

(1)画直线(一般画成水平的)、定原点,标出原点“O”。

(2)取原点向右方向为正方向,并标出箭头。

(3)选适当的长度作为单位长度,并标出…,-3,-2,-1,1,2,3…各点。具体如下图。

(4)标注数字时,负数的次序不能写错,如下图。

3.用比较有理数的大小

(1)在上表示的两数,右边的数总比左边的数大。

(2)由正、负数在上的位置可知:正数都有大于0,负数都小于0,正数大于一切负数。

(3)比较大小时,用不等号顺次连接三个数要防止出现“ ”的写法,正确应写成“ ”。

五、定义的理解

1.规定了原点、正方向和单位长度的直线叫做,如图1所示。

2.所有的有理数,都可以用上的点表示。例如:在上画出表示下列各数的点(如图2).

A点表示-4; B点表示-1.5;

O点表示0; C点表示3.5;

D点表示6.

从上面的例子不难看出,在上表示的两个数,右边的数总比左边的数大,又从正数和负数在上的位置,可以知道:

正数都大于0,负数都小于0,正数大于一切负数。

因为正数都大于0,反过来,大于0的数都是正数,所以,我们可以用 ,表示 是正数;反之,知道 是正数也可以表示为 。

同理, ,表示 是负数;反之 是负数也可以表示为 。

3.正常见几种错误

1)没有方向

2)没有原点

3)单位长度不统一

教学设计示例

初中数学教学设计 篇6

为了提高学生的学习兴趣,增大学生的学习参与面,减小差距。努力作好教学工作,在这一学期中,下文将准备了初中二年级下册数学教学设计如下:

一、教学目标:

通过本期的学习,要使学生在情感与态度上,认识到数学来源于实践,又反作用于实践,认识现实生活中图形间的数量关系,能够设计精美的图案,提高学生的审美情趣,培养学生实事求是、严肃认真的学习态度,激发学生的学习兴趣,培养学生对数学的热爱,对生活的热爱,在民主、和谐、合作、探究、有序、分享发现快乐,感受学习的快乐。对于过程与方法,通过学生积极参与对知识的探究,经历发现知识,发现知识间的内在联系,让学生经历发现知识道路上坎坎坷坷,达到深刻理解掌握知识的目的,达到漫江碧透,鱼翔浅底的境界,在经历这些活动中,提高学生的动手实践能力,提高学生的逻辑推理能力与逻辑思维能力,自主探究,解决问题的能力,提高运算能力,使所有学生在数学上都有不同的发展,尽可能接近其发展的最大值,培养学生良好的学习习惯,发展学生的非智力因素,使学生潜移默化的接受辩证唯物主义的熏陶,提高学生素质。

二、教材分析

本学期教学内容共计五章,知识的前后联系,教材的教学目标,重、难点分析如下:

第十六章 分式 本章的主要内容包括:分式的概念,分式的基本性质,分式的约分与通分,分式的加、减、乘、除运算,整数指数幂的概念及运算性质,分式方程的概念及可化为一元一次方程的分式方程的解法。

第十七章 反比例函数 函数是研究现实世界变化规律的一个重要模型,本单元学生在学习了一次函数后,进一步研究反比例函数。学生在本章中经历:反比例函数概念的抽象概括过程,体会建立数学模型的思想,进一步发展学生的'抽象思维能力;经历反比例函数的图象及其性质的探索过程,在交流中发展能力这是本章的重点之一;经历本章的重点之二:利用反比例函数及图象解决实际问题的过程,发展学生的数学应用能力;经历函数图象信息的识别应用过程,发展学生形象思维;能根据所给信息确定反比例函数表达式,会作反比例函数图象,并利用它们解决简单的实际问题。本章的难点在于对学生抽象思维的培养,以及提高数形结合的意识和能力。

第十八章 勾股定理 直角三角形是一种特殊的三角形,它有许多重要的性质,如两个锐角互余,30度角所对的直角边等于斜边的一半,本章所研究的勾股定理,也是直角三角形的性质,而且是一条非常重要的性质,本章分为两节,第一节介绍勾股定理及其应用,第二节介绍勾股定理的逆定理。

第十九章 四边形 四边形是人们日常生活中应用较广泛的一种图形,尤其是平行四边形、矩形、菱形、正方形、梯形等特殊四边形的用处更多。因此,四边形既是几何中的基本图形,也是空间与图形领域研究的主要对象之一。本章是在学生前面学段已经学过的四边形知识、本学段学过的多边形、平行线、三角形的有关知识的基础上来学习的,也可以说是在已有知识的基础上做进一步系统的整理和研究,本章内容的学习也反复运用了平行线和三角形的知识。从这个角度来看,本章的内容也是前面平行线和三角形等内容的应用和深化。

第二十章 数据的分析 本章主要研究平均数、中位数、众数以及极差、方差等统计量的统计意义,学习如何利用这些统计量分析数据的集中趋势和离散情况,并通过研究如何用样本的平均数和方差估计总体的平均数和方差,进一步体会用样本估计总体的思想。

三、提高学科教育质量的主要措施:

1、认真做好教学七认真工作。把教学七认真作为提高成绩的主要方法,认真研读新课程标准,钻研新教材,根据新课程标准,扩充教材内容,认真上课,批改作业,认真辅导,认真制作测试试卷,也让学生学会认真学习。

2、兴趣是最好的老师,爱因斯坦如是说。激发学生的兴趣,给学生介绍数学家,数学史,介绍相应的数学趣题,给出数学课外思考题,激发学生的兴趣。

3、引导学生积极参与知识的构建,营造民主、和谐、平等、自主、探究、合作、交流、分享发现快乐的高效的学习课堂,让学生体会学习的快乐,享受学习。引导学生写复习提纲,使知识来源于学生的构造。

4、引导学生积极归纳解题规律,引导学生一题多解,多解归一,培养学生透过现象看本质,提高学生举一反三的能力,这是提高学生素质的根本途径之一,培养学生的发散思维,让学生处于一种思如泉涌的状态。

5、运用新课程标准的理念指导教学,积极更新自己脑海中固有的教育理念,不同的教育理念将带来不同的教育效果。

6、培养学生良好的学习习惯,陶行知说:教育就是培养习惯,有助于学生稳步提高学习成绩,发展学生的非智力因素,弥补智力上的不足。

7、指导成立课外兴趣小组的民间组织,开展丰富多彩的课外活动,开展对奥数题的研究,课外调查,操作实践,带动班级学生学习数学,同时发展这一部分学生的特长。

8、开展分层教学,布置作业设置A、B、C三类分层布置分别适合于差、中、好三类学生,课堂上的提问要照顾好、中、差三类学生,使他们都等到发展。

9、进行个别辅导,优生提升能力,扎实打牢基础知识,对差生,一些关键知识,辅导差生过关,为差生以后的发展铺平道路。

10、站在系统的高度,使知识构筑在一个系统,上升到哲学的高度,八方联系,浑然一体,使学生学得轻松,记得牢固。