返回首页
文学网 > 短文 > 教学教案 > 正文

乘法的分配律教学设计

2026/01/26教学教案

文学网整理的乘法的分配律教学设计(精选6篇),供大家参考,希望能给您提供帮助。

乘法的分配律教学设计 篇1

【教学目标】

1、深入理解乘法分配律两种算式意义,正确运用分配律进行简便计算。

2、能根据算式各自的特征,选择使用、灵活计算。

3、能根据乘法分配律适用条件,恒等变形算式,提高计算的转化能力!

4、通过计算,培养仔细看题、留意特点、反映迅速等良好习惯!

【教学重点】

深入理解乘法分配律两种算式意义,正确运用分配律进行简便计算。

【教学难点】

1、能根据算式各自的特征,选择使用、灵活计算。

2、能根据乘法分配律适用条件,恒等变形计算式,提高计算的转化能力!

【教学过程】

环节

教师活动

学生活动

设计意图

一、回顾引入

1、我们昨天学了……,请写出依据(字母表达式)

2、看着这个字母表达式,你想说点什么?

1、学生一起回答省略部分

2、学生各自在自己草稿本上写出字母表达式

3、让学生充分表达!

以忆引练,为接下来的练习做知识铺垫准备!

二、开展练习

分别出示:

1、基础题

(1)选择题

(2)填空题

(3)用简便方法计算

1、口答选择题

2、笔写填空题

3、比赛方式完成简便计算

1、通过选择和填空两种题型,让学生进一步体会乘法分配律的现实意义及其算式结构。

2、训练准确简便计算能力,也是巩固新课掌握的计算方法

小结:正确使用乘法分配律,留意算式结构,小心相同因数混乱。

2、提高题(计算各题,怎样简便就怎么算)。

1、先标出你认为能够简便计算的题

2、动笔计算,并验证自己的观察

养学生观察力、细心力、分析力、和计算灵活性。

小结:一看、二想、三算

3、拓展题(能快速算出下面各题吗?)。

用作选做题:做你会计算的`题

训练学生拆数、拼凑、约感能力,满足学习能力较强学生需要

小结:变看似不能简便计算为能够简便计算

三、全课总结

1、涵盖小结内容

2、分享个性错误(如写错数字、计算错),避免同学犯与自己相同的错误。

乘法的分配律教学设计 篇2

学情分析:

乘法分配律这个知识点在本节课以前学生已经有一些潜移默化的理解,在实际计算中也有应用,如:本单元第一课时的《卫星运行时间》乘数是两位的乘法中,“114×21=” 不论是第一种“114×20=2280,114×1=114, 2280+114=2394 ”还是第四种用竖式计算,其实质都是在利用乘法分配律这一理论依据,即将21个114,分成20个114和1个114的和,只是表达形式不同罢了。因此,基于这些基础,我教学时特别注重与旧知的联系和在意义上的沟通。

教学目标:

1.理解并掌握乘法分配律并会用字母表示。

2.能够运用乘法分配律进行简便计算。

3.在乘法分配律的发现过程中训练学生观察、归纳、概括等能力。

4.感受“由特殊到一般,再由一般到特殊”的认识事物的方法,增强独立自主、主动探索、自己得出结论的学习意识。

教学重点:

理解并掌握乘法分配律。

教学难点:

乘法分配律的推理及运用。

教学过程:

一、情景激趣,提出猜想

1.情景

暑假中,我们谕小娃娃表演的《阳光羌娃》在比赛中获得了巨大的成功,而且,他们马上还要到香港参加演出。(出示照片)

出示资料: 他们每天都在辛苦地训练着,有时会练得吃饭的时间都没有,昨天晚上,王老师就给参加训练的18个男生和23个女生每人准备了一份8元的快餐,你知道王老师一共用了多少钱吗?

(设计意图:以学生熟悉的学校中的大事作为问题背景,可以让学生切实的感受到数学的广泛应用性,也利于学生主动解决问题。)

①整理条件、问题

从这段资料中你知道了那些信息?王老师遇到了哪些问题?

②学生列式,抽生回答: (18+23)×8, 18×8+23×8

③交流算式的意义

第一个算式先算什么?再算什么?第二个算式呢?

④计算:(发现两个算式结果相等)

⑤观察、分析算式特点

咦,我发现这两个算式非常有意思。你看看,这是两个不同的算式,很多地方都不相同,仔细看看,又有相同的地方,对吧!

现在,就来仔细观察一下这两个算式,看看它们到底有哪些相同点?又有哪些不同点?

⑥全班交流,引导学生从下面几个方面进行思考

A.涉及到得运算及顺序:都包含了+、×这两种运算,左边是先算加法,合起来以后再乘;右边是分别先乘,然后再加。

B.涉及到的数:都用到了18、23和8这三个数,其中8在左边出现了一次,在右边出现了两次。

C.计算结果:结果相等。

(设计意图:对算式意义的分析让学生明白这两个算式相等的道理,而从外在特点的分析则让学生初步感知乘法分配律的特点。同时,细致的特点分析也为学生后面的举例验证打下基础)

2.提出猜想

真有趣,运算顺序不同,数据也有不一样的,结果却一样,那是不是只有这一个算式才是这样呢?还是像这样的算式都有这样的规律呢?

怎样才能知道像这样的算式都有这样的规律?

引导学生想到用举例的方法进行验证。

师小结:要想知道这是不是一个普遍的规律,那我们就举出一些这样的例子,再看看它们的结果想不想等就可以了。

(设计意图:对一个人而言,记忆一个知识、规律并不是最重要的,最重要的是他要知道从哪里去寻找知识和规律,要知道他的发现如何去获得证明。本节课就是要以乘法分配律的学习为载体,培养学生这方面的`能力,这才是真正的立足于学生一生的发展而在教学。)

二、举例验证,证明合理性

1.全班举例:抽生举例,全班进行判断,看所举的算式是否符合猜想的特征。

2.分组举例

两个孩子为一组,一起举一个例子,再一起计算验证,看结果是否相等。

3.交流:谁愿意把你举的例子和大家一起分享?

A.这个式子符合要求吗?

B.这些式子都有一个共同的规律,这个共同的规律是什么?

教师引导学生小结:左边都是把两个数合起来再与第三个数相乘,右边是分开乘,再把两个积相加,右边算式中这个相同的乘数,在左边算式中放在了括号的外面。

(设计意图:让学生经历举例验证的过程,经历归纳概括的过程。)

三、概括归纳,建立模型

1.个性概括

这样的式子你们还能写吗?能写完吗?

强调这样的例子还有很多很多,是写不完的。

你能用一个式子将所有的像这样的式子都概括出来吗?

学生用自己的方法概括规律。(学生可能用文字概括,可能用图形符号概括,可能用字母概括)。

2.统一认识

教师指出一般用a、b、c表示式子中的三个数,这个规律可以表示成

(a+b)×c=a×c+b×c

给出规律的名称:今天,我们一起动手动脑发现了这个非常有趣的规律,这个规律是四则运算中一个非常重要的规律,叫做乘法分配律。

3.进一步认识

这个式子表示两个数合起来与第三个数相乘的结果与用这两个数分别与第三个数相乘,再把两个积相加的结果相等。反之,两个数都与同一个数相乘,再把积相加所得到的结果与先把这两个数合起来再与第三个数相乘,所得到的结果相等。

齐读式子。

(设计意图:学生通过不完全归纳法,得出规律。在这个过程中,通过不同方法的概括,培养学生的抽象能力,尤其是分析与综合的能力,归纳与概括的能力。)

四、巩固应用,深化认识

1.哪些算式与72×35相等

72×30+72×5

72×35 72×30+5

70×35+2×35

70×35+2

问:为什么相等?

(设计意图:让学生理解乘法分配律的本质意义)

2.你会填吗?

(10+7)×6= ×6+ ×6

8×(125+9)=8× +8×

7×48+7×52= ×( + )

问:订正时强调第一小题为什么这样填?第三个式子中括号外面为什么要写7。

(设计意图:学生进一步深刻理解乘法分配律)

3. 7×48+7×52 7×(48+52)

这两个式子你想选择哪个进行计算?为什么?

如果只给你第一个式子,你会想办法让你的计算变得简便吗?

小结:利用乘法分配律有时候可以使计算变得更简便。

(设计意图:通过学生的观察,明白乘法分配律在计算中的意义。)

4.先想一想,下列各题怎样计算更简便,把你的简便方法写出来。

①34×72+34×28(订正时问:为什么不直接算)

(80+4)×25

订正时问:把(80+4)×25写成80×25+4×25依据是什么?

如果不用好不好算?

(80+20)×25

问:这道题与(80+4)×25的样子一样,都是两个数的和与第三个数相乘,为什么你们又不用乘法分配律来计算了呢?

教师小结:在计算中要根据数据特点,灵活运用乘法分配律。

②21×25 75×99+75

小结:在计算中遇到不符合乘法分配律特点的式子,可以利用拆数等方法,在不改变原数大小的前提下将式子变成符合乘法分配律特点的式子,然后再进行简算。

(设计意图:通过题组练习,让学生在计算中要根据数据特点,灵活运用乘法分配律,培养学生思维的灵活性,不生搬硬套题型。)

五、全课小结

孩子们,你们今天收获了什么?

当你们在一些具体的问题中发现某些规律,而你又不敢肯定它正确时,你可以怎么办呢?

板书设计

乘法分配律

(18+23)×8 (18+23)×8=18×8+23×8 7×48+7×52=7×(48+52)

=41×8 … … … …

=328(元) 学生举例 … … … … 34×72+34×28 (20+4)×25

18×8+23×8 … … … … (80+20)×25

=144+184 个性概括:… …

=328(元) (a+b)×c=a×c+b×c 21×25 75×99+75

乘法的分配律教学设计 篇3

—乘法分配律教学设计与反思

设计说明

当我给学生讲到练习四第七题的时候,觉得这道题目可以开发一下用来上乘法分配律,让学生自己制作两个长不一样,宽一样的长方形,通过动手操作来获得求面积和的方法,自然的引出乘法分配律。然后看了下这节课的课后练习,里面有乘法分配律的逆向运用的题目,在其后56页的简便运算中也能用到逆向运用的知识,于是就把这个运用单独列出来作为一个知识层次,联想到我们以前还学习过两数之和乘另一个数等于这两个数分别去乘第三个数再想减的知识,于是就去习题中找有没有类似的题目,在55页第五题中求四年级比五年级多多少人时,如果用乘法分配律的延伸知识可以使计算简便,又看到练习五的三、四两题,就必须要知道这个知识才好解决,于是就把乘法分配律的延伸作为第三个层次的教学了,按照这个思路设计了这节课,实际上下来的效果不错,既调动了学生的学习热情和主动性,又培养了学生自主探索,发现并总结规律的能力。 教学设计

教学内容

苏教版《义务教育课程标准实验教科书数学》四年级(下册)第54~55页。 教学目标

1、学生在解决实际问题的过程中发现并理解乘法分配律,并能运用乘法分配律使一些运算简便。

2、学生在发现规律的过程中,发展比较、分析、抽象和概括能力,增强用符号表

达数学规律的意识,进一步体会数学与生活的联系。

3、学生能联系实际,主动参与探索、发现和概括规律的学习活动,感受数学规律的确定性和普遍适用性,获得发现数学规律的.愉悦感和成功感,增强学习的兴趣和自信。

教学过程

一:创设情境导入

提问:长方形的面积怎样求?

指明回答

这里有长分别是10厘米和6厘米,宽都是4厘米的两个长方形纸片,请同学们自己动手把它们组成一个新的长方形。(课件出示题目)

学生动手操作

(课件出示两个长方形组合的动画)

二:自主探索,交流合作

1、交流算法,初步感知

提问:请同学们自己求一下新长方形的面积。

教师巡视,观察学生不同的解法

反馈:请学生说一说自己的解法,应当有两种解法,如果学生说不出来应加以引导

(课件出示两种解法)

谈话:两个算式解决的都是同一个问题,它们计算的结果也相同,能把它们写成一个算式吗?

学生自己写一写,请学生说一说,教师相机板书。

2、比较分析,深入体会

提问:算式左右两边有什么相同和不同之处呢?小组内交流。

反馈交流,在学生发言的基础上,教师根据情况相机引导:等号左边先算什么,再算什么,右边先算什么,再算什么呢?使学生明确:等号左边是10加6的和乘4,等号右边是10乘4的积加6乘4的积。

设疑:是不是类似这样的算式都具有这样的性质呢?学生举例验证。

组织交流反馈。可适当的选取一些数字很大的和很小的例子以及有乘数是0的例子等特殊情况。

3、规律符号化,揭示规律

提问:像这样的算式,写的完吗?

我们可以尝试用自己的方法去表达这个规律,同学们自己试着在小组内写一写,说一说。

反馈引导学生用不同的方式来表达规律。

小结揭示:两个数的和乘另一个数等于这两个数分别乘另外的数再相加。用字母表示:(a+b)×c=a×c+b×c,(板书并课件出示)这就是我们今天要学的乘法分配律。(板书课题)

三:实践运用,初步理解。

1、想想做做1

学生自主完成,组织交流。

第二小题教师板书,并启发学生从算式所表示的意义角度说一说对这个算式的 理解。并在板书上用箭头标明左边12出现了2次,右边在括号外面的数字就是

12.并向学生介绍这可以称作是乘法分配律的逆向运用(板书)

2、想想做做2

自主完成,组织交流。

第三小题引导学生从乘法意义角度去理解。并使学生明白74×1可以看做1个

74,也就是74.

第四小题要和想想做做题1的第二小题做对比。

四:拓展延伸,内化新知

再次出示两个长方形纸片,提问:如何比较这两个长方形的大小

学生反馈,引导说出可以重叠比较。学生动手实践

再问:那么大长方形比小长方形大的面积是那一块?

让学生自己动手摸一摸,课件出示重叠动画,并把多余部分突出显示。 提问:如何求多出来的面积呢?请同学们自己列式解答。

学生若想不到可以用大长方形面积减去小长方形的面积,教师可以适当的提 示。

学生反馈,交流。课件出示两种解法。

谈话:这两个算式结果相同,解决的也是同一个问题,可以把它们写成一个算 式,课件出示并板书。

再问:这个算式左右两边有什么联系,引导学生说出:两个数的差乘另一个数 等于这两个数分别与第三个数乘,再相减。

谈话:这个规律用字母如何表示呢?自己试着写写看。

学生反馈,教师板书并课件出示。说明这个可以看做是乘法分配律的延伸。 五:解决实际问题,内化重点难点。

想想做做题5

课件出示,学生读题。

问题一,要求学生列出不同的算式解答,并通过讨论引导学生适当的解释两个 算式之间的联系。

问题二,鼓励学生列出不同的算式解答,并引导学生适当的解释两个算式之间 的联系,加强学生对

乘法分配律延伸的理解与内化。

反思:

这节课我是分三个层次来教学。

第一个层次是乘法分配律的教学,学生通过运用不同的方法求新长方形的面积来体会规律,感知规律的合理性。这个环节强调学生的自主探索和动手观察能力。 第二个层次是乘法分配律的逆向运用,通过想想做做题1的第二小题的教学,引导学生明确可以从乘法的意义角度来理解算式,并体会乘法分配律的逆向运用。

第三个层次是乘法分配律的延伸,通过让学生动手操作,知道如何比较两个长方形的大小,并通过动手指一指,知道多出的面积就是两者相差的面积。在学生自己动手求解的过程中,初步的体会到诸如:(10-6)×4=10×4-6×4也有类似的规律,并尝试写出用字母如何表达。

最后通过解决实际问题的形式,把发现的规律加以运用,从2个小题的解答中初步体会乘法分配律和乘法分配律延伸的应用。

乘法的分配律教学设计 篇4

教学目标:

1.学生在解决问题的过程中发现并理解乘法分配律,初步了解乘法分配律的应用。

2.学生在发现乘法分配律的过程中,发展比较、分析、抽象和概括的能力,增强用符号表达数学规律的意识,进一步体会数学与生活的联系。

3.学生感受数学规律的确定性和普遍适用性,获得发现数学规律的愉悦感和成功感,增强学习的.兴趣和自信。

教学重难点:

发现并理解乘法分配律。

教学准备:挂图、小黑板。

教学流程:

一、创设情境,导入新课。

师生谈话,引入主题图:老师准备为参加学校排球操比赛的五位同学去购买衣服。

看看买什么衣服好看呢。

二、自主探索,合作交流。

1.出示:买5件夹克衫和5条裤子,一共要付多少元?

师问你打算怎样算?

生口答师板书:

(65+45)×565×5+45×5

请学生分别说清两道算式的含义。

2.师问猜想一下,这两道算式的结果会怎样?

要验证我们的算式是否正确,应该用什么方法?

生计算,个别板演。

证明这两道算式的结果是相等的。

中间应用“=”接连。

3.生读算式(65+45)×5=65×5+45×5

师问等号两边的算式有什么相同和不同?

生同桌说一说,并汇报。

4.这两道算式相等是一种巧合还是有规律的呢?

出示:(2+10)×6=2×6+10×6

(5+6)×3=5×3+6×3

师问中间可以用“=”来连接吗?

5.小组讨论:这三组等式左边有什么特点?

右边有什么特点?

生汇报。

6.师问你能写出具有这样规律的等式吗?

生独立写一写,个别板书。

7.师问你能想出一道等式,可以把我们今天学习的所有具有这种规律的等式都包括在内吗?

生写一写,个别板演。

8.揭题:乘法分配律

(a+b)×c=a×c+b×c

9.师总结两个数的和乘一个数,等于这两个数分别去乘这一个数,再把两次乘得的积相加。

三、巩固练习,拓展应用。

想想做做:

1.在口里填上合适的数,在○里填上运算符号。

(42+35)×2=42×口+35×口

27×12+43×12=(27+口)×口

15×26+15×14=口○(口○口)

72×(30+6)=口○口○口○口

强调:乘法分配律,可以正着用,也可以反着用。

2.横着看,在得数相同的两个算式后面画“√”

(28+16)×728×7+16×7

15×39+45×39(15+45)×39

74×(20+1)74×20+74

40×50+50×9040×(50+90)

3.算一算,比一比,每组中哪一道题的计算比较简便。

(1)64×8+36×825×17+25×3

(64+36)×825×(17+3)

让学生体会乘法分配律可以使计算简便。

4.用两种不同的方法计算长方形菜地的周长,并说说它们之间的联系。

生独立完成并汇报。

5.你能根据下图列出两

道综合算式吗?

上面的两道算式能组成一个等式吗?

四、全课小结

师问今天你有什么收获?和你的小伙伴说一说。

五、课堂作业

《补充习题》第26页。

乘法的分配律教学设计 篇5

教材分析

乘法分配律是人教版小学数学四年级下册的教学内容,本课是在学生已经学习掌握了乘法交换律、结合律,并能初步应用这些定律进行一些简便计算的基础上进行学习的。乘法分配律是本单元的教学重点,也是本节课的难点。然而乘法分配律又不是单一的乘法运算,还涉及到加法的运算,是学生学习的难点。因此本节课不仅使学生学会什么是乘法分配律,更要让学生经历探索规律的过程,进而培养学生的分析、推理、抽象、概括的思维能力。同时,学好乘法分配律是学生以后进行简便计算的前提和依据,对提高学生的计算能力有着重要的作用。在本节课的教学过程的设计上,我注重从学生的.生活实际出发,把数学知识和实际生活机密地联系起来,让学生在体验中学到知识。

学情分析

学生在前面学习了加法和乘法的交换律、结合律,以及应用这些运算律进行简便计算,已经初步具备探索和发现运算定律并运用运算律进行简便计算的经验,为学习新知识奠定了基础。同时新知识学生在已经学习的知识中也有所体现,只是没有揭示这个规律罢了,比如学生在计算长方形的周长时,周长=长×2+宽×2,周长=(长+宽)×2。从平时我班学生的表现来看,他们的概括、归纳能力还是一个薄弱的环节 。

教学目标

1、通过探索乘法分配律的活动,进一步体验探索规律的过程,并能用字母表示。

2、经历共同探索的过程,培养解决实际问题和数学交流的能力。

3、会用乘法分配律进行一些简便计算

重点难点

1、 指导探索乘法分配律。

2、 发现并归纳乘法分配律。

方法指导

通过讲学练相结合,设计相应的练习题,逐步理解抽象的乘法分配律。

预设流程

激趣导入

(约3分钟)

一、创设情境,提出问题:

1、师:老师想请大家帮一个忙,我有一个朋友开了一家小公司,有4名员工,她想给公司的员工每人买一套工作服,她去商店看中了几件衣服和几条裤子,想选一套衣服做工作服。请同学们想一想,怎样搭配?

2、学生思考:(1)有几种搭配方案

(2)选择你喜欢的一种方案,并算出总价。

(学生自己选择方案并在练习本上完成。师强调:是买4套衣服)

自主学习

(约7分钟)

(一)组内研讨,确定方案

1、组内研讨:

(1)一共有几种搭配方案?

(2)介绍自己的方案,并说一说,你推荐的理由。

(3)说说你推荐的方案,需要花多少钱?你是怎么算的?

合作交流

(约10分钟)

2、汇报交流:

师:哪一个同学想先来给老师推荐他的方案?

师:要想求4套这样的衣服需要多少元?可以先求什么,再求什么?

分别列式解答

师:因为总价相等,这两个算式我们可以用什么符号把它们连接起来?(学生回答后,师在两个算式中间用等号连接)

师:这个等式怎么读呢?

生尝试读等式。

(预设学生读法:A.225加上75的和乘4等于乘225乘4加75乘4

B.225加上75的和乘4等于225和75分别与4相乘的积再相加。 )

3、研究其它方案

由学生依次汇报出其余3种不同的搭配方案,并引导说出是怎么想的。计算后分别加上等号。

教师板书:

一套 ×4 = 4件上衣 + 4条裤子

(225+75)×4 = 225×4 + 75×4

(225+125) ×4 = 225×4 + 125×4

(175+75)×4 = 175×4 + 75×4

(175+125) ×4 = 175×4 + 125×4

精讲点拨

(约8分钟)

(二)、观察比较、猜测验证

1、观察比较

2、提出猜想。

师:观察上面的等式,左右两边的算式什么变了什么没变?

你们有什么发现?

3、举例验证。

让学生再举出一些这样的例子进行验证,看看是否也有这样的规律?

学生汇报,教师根据汇报板书。

(三)、总结规律,概括模型

1、总结规律:

师:刚才同学们发现了数学中的一个规律,很了不起。大家知道这是什么规律吗?(生猜测)

师:这个规律就是我们今天学习的乘法分配律。(齐读)你能说一说什么叫乘法分配律吗?

2、用字母表示:

师:用字母如何表示乘法分配律?

测评总结(约12分钟)

三、巩固应用,训练提升

1、请你根据乘法分配律填空

(12+40)×3=()×3+()×3

15×(40+8)=15×()+15×()

78×20+22×20=( + )×20

66×28+66×32+66×40=( + + ) ×40

教师结合学生回答,介绍前两道为乘法分配律的正向应用,后三道属于乘法分配律的反向应用。

2、火眼金睛辨对错

56×(19+28)=56×19+56×28

(18+15)×26=18×15+26×15

(11×25) ×4= 11×4+25×4

(45-5)×14 =45 ×14 -5 ×14

强调:两个数的差与一个数相乘,也可以把它们分别与这个数相乘,再相减。

3、用乘法分配律计算下面各题。

(40+4)×25 39×8+39×6-4×39

4、拓展提高

你能用乘法分配律解决这道题吗?

86×101

四、说一说,今天我们研究了什么?你有什么收获

板书设计

乘法分配律

一套 ×4 = 4件上衣 + 4条裤子

(225+75)×4 = 225×4 + 75×4

(225+125) ×4 = 225×4 + 125×4

(175+75)×4 = 175×4 + 75×4

(175+125) ×4 = 175×4 + 125×4

乘法分配律:两个数的和与一个数相乘,可以用这两个数分别和这个数相乘,再相加。

乘法的分配律教学设计 篇6

教学内容:

北师大版四年级下册数学教科书第36页内容,和练习四的第5、6、7、9题。

教学目标:

1、从学生已有生活经验出发,通过观察、类比、归纳、验证、运用等方法深化和丰富对乘法分配律的认识。

2、渗透“由特殊到一般,再由一般到特殊”的认识事物的方法,培养学生独立自主、主动探索、发现问题,解决问题的能力,提高数学的应用意识。

教学重点:

充分感知并归纳乘法分配律。

教学难点:

理解乘法分配律的意义。充分感知并归纳乘法分配律。

教具准备:

多媒体课件

教学设想:

本课试图在一种开放的教学环境下,让学生通过“联系实际,感知建模;类比归纳,验证模型;质疑联想,拓展认识;联系实际,深化认识;归纳概括,完善认识”的探索过程来逐步丰富对“乘法分配律”的认识。培养学生积极参与、合作探究、勇于质疑、大胆表现、主动探索的学习精神和创新意识,体现课堂教学中以学生为主体、教师为主导的教学原则。充分体现了“为解决实际问题而学习数学”的新理念。

活动过程:

一、比赛激趣,提出猜想

(1)、同学们,学习新课前,我们先来一个小小的数学热身赛。请大家准备好纸和笔。(请看大屏幕,左边的两组同学做第一小题,右边的两组做第二小题,看谁做的又对又快,开始)

9x37+9x63

9x(37+63)

(2)、评出胜负。(做完的同学请举手,汇报计算过程。可以看出右边的同学做得比较快,(问同学)你们有什么意见吗?这两道题有什么联系吗?)

这两道题运算顺序不同,但结果相同,可以用一个等式表示:

9x37+9x63=9x(37+63)

(3)命名猜想。

这位同学说的非常好,我们就先将他的这个发现命名为xx猜想。(板书:猜想)

二、引导探究,发现规律。

1、(我们下面就一起来验证一下这位同学的猜想在其它的题里也是否成立?请看大屏幕。)看到这幅图画,你想提什么问题?(一共贴了多少块瓷砖?)

2、(1)谁能估计一下一共贴了多少块瓷砖?

(2)请大家用自己的方法来验证他的估计是否正确。

(3)(谁来汇报自己的算法)出示两种不同的算式6x9+4x9和(6+4)x9,为什么这样列算式,观察这两个算式,你有什么发现?

3、举例验证,进一步感受

认真观察屏幕上的这个等式,你还能举出含有这样规律的例子吗?(板书:举例)

把自己举出的例子在练习本上写一写,谁来说一说自己举的例子,我们一起来验证一下等号左右两边是否相等。(可举三个例子)

轻声读这些等式,你发现了什么?

4、归纳总结,概括规律。

(1)现在谁能说一说这些等式有什么共同特点?(板书:总结)(运算顺序不同但结果相同)

(2)刚才我们用举例的方法验证了xx猜想,在举例的过程中有没有发现与结果不一样的`例子?能不能举一个这样的反例。

(3)看来这个规律是普遍存在的,xx同学,恭喜你!你的猜想是正确的。这个规律在数学上叫做乘法分配律。(板书)

(3)刚才我们举了很多含有这样规律的例子,这样的例子能举完吗?那么我们能不能用一个式子把乘法分配律表示出来呢?四人小组商量一下,这个算式看起来怎样——(稍等)简洁、明了。这就是数学的美。

等号左边表示什么意思?等号右边表示什么意思?大家说的意思实际上就是乘法分配律的文字表述,请看大屏幕,这是老师通过大家的表述总结出来的,谁能给大家读一下。

在读这句话的时候,哪里应特别注意?

请看黑板上的等式,这个等式从左到右成立,反过来从右到左呢?也是成立的。

三、探索发展,应用规律

(1)、我们发现了乘法分配律,那么它对我们的计算有什么帮助呢?(板书:应用)(学生举例说)

(2)对,应用乘法分配律可以使一些计算简便,请同桌合作研究下面这些题目怎样计算比较好?请看大屏幕:谁来读一下题。

(80+4)x2534x72+34x28

(完后让学生汇报计算方法,重点说这两题都应用了什么运算定律。)

(3)、刚才这两道题比较简单,大家做出来了,现在我出两道比较难的,大家有没有信心做出来,请四人小组合作研究下面这两道题目,怎样简算?

38x29+3843x102

(4)、小结:通过研究,你认为怎样的题目才能应用乘法分配律使计算简便?如果遇到像刚才这两道题,我们可以把它稍做变化,再应用乘法分配律,使计算简便。

四、巩固练习,解决问题(我们刚才发现认识了乘法分配律,老师要考考大家学得怎么样,请看大屏幕,我们来做练习)

1、请大家根据运算定律在下面的_里填上适当的数。5、6、7题和前面几道题哪里不一样?可以应用乘法分配律吗?为什么?四人小组讨论一下。

2、大家请到数学医院,帮老师判断对错。

3、完成连一连。(给一分钟思考时间,然后抢答)

4、完成填一填。(这道题我找表现最好的小组来开火车)

5、应用题(请大家帮老师解决一个实际问题,在练本上独立完成)

五、全课小结

请你选择一个最能代表今天研究成果的算式,说说我们今天研究了什么?

请大家想一想,我们是怎样发现乘法分配律的呢?

今天,我们通过猜想、举例、总结、应用发现了乘法分配律,今后,同学们还可以运用这种数学思维去研究其他的数学知识。