返回首页
文学网 > 短文 > 教学教案 > 正文

数学五年级上册教案

2026/01/13教学教案

文学网整理的数学五年级上册教案(精选6篇),供大家参考,希望能给您提供帮助。

数学五年级上册教案 篇1

学习目标

1、在现实情境中了解负数产生的背景,理解正负数及零的意义,掌握正负数表达方法。

2、结合现实情景,体验数学与日常生活的密切联系,激发学生对数学的兴趣

学情分析重点、难点:

在现实情景中理解正负数及零的意义。

易混点、易错点:感受用正数和负数来表示一些相反意义的量

学生认知基础:生活中见到过负数。

时间分配学20讲10练10

教法学法

自主探索法,练习法,讲授法。

教学准备

第一课时

一、自学例1

1、通过查资料了解“℃”和“℉”的含义,并学会看温度计的方法。

2、从图中你能知道些什么?上海的气温和南京比,怎么样?北京的气温和南京比,怎么样?

3、上海和北京的气温一样吗?不一样在哪儿?

4、那你知道在数学上是怎样区分和表示这两个不同的温度的呢?

二、自学例2

1、了解海拔的意义。

2、思考从图上你知道了什么?

3、试着用今天所学的知识来表示这两个地方的海拔高度。

学生活动教师助学课后改进

第一课时

第一板块:学生汇报预习情况。第二板块:根据预习情况,学习例1

(1)交流“℃”和“℉”的含义,说明我国是用“℃”来计量温度的,并指导看温度计的方法。

(2)交流:从图中你能知道些什么?上海的气温和南京比,怎么样?北京的气温和南京比,怎么样?

(3)上海和北京的气温一样吗?不一样在哪儿?

(5)那你知道在数学上是怎样区分和表示这两个不同的温度的呢?(零上4摄氏度记作+4℃或4℃,零下4摄氏度﹣4℃)

第三板块:正数和负数的读、写方法。

根据课本要求,记住读写方法。

学生看温度计,选择合适的卡片表示各地气温。

第三板块:交流学习例2

交流:从图上你知道了什么?

交流:你能用今天所学的知识来表示这两个地方的海拔高度吗?

共同小结:以海平面为基准,比海平面高8844米,通常称为海拔8844.43米,可以计作+8844.43米;比海平面低155米,通常称为海拔负155米,可以计作﹣155米。

学生根据今天所学知识把这些数分类。

正数都大于0,负数都小于0。

先指名读一读,再用正数或负数表示图中数据。

先读一读,再说说这些海拔高度是高于海平面还是低于海平面。

一:教学例1

1.出示例1的三幅分别显示三个城市某一天最低气温的温度计图。

根据学生的预习,共同学习交流认识新知。

(4)上海的气温是零上4摄氏度,北京的气温是零下4摄氏度。以0摄氏度分界,一个在0摄氏度以上,一个在0摄氏度以下。一上一下,正好相反。

2.教学正数和负数的读、写方法。

“+4”读作正四,“+4”的正号也可以省略不写,直接把“+4”写成“4”。“﹣4”读作负四。

3.指导完成“试一试”。

(卡片上分别写有+11℃、﹣11℃、19℃、+19℃、﹣7℃、+7℃)

二:教学例2

1.师:同学们你们知道吗?世界第一高峰——珠穆朗玛峰从山脚到山顶,气温相差很大,这是和它的海拔高度有关的。最近经国家测绘局公布了珠峰的最新海拔高度。

2.出示例2中珠穆朗玛峰与吐鲁番盆地的海拔高度图。

三:初步归纳正数和负数。

⑴出示+4、﹣4、﹣7、﹣11 、19、+8844.43、﹣155这些数,提出要求:前面,我们用这些数来表示零上和零下的温度以及海平面以上和以下的高度。大家仔细观察这些数,你能将它们分分类吗?

⑵小结:像+4、19、+8844.43这样的数都是正数。像-4、﹣7、﹣11 、-155这样的数都是负数;而0既不是正数,也不是负数。

⑶提问:正数、负数和0比一比,它们的大小关系怎样?

四:练习

做“练一练”1,2题

2.做练习一第1题。

3.做练习一第2题。

4、练习一4、5、6题。

五:作业

练习一第3题。

交流认识新知。

正数和负数的读、写方法。

根据课本要求,记住读写方法。

交流:你能用今天所学的知识来表示这两个地方的海拔高度吗?

正数、负数和0比一比,它们的大小关系怎样?

正数都大于0,负数都小于0。

课后反思

得:

首先,对教材的编排作了重新的审视。在教材编排中,我们可以观察到,在学习负数的过程中,学生更多的是经历“具体情境中的数——解释数的意义”这样的过程。在教学中我设计了通过观察生活中的盈亏、收支、增减及朝两个相反的方向运动中应用负数进一步理解负数的意义,明白用正负数可以表示一些具有相反意义的量,从而让学生体验负数产生的原因,接着引导学生列举生活中正负数应用的实例。

失:

《认识负数》单元的教学看似简单,教起来似乎觉得轻松,学生学习起来也看似轻松,可在解决实际问题的时候,却会发现有各种各样的问题出现。

由于正负数表示的是相反意义的量,如何帮助学生正确的解决实际生活情境下的正负数问题,这是值得我们在教学中进行思考的问题。由于问题的存在,不得不想一些办法去解决这样的问题。

数学五年级上册教案 篇2

教学内容:

义务教育课程标准实验教材五年级上册《植树问题》,117页例1。

教学目标:

1. 使学生通过生活中的事例,初步体会解决植树问题的方法。

2. 初步培养学生从实际问题中探索规律,找出解决问题的有效方法 的能力。

3. 让学生感受数学在日常生活中的广泛应用,培养学生的应用意识 和解决问题的能力。

教学重点:

用解决植树问题的方法解决实际问题。

教学难点:

栽树的棵数与间隔数之间的关系。

教具准备:多媒体。

设计理念:新课标指出:“有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式。”同时指出:“学生是数学学习的主人,教师是数学学习的组织者、引导者与合作者。”结合新课标的要求,教学中力求发挥学生的主体地位,让他们动脑、动手、合作探究,经历分析、思考、解决问题的全过程,体会植树问题这一重要的数学思想方法。

教学过程:

一、谈话导入:

师:同学们,你们喜欢植树吗?你植过树吗?(生答)植树能绿化环境,造福人类。在生活中,常常遇到在路的一边、间隔一定的距离植树,这就需要计算准备多少棵树苗。还有许多类似的问题:比如在公路两旁安装路灯、花坛摆花、站队中的方阵等等,在数学上,我们把这类问题统称为“植树问题”。

二、揭示学习目标:(媒体出示)

通过这节课的学习,我们要解决哪些问题呢?

1. 能根据相关条件,求出需要多少棵树苗或计算两树间的距离。

2. 能利用植树问题,灵活解决生活中类似的实际问题。

三、探究新知:

1. 出示例1:同学们在全长100米的小路一边植树,每隔5米栽一棵(两端要栽)。一共需要多少棵树苗?(生读题)

师:你会计算吗?(让学生回答)你算的对吗?请同学们自己动脑来验证一下。

学习提示:(媒体出示)

①假如路长只有10米,要栽几棵树?如果路长是20米,又要栽几棵树?请你画线段图来看看。(注意看图上有几个间隔和几个间隔点)

②通过上面的分析,你能找出什么规律?和同桌或小组内说说。

③现在你能算出一共需要多少棵树苗吗?

④你还有别的想法吗,在小组内说说。

2. 学生自学探讨。(师巡视)

3. 班内交流。学生回答后,师媒体演示间隔数和间隔点数的关系。

总结规律:栽的棵数比间隔数多1。

完成例题。

四、变化巩固:

1. 做一做:118页学生独立完成。订正时说说怎么想的,重点让学生明确先求出间隔数,即36棵树有35个间隔。

2. 122页第2题。独立完成,同桌交流想法,可一生板演。

五、检测反馈:(独立完成)

1. 在一条长400米的马路的一边,从头到尾每隔8米种一棵树。一共可以种多少棵树?

2. 5路公共汽车行驶路线全长12千米,相邻两站的距离是1千米。一共有几个车站?

3. 从王村到李村一共设有16根高压电线杆,相邻两根的距离平均是200米。王村到李村大约有多远?

学生完成后师批阅订正,发现问题及时解决。

六、总结延伸:

这节课我们学习了植树问题,并能利用植树问题解决生活中类似的实际问题,解答时要重点分清栽树的棵数与间隔数间的关系,后面还有一些不同的情况,希望大家开动脑筋,灵活处理。

数学五年级上册教案 篇3

一、应用题的来源应具备情感化、生活化和主题化。

在现实的课堂教学中,很多老师在导入或新授环节考虑了题材的生活化,但在练习中体现较少,或者说学习内容的生活化没有很好的贯穿于学生的整个学习过程。其实从课的导入,新授,练习及发展都可以统一在一个生活化的主题之下。另外,许多老师教学应用题时,将课题命名为“应用题”,这个名称在学生的大脑中并无多少概念,过于空洞,应更为形象与具体。比如,《游动物园中的问题》、《森林探险》等,相对于平均数问题,归一问题,工程问题等课题而言,对于学生来说更容易理解与接受,有吸引力,利于学生对学习材料产生兴趣,利于其以积极主动的姿态投入学习。更为重要的是这种对数学与现实生活联系的强调,也利于学生形成用数学的眼光看世界、主动地运用数学知识分析生活现象、主动得解决生活中所遇到的实际问题的能力。即发展良好的应用意识。

例如,在教学了分数应用题之后,可以设计如下问题:有一天,老师带了600元钱到家具公司买家具,便看见那里的家具都在降价。忽然,老师看见一套家具组合,老师很喜欢。衣柜200元,梳妆柜的价钱是衣柜的4/5,床的价钱比衣柜贵1/5。请你帮老师预算一下,老师带的钱够不够?又例如,在教学了按比例分配应用题之后,可以设计这样一道思考题让学生想办法由自己调制成一种盐与水的浓度为1:4的溶液。学生在解决这些问题时,与其说是在解答应用题,还不如说是在做身边的一件事情,他们不再是为了单纯的解题而解题,而是在尝试用自己的数学思维方式去观察生活。学生一定会兴趣倍增,积极性提高。

二、应用题的呈现方式应多样。

现实世界千姿百态,蕴含信息的方式也就多种多样,因而人们在日常生活中所接触到的问题更多的则是以表格、图文形式出现的,纯文字叙述的问题很少。所以要培养学生解决实际问题的意识和能力,就势必也需要在教学中创设一个类似于真实的生活的情境。而以前传统的应用题教学中,呈现方式比较单一,大多为文字叙述的结构也比较简单,总是若干个条件加上一个问题,所有的条件都用上后,正好解答出问题;解题的技巧性强,对提高学生的观察、分析、类比、推理等思维能力的帮助则不是很大。因此,随着课程改革的不断深入,在《课标》中则明确指出:“内容的呈现应采用不同的表达方式,以满足多样的学习需要。”在教学中,教师也可以突破教材在内容呈现方式上的局限性,采用多种多样的形式,将“纯文字化”的`表达模式有机地与表格、漫画、情境图、数据单、情景剧表演等有效地结合起来,广泛地采用于教学之中。这样,既直观又形象,而且还图文并茂,生动有趣地呈现出素材,提高学生的兴趣,满足了多样化的学生的需求。

例如,在教学求平均数的应用题的时候后,我们可以尽量选取日常生活中常见的一些图表或数据,让学生结合表格来研究。如某一月的空气污染指数,某一个班学生测验的平均成绩等等。再例如“小青买了两本练习本,一枝毛笔,共用了四元钱。其中已知了一枝毛笔是两元钱,问一本练习本是多少钱?”这种应用题的呈现方式单一而且封闭,都是文字叙述,两、三个条件再加上一个问题。如果这种题目反反复复,出现的次数多了,学生的心里就会产生厌烦。如果是那样的话,做出来的效果肯定不佳。而对于同样一道例题,改用其他的方式呈现,如图文应用题。这样就使原本枯燥乏味,冷飕飕的数字罗列的应用题变成了活泼生动,容易被学生所接受,也符合学生的认知发展特点。

三、应用题解题的多样化、开放化。

对学生的发展而言,解决问题的学习价值不只是获得问题的结论或答案,其意义在于学生通过解决问题的教学活动,体验方法,以形成策略。在应用题教学中,我们不能把目光紧紧地定格在答案上,更应该关注让学生体验解决问题过程中的方法与策略。这些方法、策略的稳固与形成,将逐渐成为学生思维方式的重要组成部分,让学生以数学的眼光来审视与解决现实生活中的各类问题,也将是数学教育的价值所在。而传统应用题大多数结构良好,答案惟一,解题方向明确,只需要不断地重复和套用已经学过的公式和数量关系就可以解决。所以,毫无疑问,这对于培养学生的创新思维能力和应用能力来说,都是欠缺的。因此,要适度地引入开放性应用题,便能冲破传统应用题带来的封闭性,便能给学生创设一个更为广阔的思维空间,有助于培养学生的创新思维能力,提高学生的应用意识和能力。

例如,某一家服装厂接到了生产1200件T恤的任务。前3天完成了40%,照这样计算,还需要多少天才能完成任务?学生在解决这道题目的时候,可以根据数量之间的关系,知识之间的联系,对所给定的条件进行不同的组合,采用不同的方法解答。所以,对于这道题目,解法有四种,即(1)3/40%-3;(2)3*[(1-40%)/40%];

(3)设还需要x天才能完成任务。40%/3=(1-40%)/x;(4)(1-40%)/(40%/3)

又例如,现在有一种含有盐10%的盐水为400克,要想得到含有盐20%的盐水该怎么办?学生这道题目有以下三种策略:

策略一:要使盐水中的盐变多,则需要加盐;策略二:要使盐水中的水变少,则需要蒸发水;策略三:还可以加入含盐量高于20%的盐水。由于解决问题的策略多样化,学生找到了许多解决的方法,积极性越来越高,参与的意识也越来越强烈,从而也就培养了学生的创新能力。再例如下面一题:小明和小方同时从家中向学校出发。小明每分钟走60米,小方每分钟走50米。8分钟过后,两人则同时到校。问小明和小方两家相距有多少米?由于小明和小方家的地点不确定,所以,学生就会得出各种可能的结论。这对于培养学生的创新思维能力,提高数学应用意识和能力,培养良好的数学情感,效果颇佳。

另外,在应用题教学中我们应该调动每个学生的积极性,鼓励学生从不同角度,用不同思路,联系不同的相关体验,探索问题的多种解法,比较不同方法之间的长短优劣。因为在现实生活中的许多问题的解决方法都不是唯一的,需要注意的是,这些方法中,不一定有好坏之分,只要是合理的,都应该加以肯定。不能仅关注解决问题的格式完整与否,答案正确与否。这对于提高学生解决问题的能力也有着重要影响。

四、应用题教学评价的全面化。

要重视解题过程的评价与反思,除了培养学生的主体意识,学会欣赏,体会成功的喜悦等情感、态度方面的功用以外,学生解决问题策略的形成也是不可缺少的支持。而在目前教学中,评价教学应用题的质量的主要标准是看学生应用题考试的分数。于是,便会出现这样一种怪现象:不少学生应用题的分数很高,但是,实际上的思维能力和解决问题的能力并不是很强。有的时候,学生一旦遇到新的问题,变束手无策了。因此,过于注重考试分数的评价方式是违背新课程理念的。新课程理念下的应用题教学评价应努力实现评价考核多元化,总的趋势是变终结性评价为发展性评价,变量化评价为质性评价。

总而言之,新课程改革为应用题的教学指明了方向,应以学生的发展为本,把问题解决的主动权交给学生,提供给学生更多的展示自己的思维方式和解题策略的机会,提供给学生更多的评价自己思维结果的诸多权利,那么学生便能在问题解决过程中体验到成功的时候,他们便会成长为自信而成功的问题解决者。

数学五年级上册教案 篇4

教材类型:苏教版所属学科:数学

教学目标:

1.使学生在现实情境中初步认识负数,了解负数的作用,感受运用负数的需要和方便。

2.使学生知道正数和负数的读法和写法,知道0既不是正数,又不是负数。正数都大于0,负数都小于0。

3.使学生体验数学和生活的密切联系,激发学生学习数学的兴趣,培养学生应用数学的能力。

4.增长学生的自然知识,产生热爱自然,享受自然的情感。

教学重点:初步认识正数和负数以及读法和写法。

教学难点:理解0既不是正数,也不是负数。

教学具准备:

温度计、练习纸、卡片等。

教学过程:

(一)游戏导入,感受生活中的相反现象。(放在课前)

1.游戏:我们来玩个游戏轻松一下,游戏叫做《我反我反我反反反》。游戏规则:老师说一句话,请你说出与它相反意思的话。

①向上看(向下看)②向前走200米(向后走200米)③电梯上升15层(下降15层)。

下面我们来难度大些的,看谁反应最快。

①我在银行存入了500元(取出了500元)。

②知识竞赛中,五(1)班得了20分(扣了20分)。

③10月份,学校小卖部赚了500元。(亏了500元)。

④零上10摄式度(零下10摄式度)。

2.谈话:李老师的一位朋友喜欢旅游, 11月下旬,他又打算去几个旅游城市走一走。我呢,特意帮他留意了一下这几个地方在未来某天的最低气温,以便做好出门前衣物的准备。下面就请大家一起和我走进天气预报。(天气预报片头)

(二)教学例1

1.认识温度计,理解用正负数来表示零上和零下的温度。

⑴(课件出示地图:点击南京出示温度计和南京的图片)首先来看一下南京的气温。这里有个温度计。

那我们先来认识温度计,请大家仔细观察:这样的一小格表示多少摄式度呢?5小格呢?10小格呢?

问:好,现在你能看出南京是多少摄式度吗?

学生交流:是0℃。

师:你是怎么知道的?(那里有个0,表示0摄式度)。

没错。(结合图说)这是零刻度线,表示0℃。(教师板书0)。

谁来温度计上表示出0℃。

⑵我们再来看上海的气温。(课件:点击上海出现温度计和上海的图片)

上海的最低气温是多少摄式度呢?(学生回答4摄式度后,教师板书4)在温度计上拨一拨。问:拨的时候是怎样想的呢?(在零刻度线以上四格)

指出:上海的气温比0℃要高,是零上4摄式度。(教师结合图,突出上海的气温在零刻度线以上)。

⑶接着让我们一起来了解首都北京的最低气温。(课件点击北京的图片和温度计)

北京又是多少摄式度呢?

与南京的0℃比起来,又怎样了呢?(比南京的0℃要低)

你能用一个手势来表示它和0℃的关系吗?(对,北京的气温比0度低,是零下4摄式度)

你能在温度计上拨出来吗?

⑷现在我们已经知道了这三个地方的最低气温。仔细观察上海和北京的最低气温,它们一样吗?(不一样,一个在0℃以上,一个在0℃以下)。

对,上海的气温比0℃高,是零上4摄式度,我们可以记作+4℃,读作正四摄式度,写的时候先写一个正号(指出是正号不是加号,意义和读法都不同了)再写一个4(板书),大家跟我一起来比划一下。+4也可以直接写成4,把正号省略了。所以同学们所说的4℃也就是+4℃。(板书)

北京的气温比0℃低,是零下4摄式度。我们可以用-4℃来表示零下4摄式度(板书-4)。跟老师一起来读一下。写的时候可以先写一个负号(指出是负号不是减号)再写一个4就可以了,同桌互相比划一下。

⑸小结:通过刚才对三个城市的温度的了解,我们知道,记录温度时,以0℃为界线,用象+4或4这些数可以来表示零上温度,用-4这样的数可以表示零下温度。

2.试一试:学生看温度计,写出各地的温度。并读一读。(写在卡片上)

师:我们再来了解一下其他几个城市的最低气温,注意观察温度计,把这些温度记录在卡片上,并读一读。准备好了吗?

香港:(19℃或+19℃)。写好了请举起你们的卡片。提问:你是怎么想到用+19℃来表示的?这位同学是用19℃来表示的?行吗?为什么?(对,正号可以省略不写)。

哈尔滨:(-10℃)。老师写了10℃后举起来:“和老师的记录一样的请举牌。为什么没人和我的一样啊?(对,零下10摄式度,我们用-10℃来表示,10摄式度是表示零上10摄式度的)。

西宁:你们记录好了,同桌互相校对一下再来交流。问:为什么这样用这个数来表示?

⒊我们再来听一段中央台的天气预报,将你听到城市的最低和最高温度记录下来。

播放中央台播音员播报的天气预报(天津 呼和浩特乌鲁木齐银川)

指名一位学生上前交流。师:你们觉得他记录怎样?这位同学的前面的正号没写,可以吗?老师把-1的负号去掉,你们同意吗?

谁能在温度计上拨出11℃?谁来拨-1℃?

小结:通过刚才的学习,我们得出:以零摄式度为界线,零上温度用正几或直接用几来表示,零下温度用负几来表示。

(三)自主学习珠峰、吐鲁番盆地的海拔表达方法,进一步认识正数和负数。

数学五年级上册教案 篇5

单元教材分析:

本章教学内容有:小数乘法的计算方法、积的近似值、有关小数乘法的两步计算以及整数乘法运算定律推广到小数。

1、选择贴近学生生活的情景,引入小数乘法的学习。

根据学生已有的知识基础,教材从丰富多彩的校内外活动中,选择“买风筝”、“换玻璃”的活动为背景,引入小数乘法的学习。这样的生活背景,不但能激发童心童趣,而且能促成学生利用元和角之间、米和分米之间的十进关系顺利沟通小数乘法与整数乘法的联系,利于学生将新知纳入到已有的认知系统中。

2、重点突出计算方法的教学。

考虑到学生已有的知识经验和认知水平,根据小数与整数的密切联系,教材先教学整数数乘法,再教学小数乘法。把重点放在计算的算理和方法的总结上,引导学生利用因数的变化引起积的变化规律来解释小数乘法的算理,并由此总结小数乘法的一般方法。

3、应用转化和对比,概括小数乘法的计算方法。

小数的书写方式,进位规则均与整数相同,教材紧扣两者的密切联系,引导学生:①用转化的方法,将小数乘法转化为整数乘。②用对比的方法,处理积中小数点的位置问题。在例3、例4中,均采用对比的方法,让学生分别观察因数和积中小数的位数,找出它们之间的关系,然后利用这一关系,准确找到积中小数点的位置。③帮助学生按一定顺序概括小数乘法的一般计算方法。例4的教学中,应用合作研讨的方式,引导学生自主地、有序地概括出计算小数乘法的一条清晰的思路:先按整数乘法算出积→再看因数中一共有几位小数,就从积的右边起数出几位,点上小数点→乘得的积的小数位数不够,要在前面用0补足,再点小数点。

单元教学目标:

1、使学生理解小数乘、除法计算法则,能够比较熟练地进行小数乘、除法笔算和简单的口算。

2、使学生会用“四舍五人法”截取积、商是小数的近似值。

3、使学生理解整数乘、除法运算定律对于小数同样适用,并会运用这些定律进行一些小数的简便计算。

单元教学重点:

1、使学生掌握小数乘法的计算法则。

2、能正确地进行小数乘法的笔算和简单的口算,提高学生的计算能力。

3、能正确应用“四舍五入法”截取积是小数的近似值,并能解决有关的实际问题。

4、会应用所学的运算定律及其性质进行一些小数的简便计算。

单元教学难点:

在理解小数乘法的算理和算法的基础上,掌握确定小数乘法中积的小数点位置。

课时安排:小数乘法6课时

第一课时小数乘以整数

教学内容:课本第2-3页例1和例2、“做一做”,练习—第1~4题。

教学目标:

1、使学生理解小数乘以整数的计算方法及算理。

2、培养学生的迁移类推能力。

3、引导学生探索知识间的练习,渗透转化思想。

教学重点:小数乘以整数的算理及计算方法。

教学难点:确定小数乘以整数的积的小数点位置的方法。

教学准备:教学课件。

教学时间:年月日

教学过程:

一、引入尝试:

孩子们喜欢放风筝吗?今天我就带领大家一块去买风筝。

1、小数乘以整数的意义及算理。

出示例1的图片,引导学生理解题意,得出:

(1)例1:风筝每个3.5元,买3个风筝多少元?(让学生独立试着算一算)

(2)汇报结果:谁来汇报你的结果?你是怎样想的?(板书学生的汇报)

用加法计算:3.5+3.5+3.5=10.5元

3.5元=3元5角

3元×3=9元5角×3=15角9元+15角=10.5元

用乘法计算:3.5×3=10.5元

理解3种方法,重点研究第三种算法及算理。

⑶理解意义。为什么用3.5×3计算?3.5×3表示什么?(3个3.5或3.5的3倍.)

(4)初步理解算理。怎样算的?

把3.5元看作35角

3.5元扩大10倍35角

××3

10.5元角

缩小10倍

105角就等于10.5元:

(6)买5个要多少元呢?会用这种方法算吗?

2、小数乘以整数的计算方法。

像这样的3.5元的几倍同学们会算了,那不代表钱数的0.72×5你们会算吗?(生试算,指名板演。)

(1)生算完后,小组讨论计算过程。

板书:0.72

×5

(2)强调依照整数乘法用竖式计算。

(3)示范:0.72扩大100倍72

××5

缩小100倍

(4)回顾对于0.72×5,刚才是怎样进行计算的?

使学生得出:先把被乘数0.72扩大100倍变成72,被乘数0.72扩大了100倍,积也随着扩大了100倍,要求原来的积,就把乘出来的积360再缩小100倍。(提示:小数末尾的0可以去掉)

●注意:如果积的末尾有0,要先点上积的小数点,再把小数末尾的“0”去掉。

(5)专项练习

①下面各数去掉小数点有什么变化?

0.343.50.20xx.02

②把353缩小10倍是多少?缩小100倍呢?1000倍呢?

③判断

13.5

×2

27.0

(6)小结小数乘整数计算方法

计算7×40.7×425×72.5×7

观察这2组题,想想与整数乘整数有什么不同?

怎样计算小数乘以整数?

①先把小数扩大成整数;

②按整数乘法的法则算出积;

③再看被乘数有几位小数,就从积的右边起数出几位,点上小数点。

专项练习:练习一第4题

二、运用

1、填空。

4.×3×3×2×2

2、做一做:课本第3页

三、体验:(1)今天我们学习了什么?(板书课题)

(2)小数乘以整数的计算方法是什么?

四、作业:练习一第1、2、3题。

附板书设计:

小数乘整数

例1

3.5元角

×3×3

10.5元角

例2

0.72扩大到它的100倍72

××5

缩小到它的1/100

教学后记:

第二课时小数乘小数

教学内容:课本4~5页的例3和例4、“做一做”,练习一第5—8题。教学目标:

1、掌握小数乘法的计算法则,使学生掌握在确定积的小数位时,位数不够的,要在前面用0补足。

2、比较正确地计算小数乘法,提高计算能力。

3、培养学生的迁移类推能力和概括能力,以及运用所学知识解决新问题的能力。教学重点:小数乘法的计算法则。

教学难点:小数乘法中积的小数位数和小数点的定位,乘得的积小数位数不够的,要在

前面用0补足。

教学准备:教学课件。

教学时间:年月日

教学过程:

一、引入尝试

1、出示例3图:孩子们最近我们社区宣传栏的玻璃坏了,你能帮忙算算需要多大的一块玻璃吗?怎么列式?(板书:0.8×1.2)

2、尝试计算

师:上节课我们学习小数乘以整数的计算方法,想想是怎样算的?

师:是把小数转化成整数进行计算的。现在能否还用这个方法来计算1.2×0.8呢?如果能,应该怎样做?(指名口答,板书学生的讨论结果。)

示范:

×8

3、1.2×,刚才是怎样进行计算的?

引导学生得出:先把被乘数1.2扩大10倍变成12,积就扩大10倍;再把乘数0.8扩大10倍变成8,积就又扩大10倍,这时的积就扩大了10×10=100倍。要求原来的积,

就把乘出来的积96再缩小100倍。

4、观察一下,例3中因数与积的小数位数有什么关系?(因数的位数和等于积的小数位数。)想一想:6.05×0.82的积中有几位小数?6.052×0.82呢?

5、小结小数乘法的计算方法。

师:请做下面一组练习

(1)练习(先口答下列各式积的小数位数,再计算)

(2)引导学生观察思考。

①你是怎样算的?(先整数法则算出积,再给积点上小数点。)

②怎样点小数点?(因数中有几位小数,就从积的最右边起,数几位,点上小数点。)③计算0.56×0.04时,你们发现了什么?那当乘得的积的小数位数不够时,怎样点小数点?(要在前面用0补足,再点小数点。)

通过通过以上的学习,谁能用自己的话说说小数乘法的计算法则是怎样的?

(3)根据学生的回答,逐步抽象概括出P.5页上的计算法则,并让学生打开课本齐读教材上的法则。(勾画做记号)

(4)专项练习

①判断,把不对的改正过来。

0.0240.013

×0.14×0.026

96782426

0.3360.000338

②根据1056×27=28512,写出下面各题的积。

105.6×2.7=10.56×0.27=0.1056×27=1.056×0.27=

二、应用

1、在下面各式的积中点上小数点。

0.586.252.04

×4.2×0.18×28

11650001632

232625408

2436112505712

2、做一做:先判断积里应该有几位小数,再计算。

67×0.32.14×6.2

3、课本第8页第5题。

先让学生说求各种商品的价钱需要知道什么?再让学生口答每种商品的重量,然后分组独立列式计算。

三、体验

回忆这节课学习了什么知识?

四、作业:第8页7、9题。第9页13题。

数学五年级上册教案 篇6

第一课时

教学目标

1、让学生结合具体情境认识行与列,初步理解数对的含义;能在具体情境中用数对表示物体的位置。

2、使学生经历从已有经验到用数对确定物体位置的探索过程,体验用数对确定位置的必要性和简洁性。

3、渗透“数形结合”的思想,发展学生的空间观念。

教学重点:经历用数对确定物体位置的探索过程,知道用数对表示位置的方法。

教学难点:灵活运用数对知识解决实际问题。

教学过程:

一、创设情境,生成问题

谈话:今天老师和同学们一起走进军营,参观战士们的军营生活,高兴吗?(播放:走进军营,出示情境图)看,战士们正在进行队列训练呢,这一位是班长小强。

.你能提出什么问题?引出问题:小强在什么位置?(指名学生回答)

.问:为什么同一个人的位置,同学们的说法不一样呢?

.结合学生回答情况进行小结:刚才同学们在描述小强的位置时,有的横着看,有的竖着数,有的……由于看法和角度不同,产生了不同的说法,数学是交流的工具啊!标准不一样给我们的交流带来不方便,你想不想探讨一些简单又统一的方法来确定位置?这节课我们就来研究——确定位置(板书课题)

二、探索交流,解决问题

(一)、在情境图中确定位置

1.认识行与列

谈话(同步演示):平时我们所说的“竖排”,通常叫做“列”,习惯上我们从观察者的左边数第1列、第2列……,平时我们所说的“横排”,叫做“行”,通常从前往后数,第1行、第2行……。

问:现在你能用第几列第几行来说说张亮的位置吗?(演示)王艳和赵雪的位置怎么说?想好了,说给同位听。

指名同学说小亮和小明的位置,教师板书

2.认识数对

谈话:刚才这位同学很快说出了小亮和小明的位置,老师写的速度却很慢,什么原因?

数学的一大特点是简练,大家能不能想个更简单的方法来确定位置,记起来简单,还能让别人一看就知道是第几列第几行?现在以小强的位置为例在本子上写一写,试一试吧。

学生独立思考并写出想法,然后小组交流。

全班交流。引导学生对全班交流的意见进行梳理小结:这些同学都用数和符号简洁的表现出了小强的位置,真了不起!

介绍数对的写法:数学家也是用2个数来表示一个地点或者人的位置,如:第3列第2行,先写3,中间用逗号隔开,再写2,外面再加一个小括号。象这样的一对数,就是数对(板书),读作:三二。前边的3 表示第三列,后面的2表示第2行。用数对可以准确而简练地表示出物体的位置。

请你用数对表示小亮和小明的位置,写下来。(2名学生板演)

3.抽象圆点图,加深对数对含义的认识。

三.巩固应用,内化提高

用数对表示位置很简单,看这个队列图,我们也能把它变得很简单。现在我们把每个人的位置看作一个点,整个队列就变成了这样一副图。

四、回顾整理,反思提升

这节课你有什么收获?

第二课时

教学目标

1、在具体的情境中,探索确定物体位置的方法,能用数对表示物体的位置。

2、使学生能在方格纸上用数对确定位置。

3、能灵活运用到日常生活中,解决实际问题。

教学重点:能用数对表示物体的位置。

教学难点:能用数对表示物体的位置,正确区分列和行的顺序。

教学过程:

一、创设情境,生成问题

我们全班有53名同学,但大部分的同学班主任王老师都不认识,如果我要请你们当中的某一位同学发言,你们能帮我想想要如何表示才能既简单又准确吗?

学生各抒己见,讨论出用“第几列第几行”的方法来表述。

二、探索交流,交流问题

新授

1、教学例2

(1)如果老师用第二列第三行来表示××同学的位置,那么你也能用这样的方法来表示其他同学的位置吗?/2、

学生练习用这样的方法来表示其他同学的位置。(注意强调先说列后说行)

(3)教学写法:××同学的位置在第二列第三行,我们可以这样表示:(2,3)。按照这样的方法,你能写出自己所在的位置吗?(学生把自己的位置写在练习本上,指名回答)/4、

小结例2:

(1)确定一个同学的位置,用了几个数据?(2个)

(2)我们习惯先说列,后说行,所以第一个数据表示列,第二个数据表示行。如果这两个数据的顺序不同,那么表示的位置也就不同。

3、练习:

教师念出班上某个同学的名字,同学们在练习本上写出他的准确位置。

生活中还有哪里时候需要确定位置,说说它们确定位置的方法。

4、教学

(1)我们刚刚已经懂得如果表示班上同学所在的位置。现在我们一起来看看在这样的一张示意图上(出示示意图),如何表示出图上的场馆所在的位置。

(2)依照例1的方法,全班一起讨论说出如何表示大门的位置。(3,0)

(3)同桌讨论说出其他场馆所在的位置,并指名回答。

学生根据书上所给的数据,在图上标出“飞禽馆”“大象馆”“海洋馆”“猴山”的位置。

三、巩固应用,内化提高

学生独立找出图中的字母所在的位置,指名回答。

四、回顾整理,反思提升

我们今天学了哪些内容?你觉得自己掌握的情况如何?