《小数的意义》教案
文学网整理的《小数的意义》教案(精选6篇),供大家参考,希望能给您提供帮助。
《小数的意义》教案 篇1
教学目标:
1.通过练习体会小数所表示的意思,理解小数的意义。
2.通过练习理解和掌握小数意义。
教学重点:
通过练习,体会小数的意义,知道小数所表示的含义。
教学难点:
通过练习,体会小数的意义,知道小数所表示的含义。
教学准备:
学生、老师准备计数器、小黑板
教法学法:
小组合作交流学习法、练习法
教学过程:
一、复习导入新课。(小黑板出示)
2角5分 = ( )元
9分米 =( )米
7分 =( )元
135克 =( )千克
3元4角 =( )元
3分米2厘米 =( )分米
二、自学后完成下面问题
1.一个小数整数部分的最低位是( )位,计数单位是( ),小数部分最高位是( ),计数单位是( ),这两个单位间的进率是( )。
2.0.78的计数单位是( ),它含有( )个这样的计数单位。
3.由2个十、7个0.1和5个0.001组成的数写作:( ),
读作:( )
4.连线题: 0.008 0.8 0.08
零点八 零点零八 零点零零八
5.判断
(1)8.76读作:八点七十六。( )
(2)4.32是三位小数。( )
(3)5.961中的6在百分位上,表示6个0.01。( )
6.一个小数,它的'百位和百分位上都是2,其余各位都是零,这个小数写作( )
7.0.0302用分数表示是( )
8.下面几个数字中的9分别表示什么意义?
9.26 ( )
0.926( )
0.296( )
0.269( )
三、作业布置。
1、作业本做练一练2、3题
2、完成相应配套练习。
板书设计:
小数的意义(二)
《小数的意义》教案 篇2
学习目标:
1.体会小数所表示的意思,理解小数的意义。
2.理解和掌握小数意义。
教学重点:
通过练习,体会小数的意义,知道小数所表示的含义。
教学难点:
通过练习,体会小数的意义,知道小数所表示的含义。
教学准备:
学生、老师准备计数器、小黑板
教学方法:
小组合作学习交流法
教学过程:
一、情景导入,呈现目标
1.你的身高是多少?你会用小数来描述吗?
2.你都在哪里见过小数?说一说,并写出几个你见过的小数来。
二、探究新知(自学后完成下面问题)
1.把1元平均分成十份,其中一份用分数表示是( )元,用小数表示是( )元。十分之三表示其中( )份,用小数( )表示。
2.把1元平均分成100份,其中的'一份用分数表示是( )元,其中的37份用分数( )表示,用小数( )表示。
3. 1.11表示( )元( )角( )分。
三、合作探究,当堂训练
1. 用数表示下面各图中得涂色部分?(课本第2页第2题)
2. 想一想填一填?(学生独立完成)
3. 自己画一方格纸,并画出0.1、0.5、0.6?
4.找一找生活中的小数,小组交流,选代表汇报。
四、精讲点拨(根据学生出现的问题进行精讲。)
五、学习收获,自我总结
1.小组评价:你认为第几小组表现最棒,为什么?
2.自我总结:通过今天的学习,我学会了 ,以后我会在______________ 方面更加努力的。
板书设计:
小数的意义
《小数的意义》教案 篇3
教学目标
(一)在学生初步认识分数和小数的基础上,进一步理解小数的意义.
(二)使学生理解和掌握小数的计数单位及相邻两个单位间的进率.
(三)培养学生的观察、分析、推理能力.
教学重点和难点
在学生初步认识一位和两位小数的基础上,进一步把认数范围扩展到三位小数,使学生明确小数表示的是分母是10,100,1000,……的分数,并了解小数的计数单位及单位间的进率,既是本课的重点,也是本课的难点.
教学过程设计
(一)复习准备
1.谈话引入:
在日常生产和生活中,有些数量不一定都能用整数表示,例如商品的价钱,就不一定都是整元钱,在进行测量的时候,往往不能正好得整数的结果,常常用小数表示.
我们上学期已初步认识了小数,你能以元作单位,把下面数先写成分数,再写成小数吗?
2.口答:(1)1角=(——)元=( )元
(2)3角=(——)元=( )元
(3)9分=(——)元=( )元
(二)学习新课
1.谈话引入:
今天我们继续学习小数.(板书课题:小数的意义)
在日常生活中,除了商品标价不够整元可以用小数外,在量屋子的高度时,它不够整米时,以米作单位也常用小数表示.
2.教学小数的意义.
(1)利用旧知识继续研究.
我们已经知道1角是0.1元,就是把1元平均分成10份,每份是1
是同一数量,那么十分之几的数用小数表示是几位小数?(一位小数)
那么百分之几的数用小数表示是几位小数?(两位小数)
(2)通过观察米尺,引出十分之几、百分之几、千分之几……都可用小数表示.
先想想,米、分米、厘米、毫米的进率分别是多少?
板书:1米=10分米
=100厘米
=1000毫米
观察米尺.提问:
①把1米平均分成10份,每份是几分米?写成分数是几米?写成小数是几米?
学生观察得出:把1米平均分成10份,每份是1分米,写成分数是
3分米是多少米?用分数、小数怎样表示?
师生共同明确:把1米平均分成10份,一份或者几份可以用一位小数表示.
②把1米平均分成100份,每份在尺子上是多少?写成分数是多少米?写成小数呢?
学生观察米尺后得出:把1米平均分成100份,1份是1厘米,写
怎样把7厘米写成以米作单位的分数和小数?
启发学生想:15厘米怎样写成以米作单位的分数和小数? 经小组
第一位写1.所以15厘米是0.15米.
明确把1米平均分成100份,一份或几份都可以用两位小数表示.
③把1米平均分成1000份,1份在尺子上是多少?(1毫米)
千分之一米怎样用小数表示?
启发学生推理得出:千分之一写在小数点右面第三位,写作0.001.
9毫米、63毫米以米作单位写成小数分别是多少米?
63毫米是0.063米.
根据上述问题,把1米平均分成1000份,1份或几份的数都可以用几位小数表示?(三位小数)
教师提出,我们还可以照前面的方法继续分下去,可以得到四位、五位……小数.
启发学生根据前面3个问题的研究,可以得出什么结论?
(把1米平均分成10份,1份或几份可以用一位小数表示,分成100份,1份或几份可以用两位小数表示,分成IO00份,1份或几份可以用三位小数表示……)
(3)启发学生概括小数的意义.
启发性提问:
①上面例子都是把1米平均分成多少份?(10份,100份,1000份)
②这样的.1份或几份,用什么样的分数来表示:(十分之几,百分之几,千分之几)
所以相邻两个单位间的进率也是10.
师指出:像上面这些分数也可以依照整数的写法来写,写在整数个位的右面,用圆点隔开,用来表示十分之几、百分之几、千分之几的数,叫做小数.
小数的计数单位是十分之一、百分之一、千分之—……,分别写作0.1,0.01,0.001…等.
阅读课本:95页结论.
反馈:95页“做一做”.
订正时说明意义,计数单位.
(4)强化概念.
启发性提问:
①十分之几的数用几位小数表示?一位小数表示几分之几?一位小数的计数单位是多少?
②百分之几的数用几位小数表示?两位小数表示几分之几?两位小数的计数单位是多少?
③千分之几的数用几位小数表示?三位小数表示几分之几?三位小数的计数单位是多少?
④每相邻两个单位间的进率是多少?
(三)巩固反馈
1.练习二十第2题、第5题.
2.填空(投影).
3.判断下面各题是否正确?为什么?
(四)作业
练习二十第1~3题.
课堂教学设计说明
学生在第七册中已初步学习了小数,本节课使学生进一步明确了小数的产生,理解小数的意义,小数与分数的联系,小数的计数单位,从而对小数概念有更清楚的认识.
教学小数的意义分两段进行.
第一段,理解小数的意义,分两个层次.第一层利用日常生活实例和学生已有的知识经验,引导学生认识小数;第二层引导学生观察米尺的刻度,把1米平均分成10份、100份、1000份……,其中的1份或几份用一位小数,两位小数、三位小数……表示,使学生对小数的认识深入一步.
第二段:抽象概括、明确小数的意义.
通过一系列的启发提问,引导学生概括出小数的本质特征,使学生进一步掌握分数、小数的联系及其所表示的意义,掌握小数的计数单位及相邻单位间的进率.
练习设计围绕重点,巩固概念,并针对易错、易混题,让学生在正误对比中加深对知识的理解,同时达到提高学生思维能力的目的.
板书设计
小数的意义
1米=10分米
=100厘米
=1000毫米
把1米平均分成10份,每份长1分米.
把1米平均分成100份,每份长1厘米.
把1米平均分成1000份,每份长1毫米.
一位小数表示十分之几,计数单位是0.1
两位小数表示百分之几,计数单位是0.01
三位小数表示千分之几,计数单位是0.001
相邻两个计数单位间的进率都是10.
《小数的意义》教案 篇4
教学内容:教科书第76页的例1、例2,第76页做一做中的题目和练习十八的第1-2题。
教学目的:
1、使学生理解小数加、减法的意义,初步掌握计算法则,能够比较熟练地笔算小数加、减法。
2、培养学生的迁移类推的能力。
教学重点:初步掌握计算法则,能够比较熟练地笔算小数加、减法。
教学难点:培养学生的迁移类推的能力。
教学过程
一、复习
1.少先队采集中草药。第一小队采集了1250克,第二小队采集了986克.两个小队一共采集了多少克?
让学生先解答,再说一说整数加法的意义和计算法则。
2.笔算。
4.67+2.5=6.03+8.47=8.41-0.75=
让学生列竖式计算,指名说一说自已是怎样算的,并注意检查学生竖式的书写格式是否正确。
二、学习新知
1、学习例1。
(1)通过旧知识引出新课.
教师再出示一次复习的第l题,把已知条件和问题稍作改动,变成例1让学生读题;理解题意。
(2)引导学生比较整数加法和小数加法的意义。
教师:例1与复习中的第1题有什么相同的地方?例1应该用什么方法计算?为什么要用加法算?
引导学生通过比较说出从复习的第1题可以看出整数加法的意义是把两个数合并成一个数的运算,从例1可以看出小数加法的意义和整数加法的意义相同,也是把两个数合并成一个数的运算。因为要把两个小队采集中草药的千克数合起来,所以要用加法计算.
(3)引导学生理解小数点对齐的道理。
教师板书横式以后,让学生说一说怎样写竖式,并提出以下问题进行讨论
(1)为什么要把小数点对齐?
(2)整数加法应该怎样算?
然后让学生计算,算完后接着讨论:
(3)得数7.810末尾的0怎样处理?能不能去掉?为什么能去掉?
2.让学生做第76页做一做中的题目。
让学生独立做,教师巡视,检查学生是否把小数点对齐了,最后集体订正。
3.引导学生比较小数加法和整数加法的计算法则。
教师:小数加法与整数加法在计算上有什么相同的地方?启发学生说出小数加法和整数加法都要把相同数位上的数对齐,小数加法只要把小数点对齐就能使相同数位对齐。
4.学习例2。
(1)引导学生通过比较得出小数减法的意义。
教师:例2的`条件和问题与例1比有什么变化?例2的数量关系是什么?启发学生说出例2是已知两个小队采集中药材的总数和第一小队采集的千克数,求第二小队采集的千克数;
可以看出小数减法也是已知两个加数的和与其中的一个加数;求另一个加数的运算,所以它的意义与整数减法的意义是相同的。
(2)利用知识迁移使学生理解小数点对齐的算理。
让学生联系小数加法小数点对齐的算理,说一说小数减法小数点为什么要对齐。
然后教师把千克数改写成克数并列出竖式,提问:个位上是几减几?接着让学生看小数减法竖式,提问:被减数千分位上没有数计算时怎么办?利用小数的性质使学生理解被减数千分位上没有数可以添0再减,也可以不写0,把这一位看作0来计算,以后在计算时遇到这种情况也可以这样处理。接着让学生计算,教师巡视,检查学生小数点是否对齐,被减数千分位的处理是否正确,得数的小数点点得是否正确。
5.比较小数减法与整数减法的计算法则。
让学生讨论小数减法与整数减法在计算上有什么相同的地方。使学生明确这和小数加法与整数加法在计算上的关系是一样的。
6、小结。
教师:通过学习上面的知识,小数加法和小数减法的计算法则有什么共同的地方?启发学生说出小数加减法计算时都要把小数点对齐(也就是相同数位上的数对齐),都要从最低位算起。然后教师把小数加减法的计算法则完整地说一说。并让学生看书上的法则,齐读一遍。
7、做第78页最上面做一做中的题目。
订正时,让学生说一说是怎样计算并验算的。
三、巩固练习
做练习十八的第1-2题。
1.做第1题,教师先说明题意,要根据加法算式来写减法算式的得数,不用再列式计算。学生做完之后,可以提问:你是根据什么来写减得的差的?使学生加深对小数减法的意义和加减法关系的认识。
2.做第2题,让学生独立做,可以要求学生验算。教师巡视,进行个别辅导。订正时,针对学生易出错的地方重点说一说。
板书设计:小数的加法和减法
例1:少先队采集中草药,第一小队采集了3.735千克,第二小队采集了
4.075千克,两个小队一共采集了多少千克?
3.735+4.075=7.81(千克)
答:一共采集了7.81千克。
例2:少先队采集中草药,两个小队一共采集了7.81千克。第一小队采集了3.735千克,第二小队采集多少千克?
7.81-3.735=4.075(千克)
答:第二小队采集了4.075千克。
《小数的意义》教案 篇5
教学目标
1.进一步巩固小数乘法的意义和计算法则,并会解答求一个数的若干倍的应用题.
2.提高学生计算能力和估算能力.
3.培养学生认真计算、自觉检验的好习惯.
教学重点
正确、熟练地计算较复杂的小数乘法.
教学难点
根据小数乘法的意义正确判断积与被乘数的大小关系.
教学过程()
一、检查复习
(一)口算
0.9×6 7×0.08 1.87×0 0.3×0.6
0.24×2 1.4×0.3 1.6×5 4×0.25
60×0.5 7.8×1
(二)说出下面各算式表示的意义
2.4×0.8 1.36×4 2.58×0.2
二、指导探索
(一)教学例3 0.056×0.15
1.学生独立计算,指名板演.
2.指名说一说计算过程.
教师提问:乘得的'积的小数位数不够时,该怎么办?
3.指导学生验算方法
教师提问:怎样检验小数乘法计算是否正确?
(运算乘法交换律检验;再重新算一遍;检查尾数和积的小数位数等)
(二)教学例4
一个奶牛场八月份产奶18.5吨.九月份的产量是八月份的2.4倍.九月份产奶多少吨?
1.独立解答.
2.教师提问:
(1)你是根据什么列式的?(一倍数×倍数=几倍数)
(2)18.5×2.4所表示的意义是什么?(表示求18.5的2.4倍是多少)
3.比较:例3和例4的两个算式,积与被乘数比较,谁大?谁小?
4.练习:不计算,说明下面各算式中积与被乘数的关系.
10.8×0.9 2.4×1.8 50×0.36 0.48×0.75
讨论:在什么情况下,积小于第一个因数?
在什么情况下,积等于第一个因数?
在什么情况下,积大于第一个因数?
5.小结:当第二个因数比1小时,积比第一个因数(零除外)小;
当第二个因数等于1时,积等于第一个因数(零除外);
当第二个因数比1大时,积比第一个因数(零除外)大;
6.练习:不计算,判断下面各题的结果是否正确.
0.72×0.15=1.08 0.36×1.8=0.648
三、质疑小结
(一)今天你都有什么收获?
(二)对于今天的学习还有什么问题?
四、反馈调节
(一)计算
0.37×2.9 0.56×0.08 0.072×0.15
0.18×8.45 4.5×0.002 3.7×0.016
(二)判断对错.
1.0.6时等于6分.( )
2.一个数的1.02倍比原来的数要大.( )
3.两个因数的小数位数的和是4,积的小数位数也一定是4.( )
(三)工地有水泥24.5吨,沙子的重量是水泥的2.5倍,石子的重量是沙子的4倍,石子有多少吨?
五、课后作业
(一)计算
82×0.9 3.4×1.26 0.039+1.75
2.07×53 20.14-6.87 10-5.29
6.52+72.98 0.36×0.25 0.015×2.04
(二)食品店运来350瓶鲜牛奶,运来酸奶的瓶数是鲜牛奶瓶数的1.8倍.食品店运来多少瓶酸奶?
六、板书设计
小数乘法
教学设计点评
教学设计中充分利用本课的内容,发散学生的思维,提高学生的各种能力。重视学生全面参与教学过程,大胆让学生尝试、讨论,通过对比积与被乘数的大小关系,帮助学生形成技能技巧,提高计算能力。
《小数的意义》教案 篇6
《小数的意义》教案
作为一位不辞辛劳的人民教师,就不得不需要编写教案,通过教案准备可以更好地根据具体情况对教学进程做适当的必要的调整。我们该怎么去写教案呢?以下是小编为大家收集的《小数的意义》教案,欢迎阅读与收藏。
返回首页