高中数学说课稿
文学网整理的高中数学说课稿(精选6篇),供大家参考,希望能给您提供帮助。
高中数学说课稿 篇1
高中数学第三册(选修)Ⅱ第一章第2节第一课时
一、教材分析
教材的地位和作用
期望是概率论和数理统计的重要概念之一,是反映随机变量取值分布的特征数,学习期望将为今后学习概率统计知识做铺垫。同时,它在市场预测,经济统计,风险与决策等领域有着广泛的应用,为今后学习数学及相关学科产生深远的影响。
教学重点与难点
重点:离散型随机变量期望的概念及其实际含义。
难点:离散型随机变量期望的实际应用。
[理论依据]本课是一节概念新授课,而概念本身具有一定的抽象性,学生难以理解,因此把对离散性随机变量期望的概念的教学作为本节课的教学重点。此外,学生初次应用概念解决实际问题也较为困难,故把其作为本节课的教学难点。
二、教学目标
[知识与技能目标]
通过实例,让学生理解离散型随机变量期望的概念,了解其实际含义。
会计算简单的离散型随机变量的期望,并解决一些实际问题。
[过程与方法目标]
经历概念的建构这一过程,让学生进一步体会从特殊到一般的思想,培养学生归纳、概括等合情推理能力。
通过实际应用,培养学生把实际问题抽象成数学问题的能力和学以致用的数学应用意识。
[情感与态度目标]
通过创设情境激发学生学习数学的情感,培养其严谨治学的态度。在学生分析问题、解决问题的.过程中培养其积极探索的精神,从而实现自我的价值。
三、教法选择
引导发现法
四、学法指导
“授之以鱼,不如授之以渔”,注重发挥学生的主体性,让学生在学习中学会怎样发现问题、分析问题、解决问题。
五、教学的基本流程设计
高中数学第三册《离散型随机变量的期望》说课教案.rar
高中数学说课稿 篇2
教材地位及作用
本节课是高中数学3(必修)第三章概率的第二节古典概型的第一课时,是在随机事件的概率之后,几何概型之前,尚未学习排列组合的情况下教学的。古典概型是一种特殊的数学模型,也是一种最基本的概率模型,在概率论中占有相当重要的地位。
学好古典概型可以为其它概率的学习奠定基础,同时有利于理解概率的概念,有利于计算一些事件的概率,有利于解释生活中的一些问题。
教学重点
理解古典概型的概念及利用古典概型求解随机事件的概率。
根据本节课的地位和作用以及新课程标准的具体要求,制订教学重点。
教学难点
如何判断一个试验是否是古典概型,分清在一个古典概型中某随机事件包含的基本事件的个数和试验中基本事件的总数。
根据本节课的内容,即尚未学习排列组合,以及学生的心理特点和认知水平,制定了教学难点。
教学目标
1.知识与技能
(1)理解古典概型及其概率计算公式,
(2)会用列举法计算一些随机事件所含的基本事件数及事件发生的概率。
2.过程与方法
根据本节课的内容和学生的实际水平,通过模拟试验让学生理解古典概型的特征:试验结果的有限性和每一个试验结果出现的等可能性,观察类比各个试验,归纳总结出古典概型的概率计算公式,体现了化归的重要思想,掌握列举法,学会运用数形结合、分类讨论的思想解决概率的计算问题。
3.情感态度与价值观
概率教学的核心问题是让学生了解随机现象与概率的意义,加强与实际生活的联系,以科学的态度评价身边的一些随机现象。适当地增加学生合作学习交流的机会,尽量地让学生自己举出生活和学习中与古典概型有关的实例。使得学生在体会概率意义的同时,感受与他人合作的重要性以及初步形成实事求是地科学态度和锲而不舍的求学精神。
根据新课程标准,并结合学生心理发展的需求,以及人格、情感、价值观的具体要求制订而成。这对激发学生学好数学概念,养成数学习惯,感受数学思想,提高数学能力起到了积极的作用。
教学过程分析
一,提出问题引入新课
在课前,教师布置任务,以数学小组为单位,完成下面两个模拟试验:
试验一:抛掷一枚质地均匀的硬币,分别记录"正面朝上"和"反面朝上"的次数,要求每个数学小组至少完成20次(最好是整十数),最后由科代表汇总;
试验二:抛掷一枚质地均匀的骰子,分别记录"1点"、"2点"、"3点"、"4点"、"5点"和"6点"的次数,要求每个数学小组至少完成60次(最好是整十数),最后由科代表汇总。
在课上,学生展示模拟试验的操作方法和试验结果,并与同学交流活动感受。
教师最后汇总方法、结果和感受,并提出问题?
1.用模拟试验的方法来求某一随机事件的概率好不好?为什么?
不好,要求出某一随机事件的概率,需要进行大量的试验,并且求出来的结果是频率,而不是概率。
2.根据以前的学习,上述两个模拟试验的每个结果之间都有什么特点?
学生展示模拟试验的操作方法和试验结果,并与同学交流活动感受,教师最后汇总方法、结果和感受,并提出问题。
通过课前的模拟实验的展示,让学生感受与他人合作的重要性,培养学生运用数学语言的能力。随着新问题的提出,激发了学生的求知欲望,通过观察对比,培养了学生发现问题的能力。
二,思考交流形成概念
在试验一中随机事件只有两个,即"正面朝上"和"反面朝上",并且他们都是互斥的,由于硬币质地是均匀的,因此出现两种随机事件的可能性相等,即它们的概率都是;
在试验二中随机事件有六个,即"1点"、"2点"、"3点"、"4点"、"5点"和"6点",并且他们都是互斥的,由于骰子质地是均匀的,因此出现六种随机事件的可能性相等,即它们的概率都是。
我们把上述试验中的随机事件称为基本事件,它是试验的每一个可能结果。
基本事件有如下的两个特点:
(1)任何两个基本事件是互斥的;
(2)任何事件(除不可能事件)都可以表示成基本事件的和。
特点(2)的理解:在试验一中,必然事件由基本事件"正面朝上"和"反面朝上"组成;在试验二中,随机事件"出现偶数点"可以由基本事件"2点"、"4点"和"6点"共同组成。
学生观察对比得出两个模拟试验的相同点和不同点,教师给出基本事件的概念,并对相关特点加以说明,加深新概念的理解。
让学生从问题的相同点和不同点中找出研究对象的对立统一面,这能培养学生分析问题的能力,同时也教会学生运用对立统一的辩证唯物主义观点来分析问题的一种方法。
三,思考交流形成概念
例1从字母中任意取出两个不同字母的试验中,有哪些基本事件?
分析:为了解基本事件,我们可以按照字典排序的顺序,把所有可能的结果都列出来。利用树状图可以将它们之间的关系列出来。
我们一般用列举法列出所有基本事件的结果,画树状图是列举法的基本方法,一般分布完成的结果(两步以上)可以用树状图进行列举。
(树状图)
解:所求的基本事件共有6个:
,,,
,,
观察对比,发现两个模拟试验和例1的共同特点:
试验一中所有可能出现的基本事件有"正面朝上"和"反面朝上"2个,并且每个基本事件出现的可能性相等,都是;
试验二中所有可能出现的基本事件有"1点"、"2点"、"3点"、"4点"、"5点"和"6点"6个,并且每个基本事件出现的'可能性相等,都是;
例1中所有可能出现的基本事件有"A"、"B"、"C"、"D"、"E"和"F"6个,并且每个基本事件出现的可能性相等,都是;
经概括总结后得到:
1,试验中所有可能出现的基本事件只有有限个;(有限性)
2,每个基本事件出现的可能性相等。(等可能性)
我们将具有这两个特点的概率模型称为古典概率概型,简称古典概型。
思考交流:
(1)向一个圆面内随机地投射一个点,如果该点落在圆内任意一点都是等可能的,你认为这是古典概型吗?为什么?
答:不是古典概型,因为试验的所有可能结果是圆面内所有的点,试验的所有可能结果数是无限的,虽然每一个试验结果出现的"可能性相同",但这个试验不满足古典概型的第一个条件。
(2)如图,某同学随机地向一靶心进行射击,这一试验的结果只有有限个:命中10环、命中9环。。。。。。命中5环和不中环。你认为这是古典概型吗?为什么?
答:不是古典概型,因为试验的所有可能结果只有7个,而命中10环、命中9环。。。。。。命中5环和不中环的出现不是等可能的,即不满足古典概型的第二个条件。
先让学生尝试着列出所有的基本事件,教师再讲解用树状图列举问题的优点。让学生先观察对比,找出两个模拟试验和例1的共同特点,再概括总结得到的结论,教师最后补充说明。学生互相交流,回答补充,教师归纳。将数形结合和分类讨论的思想渗透到具体问题中来。由于没有学习排列组合,因此用列举法列举基本事件的个数,不仅能让学生直观的感受到对象的总数,而且还能使学生在列举的时候作到不重不漏。解决了求古典概型中基本事件总数这一难点。培养运用从具体到抽象、从特殊到一般的辩证唯物主义观点分析问题的能力,充分体现了数学的化归思想。启发诱导的同时,训练了学生观察和概括归纳的能力。通过用表格列出相同和不同点,能让学生很好的理解古典概型。从而突出了古典概型这一重点。
两个问题的设计是为了让学生更加准确的把握古典概型的两个特点。突破了如何判断一个试验是否是古典概型这一教学难点。
四,观察分析推导方程
问题思考:在古典概型下,基本事件出现的概率是多少?随机事件出现的概率如何计算?
分析:
实验一中,出现正面朝上的概率与反面朝上的概率相等,即
P("正面朝上")=P("反面朝上")
由概率的加法公式,得
P("正面朝上")+P("反面朝上")=P(必然事件)=1
因此P("正面朝上")=P("反面朝上")=
即试验二中,出现各个点的概率相等,即
P("1点")=P("2点")=P("3点")
=P("4点")=P("5点")=P("6点")
反复利用概率的加法公式,我们有
P("1点")+P("2点")+P("3点")+P("4点")+P("5点")+P("6点")=P(必然事件)=1
所以P("1点")=P("2点")=P("3点")
=P("4点")=P("5点")=P("6点")=
进一步地,利用加法公式还可以计算这个试验中任何一个事件的概率,例如,
P("出现偶数点")=P("2点")+P("4点")+P("6点")=++==
即根据上述两则模拟试验,可以概括总结出,古典概型计算任何事件的概率计算公式为:
教师提出问题,引导学生类比分析两个模拟试验和例1的概率,先通过用概率加法公式求出随机事件的概率,再对比概率结果,发现其中的联系。
鼓励学生运用观察类比和从具体到抽象、从特殊到一般的辩证唯物主义方法来分析问题,同时让学生感受数学化归思想的优越性和这一做法的合理性,突出了古典概型的概率计算公式这一重点。
提问:
(1)在例1的实验中,出现字母"d"的概率是多少?
出现字母"d"的概率为:
提问:
(2)在使用古典概型的概率公式时,应该注意什么?
归纳:
在使用古典概型的概率公式时,应该注意:
(1)要判断该概率模型是不是古典概型;
(2)要找出随机事件A包含的基本事件的个数和试验中基本事件的总数。除了画树状图,还有什么方法求基本事件的个数呢?
教师提问,学生回答,加深对古典概型的概率计算公式的理解。
深化对古典概型的概率计算公式的理解,也抓住了解决古典概型的概率计算的关键。
四,例题分析推广应用
例2单选题是标准化考试中常用的题型,一般是从A,B,C,D四个选项中选择一个正确答案。如果考生掌握了考差的内容,他可以选择唯一正确的答案。假设考生不会做,他随机的选择一个答案,问他答对的概率是多少?
分析:
解决这个问题的关键,即讨论这个问题什么情况下可以看成古典概型。如果考生掌握或者掌握了部分考察内容,这都不满足古典概型的第2个条件——等可能性,因此,只有在假定考生不会做,随机地选择了一个答案的情况下,才可以化为古典概型。
解:
这是一个古典概型,因为试验的可能结果只有4个:选择A、选择B、选择C、选择D,即基本事件共有4个,考生随机地选择一个答案是选择A,B,C,D的可能性是相等的。从而由古典概型的概率计算公式得:
课后思考:
(1)在标准化考试中既有单选题又有多选题,多选题是从A,B,C,D四个选项中选出所有正确的答案,同学们可能有一种感觉,如果不知道正确答案,多选题更难猜对,这是为什么?
(2)假设有20道单选题,如果有一个考生答对了17道题,他是随机选择的可能性大,还是他掌握了一定知识的可能性大?
学生先思考再回答,教师对学生没有注意到的关键点加以说明。
让学生明确决概率的计算问题的关键是:先要判断该概率模型是不是古典概型,再要找出随机事件A包含的基本事件的个数和试验中基本事件的总数。
巩固学生对已学知识的掌握。
例3同时掷两个骰子,计算:
(1)一共有多少种不同的结果?
(2)其中向上的点数之和是5的结果有多少种?
(3)向上的点数之和是5的概率是多少?
解:(1)掷一个骰子的结果有6种,我们把两个骰子标上记号1,2以便区分,由于1号骰子的结果都可以与2号骰子的任意一个结果配对,我们用一个"有序实数对"来表示组成同时掷两个骰子的一个结果(如表),其中第一个数表示1号骰子的结果,第二个数表示2号骰子的结果。(可由列表法得到)
由表中可知同时掷两个骰子的结果共有36种。
(2)在上面的结果中,向上的点数之和为5的结果有4种,分别为:
(1,4),(2,3),(3,2),(4,1)
(3)由于所有36种结果是等可能的,其中向上点数之和为5的结果(记为事件A)有4种,因此,由古典概型的概率计算公式可得
先给出问题,再让学生完成,然后引导学生分析问题,发现解答中存在的问题。
引导学生用列表来列举试验中的基本事件的总数。
利用列表数形结合和分类讨论,既能形象直观地列出基本事件的总数,又能做到列举的不重不漏。深化巩固对古典概型及其概率计算公式的理解,和用列举法来计算一些随机事件所含基本事件的个数及事件发生的概率。
培养学生运用数形结合的思想,提高发现问题、分析问题、解决问题的能力,增强学生数学思维情趣,形成学习数学知识的积极态度。
五,探究思考巩固深
化问题思考:为什么要把两个骰子标上记号?如果不标记号会出现什么情况?你能解释其中的原因吗?
如果不标上记号,类似于(1,2)和(2,1)的结果将没有区别。这时,所有可能的结果将是:
(1,1)(1,2)(1,3)(1,4)(1,5)(1,6)(2,2)(2,3)(2,4)(2,5)(2,6)(3,3)(3,4)(3,5)(3,6)(4,4)(4,5)(4,6)(5,5)(5,6)(6,6)共有21种,和是5的结果有2个,它们是(1,4)(2,3),所求的概率为
这就需要我们考察两种解法是否满足古典概型的要求了。
可以通过展示两个不同的骰子所抛掷出来的点,感受第二种方法构造的基本事件不是等可能事件,另外还可以利用Excel展示第二种方法中构造的21个基本事件不是等可能事件。从而加深印象,巩固知识。
要求学生观察对比两种结果,找出问题产生的原因。
通过观察对比,发现两种结果不同的根本原因是——研究的问题是否满足古典概型,从而再次突出了古典概型这一教学重点,体现了学生的主体地位,逐渐养成自主探究能力。
六,总结概括加深理解
1.我们将具有
(1)试验中所有可能出现的基本事件只有有限个;(有限性)
(2)每个基本事件出现的可能性相等。(等可能性)
这样两个特点的概率模型称为古典概率概型,简称古典概型。
2.古典概型计算任何事件的概率计算公式
3.求某个随机事件A包含的基本事件的个数和实验中基本事件的总数的常用方法是列举法(画树状图和列表),应做到不重不漏。
学生小结归纳,不足的地方老师补充说明。
使学生对本节课的知识有一个系统全面的认识,并把学过的相关知识有机地串联起来,便于记忆和应用,也进一步升华了这节课所要表达的本质思想,让学生的认知更上一层。
七,布置作业
P123练习1、2题
学生课后自主完成。
进一步让学生掌握古典概型及其概率公式,并能够学以致用,加深对本节课的理解。
八,板书设计教法与学法分析教法分析
根据本节课的特点,采用引导发现和归纳概括相结合的教学方法,通过提出问题、思考问题、解决问题等教学过程,观察对比、概括归纳古典概型的概念及其概率公式,再通过具体问题的提出和解决,来激发学生的学习兴趣,调动学生的主体能动性,让每一个学生充分地参与到学习活动中来。
学法分析
学生在教师创设的问题情景中,通过观察、类比、思考、探究、概括、归纳和动手尝试相结合,体现了学生的主体地位,培养了学生由具体到抽象,由特殊到一般的数学思维能力,形成了实事求是的科学态度,增强了锲而不舍的求学精神。
评价分析评价设计
本节课的教学通过提出问题,引导学生发现问题,经历思考交流概括归纳后得出古典概型的概念,由两个问题的提出进一步加深对古典概型的两个特点的理解;再通过学生观察类比推导出古典概型的概率计算公式。这一过程能够培养学生发现问题、分析问题、解决问题的能力。
在解决概率的计算上,教师鼓励学生尝试列表和画出树状图,让学生感受求基本事件个数的一般方法,从而化解由于没有学习排列组合而学习概率这一教学困惑。整个教学设计的顺利实施,达到了教师的教学目标。
高中数学说课稿 篇3
尊敬的各位考官:
大家好,我是今天的X号考生,今天我说课的题目是《正弦函数、余弦函数的图象》。
新课标指出:高中教育属于基础教育,具有基础性,且具有多样性与选择性,使不同的学生在数学上得到不同的发展。今天我将贯彻这一理念从教材分析、学情分析、教学过程等几个方面展开我的说课。
一、说教材
教师对教材的掌握程度,是评判一位教师是否能上好一堂课的基本标准。在正式内容开始之前,我要先谈一谈对教材的理解。
《正弦函数、余弦函数的图象》是人教A版必修4第一章第四节第一小节的内容,其主要内容是正弦函数、余弦函数图象。此前学习了诱导公式和任意角的正弦函数以及正弦线,在此基础上来学习正弦函数、余弦函数的图象相对比较简单。本节课的.学习为以后利用图象学习正弦函数、余弦函数的性质以及函数
的图象打好基础,起到承前启后的作用。因此本节的学习有着极其重要的地位。
二、说学情
合理把握学情是上好一堂课的基础,下面我来谈谈学生的实际情况。
这一阶段的学生已经具备了一定的分析和类比的能力,且在知识方面也有了一定的积累。所以,教学中,利用学生的特点以及原有经验进行教学,增强学生的课堂参与度。
三、说教学目标
根据以上对教材的分析以及对学情的把握,我制定了如下三维教学目标:
(一)知识与技能
理解利用单位圆以及正弦线画正弦函数的图象的方法;会用“五点作图法”画正余弦函数的图象。
(二)过程与方法
通过独立思考以及小组讨论的过程,提高合作意识,深化数形结合思想。
(三)情感、态度与价值观
由实验过程感受数学与生活的联系;体会数学中的图形美,提高对数学的喜爱。
四、说教学重难点
我认为一节好的数学课,从教学内容上说一定要突出重点、突破难点。而教学重点的确立与我本节课的内容肯定是密不可分的。那么根据授课内容可以确定本节课的教学重点为:正弦函数、余弦函数的图象。难点:利用正弦线转画出正弦函数图象。
五、说教法和学法
现代教学理论认为,在教学过程中,学生是学习的主体,教师是学习的组织者、引导者,教学的一切活动都必须以强调学生的主动性、积极性为出发点。根据这一教学理念,结合本节课的内容特点和学生的年龄特征,本节课我采用讲授法、启发法、练习法、小组合作、自主探究等教学方法。
六、说教学过程
在这节课的教学过程中,我注重突出重点,条理清晰,紧凑合理。各项活动的安排也注重互动、交流,最大限度的调动学生参与课堂的积极性、主动性。
(一)导入新课
首先是导入环节,直接讲解正弦函数与余弦函数的概念。然后提问:之前研究函数时都研究了函数的哪些性质?在学生充分回顾之后,引出研究正弦函数、余弦函数的图象。
通过温故知新的导入方式,为本节课后续的教学做好铺垫。
(二)探索新知
接下来是新课讲授环节。我将分为四部分,分别为“简谐运动”实验的探究、正弦函数的图象、余弦函数的图象、五点作图法。
首先是“简谐运动”实验的探究。组织学生动手做一做章头图表示的“简谐运动”实验。指导学生将塑料瓶底部扎一个小孔做成一个漏斗,再挂在架子上,就做成一个简易单摆。在漏斗下方放一块纸板,板的中间画一条直线作为坐标系的横轴。把漏斗灌上沙并拉离平衡位置,放手使它摆动,同时匀速拉动纸板,这样就可在纸板上得到一条曲线,它就是简谐运动的图象。通过学生的试验,展示试验结果图象。让学生对正弦曲线和余弦曲线有一个初步印象。
接下来是正弦函数图象的探究。通过之前三角函数相关知识的学习,先和学生共同明确继续在单位圆中研究正弦函数的图象。提问如下两个问题:如何在单位圆中研究正弦函数y=sinx的变化规律?如何利用正弦线的变化规律画出正弦函数的图象?
高中数学说课稿 篇4
一、平面向量的坐标表示
1、定义
2、特殊向量的坐标表示
3、相等向量的坐标也相等
4、向量OA的坐标表示
二、平面向量的坐标运算
1、向量的坐标运算法则
2、向量AB的坐标与点A、点B的坐标的关系
三、例题
例1
例2
例3
方案二:
一、平面向量的坐标表示
1、定义
2、特殊向量的坐标表示
3、相等向量的坐标也相等
4、向量OA的坐标表示
二、平面向量的坐标运算
1、坐标运算法则
2、向量AB的坐标与A、B的坐标的关系
三、例题
例1
例2
例3
教学环节流程安排
教案的设计说明:
1、设计初衷:
本节课内容难度不高,但知识点比较繁多,而且各知识点之间的衔接不够紧凑,对初学者来说容易产生杂乱无章的感觉.教师作为教学活动的设计者,在教学设计中应力求突出知识间的`联系,指引学生理清众多的思绪,主动参与到思考、观察、猜想、验证、应用的教学活动中去,从而顺利地突破重、难点.
2、呈现方式:
根据教学大纲要求结合本节课具体的教学目标和学生的认知特点,我设计了"复习回顾--创设问题情境--合作探究和指导应用--归纳小结--布置作业"五个教学环节.
3、新课程观的体现:
本节课主要采用的是"引导发现、合作探究"的教学方法,以学生熟知的足球运动为情境引入新课,以问题为载体,以师生合作探究为主线,以思维训练为核心,以能力发展为目标,充分调动一切可利用的因素,激发学生的参与意识,使学生经历知识的形成、发展和应用的过程,在和谐、愉悦的氛围中获取知识,掌握方法.整个教学中既突出了学生的主体地位,又发挥了教师的指导作用.
4、可能出现的问题:
探究式教学需要留给学生充足的时间和空间,为学生提供活动的机会,学生情况不同,反馈给教师的信息也不同,因而在时间和内容上都不是固定的,需要教师在设计时富有一定的弹性,在实施时设计方案跟着学生转变,具有一定的开放性和灵活性.
高中数学说课稿 篇5
教学目标
(1)正确理解加法原理与乘法原理的意义,分清它们的条件和结论;
(2)能结合树形图来帮助理解加法原理与乘法原理;
(3)正确区分加法原理与乘法原理,哪一个原理与分类有关,哪一个原理与分步有关;
(4)能应用加法原理与乘法原理解决一些简单的应用问题,提高学生理解和运用两个原理的能力;
(5)通过对加法原理与乘法原理的学习,培养学生周密思考、细心分析的良好习惯。
教学建议
一、知识结构
二、重点难点分析
本节的重点是加法原理与乘法原理,难点是准确区分加法原理与乘法原理。
加法原理、乘法原理本身是容易理解的,甚至是不言自明的。这两个原理是学习排列组合内容的基础,贯穿整个内容之中,一方面它是推导排列数与组合数的基础;另一方面它的结论与其思想在方法本身又在解题时有许多直接应用。
两个原理回答的,都是完成一件事的所有不同方法种数是多少的问题,其区别在于:运用加法原理的前提条件是,做一件事有n类方案,选择任何一类方案中的任何一种方法都可以完成此事,就是说,完成这件事的各种方法是相互独立的;运用乘法原理的前提条件是,做一件事有n个骤,只要在每个步骤中任取一种方法,并依次完成每一步骤就能完成此事,就是说,完成这件事的各个步骤是相互依存的。简单的说,如果完成一件事情的所有方法是属于分类的问题,每次得到的是最后结果,要用加法原理;如果完成一件事情的方法是属于分步的问题,每次得到的该步结果,就要用乘法原理。
三、教法建议
关于两个计数原理的教学要分三个层次:
第一是对两个计数原理的认识与理解。这里要求学生理解两个计数原理的`意义,并弄清两个计数原理的区别。知道什么情况下使用加法计数原理,什么情况下使用乘法计数原理。(建议利用一课时)。
第二是对两个计数原理的使用。可以让学生做一下习题(建议利用两课时):
①用0,1,2,……,9可以组成多少个8位号码;
②用0,1,2,……,9可以组成多少个8位整数;
③用0,1,2,……,9可以组成多少个无重复数字的4位整数;
④用0,1,2,……,9可以组成多少个有重复数字的4位整数;
⑤用0,1,2,……,9可以组成多少个无重复数字的4位奇数;
⑥用0,1,2,……,9可以组成多少个有两个重复数字的4位整数等等。
第三是使学生掌握两个计数原理的综合应用,这个过程应该贯彻整个教学中,每个排列数、组合数公式及性质的推导都要用两个计数原理,每一道排列、组合问题都可以直接利用两个原理求解,另外直接计算法、间接计算法都是两个原理的一种体现。教师要引导学生认真地分析题意,恰当的分类、分步,用好、用活两个基本计数原理。
高中数学说课稿 篇6
今天我说课的题目是《函数的单调性》,下面我将围绕本节课“教什么?”、“怎样教?”以及“为什么这样教?”三个问题,从教材分析、教学目标分析、教学重难点分析、教法与学法、教学过程五方面逐一加以分析和说明。
一、说教材
1、教材的地位和作用
本节内容选自北师大版高中数学必修1,第二章第3节。函数是高中数学的课程,它是描述事物运动变化的模型,而函数的单调性是函数的一大特征,它为我们之后的学习奠定重要基础。
2、学情分析
本节课的学生是高一学生,他们在初中阶段,通过一次函数、二次函数、反比例函数的学习已经对函数的增减性有了初步的感性认识。在高中阶段,用符号语言刻画图形语言,用定量分析解释定性结果,有利于培养学生的理性思维,为后续函数的学习作准备,也为利用倒数研究单调性的相关知识奠定了基础。
教学目标分析
基于以上对教材和学情的分析以及新课标教学理念,我将教学目标分为以下三个部分:
1、知识与技能(1)理解函数的单调性和单调函数的意义;
(2)会判断和证明简单函数的单调性。
2、过程与方法
(1)培养从概念出发,进一步研究性质的意识及能力;
(2)体会数形结合、分类讨论的数学思想。
3、情感态度与价值观
由合适的例子引发学生探求数学知识的欲望,突出学生的'主观能动性,激发学生学习数学的兴趣。
三、教学重难点分析
通过以上对教材和学生的分析以及教学目标,我将本节课的重难点
重点:
函数单调性的概念,判断和证明简单函数的单调性。
难点:
1、函数单调性概念的认知
(1)自然语言到符号语言的转化;
(2)常量到变量的转化。
2、应用定义证明单调性的代数推理论证。
四、教法与学法分析
1、教法分析
基于以上对教材、学情的分析以及新课标的教学理念,本节课我采用启发式教学、多媒体辅助教学和讨论法。学生可以在多媒体中感受到数学在生活中的应用,启发式教学和讨论法发散学生思维,培养学生善于思考的能力。
2、学法分析
新课改理念告诉我们,学生不仅要学知识,更重要的是要学会怎样学习,为终生学习奠定扎实的基础。所以本节课我将引导学生通过合作交流、自主探索的方法理解函数的单调性及特征。
五、教学过程
为了更好的实现本课的三维目标,并突破重难点,我设计以下五个环节来进行我的教学。
(一)知识导入
温故而知新,我将先从之前学习的知识引入,给出一些函数,比如y=x、y=-x、y=|x|,让学生作出这些函数的图像,然后让学生讨论这些函数图像是上升的还是下降的,由此引入到我的新课。在这个过程中不仅可以检查学生掌握基本初等函数图像的情况,而且符合学生的认知结构,通过学生自主探究,从知识产生、发展的过程中构建新概念,有利于激发学生的思维和学习的积极主动性。
(二)讲授新课
1.问题:分别做出函数y=x2,y=x+2的图像,指出上面的函数图象在哪个区间是上升的,在哪个区间是下降的?
通过学生熟悉的图像,及时引导学生观察,函数图像上A点的运动情况,引导学生能用自然语言描述出,随着x增大时图像变化规律。让学生大胆的去说,老师逐步修正、完善学生的说法,最后给出正确答案。
2、观察函数y=x2随自变量x变化的情况,设置启发式问题:
(1)在y轴的右侧部分图象具有什么特点?
(2)如果在y轴右侧部分取两个点(x1,y1),(x2,y2),当x1
(3)如何用数学符号语言来描述这个规律?
教师补充:这时我们就说函数y=x2在(0,+∞)上是增函数。
(4)反过来,如果y=f(x)在(0,+∞)上是增函数,我们能不能得到自变量与函数值的变化规律呢?
类似地分析图象在y轴的左侧部分。
通过对以上问题的分析,从正、反两方面领会函数单调性。师生共同总结出单调增函数的定义,并解读定义中的关键词,如:区间内,任意,当x1
仿照单调增函数定义,由学生说出单调减函数的定义。
教师总结归纳单调性和单调区间的定义。注意强调:函数的单调性是函数在定义域某个区间上的局部性质,也就是说,一个函数在不同的区间上可以有不同的单调性。
(我将给出函数y=x2,并画出这个函数的图像,让学生观察函数图像的特点,让他们描述函数图像的增减性,慢慢得到函数单调性的概念。在这个过程中,学生把对图像的感性认识转化为了数学关系,这种从特殊到一般的学习过程有利于学生对概念的理解)
(三)巩固练习
1练习1:说出函数f(x)=的单调区间,并指明在该区间上的单调性。x
练习2:练习2:判断下列说法是否正确
①定义在R上的函数f(x)满足f(2)>f(1),则函数是R上的增函数。
②定义在R上的函数f(x)满足f(2)>f(1),则函数是R上不是减函数。
1③已知函数y=,因为f(-1)
1我将给出一些具体的函数,如y=,f(x)=3x+2让学生说出函数的单调区间,并指明在该区间x
上的单调性。通过这种练习的方式,帮助学生巩固对知识的掌握。
(四)归纳总结
我先让学生进行小结,函数单调性定义,判断函数单调性的方法(图像、定义),然后教师进行补充,在这样一个过程中既有利于学生巩固知识,也有利于教师对学生的学习情况有一定的了解,为下一节课的教学过程做好准备。
(五)布置作业
必做题:习题2-3A组第2,4,5题。
选做题:习题2-3B组第2题。
新课程理念告诉我们,不同的人在数学上可以获得不同的发展,因此要设计不同程度要求的习题。
返回首页