返回首页
文学网 > 短文 > 教学教案 > 正文

《梯形的面积》教学设计

2026/01/29教学教案

文学网整理的《梯形的面积》教学设计(精选6篇),供大家参考,希望能给您提供帮助。

《梯形的面积》教学设计 篇1

教学目的:

1、掌握梯形的面积计算公式,能正确地计算梯形的面积。

2、通过操作和对图形的观察、比较,发展学生的空间观念,使学生进一步认识转化的思考方法在研究梯形面积时的运用,进一步培养学生的分析、综合、抽象、概括和运用转化的方法解决实际问题的能力。

教学重点:

正确地进行梯形面积的计算。

教学难点:

梯形面积公式的推导。

教学准备:

投影、小黑板、若干个梯形图片(其中有两个完全一样的。

教学过程:

一、导入新课

1、提问:我们学习过哪几种平面图形的面积计算?计算公式分别是什么?

2、你能说出平行四边形的面积公式是如何推导的吗?三角形的面积公式呢?

3、创设情境:

投影显示:

启发谈话:同学们能依照平行四边形和三角形面积的.方法,把梯形也转化成已学过的图形,计算出它的面积吗?(板书课题)

二、新课展开

1、操作探索

⑴拼一拼,让学生拿出自己准备的两个完全一样的梯形动手拼一拼。

提问:你拼成了什么图形,怎样拼的?演示一遍。

⑵看一看,观察拼成的平行四边形。

提问:你发现拼成的平行四边形和梯形之间的关系了吗?

出示小黑板:

拼成的平行四边形的底等于(),平行四边形的高等于(),每个梯形的面积等于拼成的平行四边形面积的()。

⑶想一想:梯形的面积怎样计算?

学生讨论,指名回答,师板书。

梯形的面积=(上底+下底)×高÷2

师:(上底+下底)表示什么?为什么要除以2?

⑷做一做:计算“前面出示的梯形”的面积。

2、扩散思维

师:如果我们手中只有一个梯形,你们能不能自己动脑想出别的计算方法推导它的公式?下面小组讨论。分组汇报:

生1:做对角线,把梯形分割成两个三角形,如下图⑴:

生2:从上底的一个顶点做另一腰的平行线,把梯形分割成一个平行四边形和一个三角形。如上图⑵。

生3:从上底的两个顶点作下底的垂线,把梯形分割成一个长方形和两个三角形,如上图⑶。

师:同学们真聪明,想出了好多种方法,推导出了梯形的面积计算公式,但不管采取何种方法都可以得出梯形的面积是“上底与下底的和乘以高再除以2。”

3、抽象概括

师:如果用s表示梯形的面积,用a、b和h分别表示梯形的上、下底和高,那么梯形的面积你会表示吗?

生:s=(a+b)h÷2

4、反馈练习

完成课本p81做一做(一人板演)

三、应用深化

出示例子:一条新挖的渠道,横截面是梯形,渠口宽2.8米,渠底宽1.4米,渠深1.2米,它的横截面的面积是多少平方米?

解释:举例说明“横截面”的含义。学生尝试计算:

(2.8+1.4)×1.2÷2

=4.2×1.2÷2

=5.04÷2

=2.52(平方米)

答:它的横截面的面积是2.52平方米。

2、反馈练习:完成p82第1题

四、巩固练习:p82第2题

五、全课小结

六、作业:p82第3、4题

教学后记:

实践操作是儿童智力活动的源泉,在教学中我以实践操作为切入点,使抽象的概念具体化,积极推动学生的思维发展。让学生拼一拼、看一看、想一想、做一做,获得感性材料,为概括出新概念、总结新方法打下基础。

在教学是我注重了对学生的创新精神和实践能力的培养,真正体现学生是学习的主人。

《梯形的面积》教学设计 篇2

《梯形的面积》教学设计15篇

作为一名辛苦耕耘的教育工作者,可能需要进行教学设计编写工作,教学设计是实现教学目标的计划性和决策性活动。那么应当如何写教学设计呢?以下是小编帮大家整理的《梯形的面积》教学设计,欢迎大家分享。

《梯形的面积》教学设计 篇3

【教学内容】

人教版义务教育课程标准实验教科书《小学数学》五年级上册第88-89页。

【学情与教材分析】

梯形面积的计算是多边形面积计算中的一部分,它是在学生已经认识了梯形的特征,并且学会平行四边形、三角形的面积计算的基础上进行教学的。学生在学习的平行四边形、三角形的面积的过程中已经历了公式的推导过程,充分体验转化这一数学思想在学习的应用。梯形的面积计算的推导方法是对前面所学的几种图形面积计算公式推导方法的拓展和延伸。教材直接给出一个梯形,引导学生用转化的方法思考,进行实际操作,依照求之前的经验把梯形转化为已学过的图形来计算它的面积。在操作的基础上,引导学生自己总结公式,并应用梯形面积的计算公式解决实际问题。通过本课时的学习,能加深学生对图形特征以及各种图形之间的内在联系的认识,领会转化的数学思想,为今后学好几何图形打下坚实的基础。

【教学目标】

1.使学生理解并掌握梯形面积公式,能正确应用公式进行计算。

2.通过动手操作,使学生经历公式的推导过程,培养学生的迁移类推能力和抽象概括能力,将转化策略的教学融入到学生的“拼、剪、画、说“活动中,使学生领悟转化思想,感受事物之间是密切联系的,使学生能应用所学知识解决实际问题,发展学生的空间观念。

3.引导学生运用转化的思想探索知识的变化规律,培养学生分析问题和解决问题的能力,通过演示和操作,让学生在拼剪中感受数学知识的内在美,培养团队合作意识,在解决问题的过程中,感受数学

和现实生活的密切联系,体会学数学、用数学的乐趣。

【教学重点、难点】

1.理解并掌握梯形的面积计算公式。

2.运用梯形面积计算公式解决问题。

教学关键:

怎样把梯形转化为学过的图形来推导出梯形的面积公式,找到转化后图形与原来梯形之间的关系。

教具:

课件、梯形卡纸。

学具:

剪刀、各种不同形状的梯形卡纸。

教学过程:

一、课前复习

同学们,之前我们学习了平行四边形和三角形的面积的计算方法,回忆一下,平行四边形的面积公式是怎样推导出来的?三角形的呢?(这样是为学习梯形的面积计算做好了铺垫。因为三角形面积公式及其推导过程与梯形有许多相似之处,有了前几节课的基础,学生推导出梯形面积公式就并不困难。)

请同学们看这幅图片,汽车玻璃是什么形状的?你会计算这块玻璃形的面积吗?今天我们就来学习梯形的面积,相信学习完这节课你就能解决这个问题了。板书课题:梯形的面积

(在实际情景中,认识计算梯形面积的必要性。这样导入,使学生感受到数学与实际生活的密切联系,恰到好处地激发学生求知的欲望,使学生产生一种探求知识的动力。)

二、探索转化:

1、引导学生提出解决问题方向:

我们在学习的平行四边形和三角形面积时,采用了割补的方法、拼摆的方法,把要研究的新图形转化为已经会计算面积的图形,再利用已学

过的图形推导出新图形的面积计算方法。现在我们又要计算梯形面积,怎么办呢?(转化)你准备用什么方法把梯形转化为我们学过的图形?(运用迁移规律,注意从旧到新、引导学生在整理旧知的基础上学习新知,体现“温故知新”的教学思想。)

2、动手转化:

(老师为每组同学都准备好一些梯形,其中有一组是两个完全相同的梯形)

小组活动:

(1)梯形可以合理转化为什么图形?怎样转化?(2)转化后的图形与梯形有什么联系?

小组合作交流,老师巡视指导。学生可能出现的情况:

(新课程标准的基本理念就是要让学生“人人学有价值的数学”,强调“教学要从学生已有的经验出发,让学生亲身经历知识的学习过程”。所以,在教学中,我留给学生充分的时间,小组合作,鼓励做法多样。)

3、公式推导:

根据转化方法来推导梯形的面积公式。归纳总结梯形的面积计算方法。梯形面积=(上底+下底)x高÷2

(在操作探究的基础上,我引导学生自己来总结梯形面积的计算公式,通过这样的设计,体现了让“学生自主探究、自主学习”的教学理念,满足了“学生希望自己是一个发现者、研究者、探索者”的需要,进一步的促进了学生的学习兴趣。让学生把他想到的推导方法展示出来,既达到突出“重点”,又化解“难点”的`目的。)

4、用字母表示梯形面积公式

三、应用公式解决问题

我们已推导出了梯形的面积公式,那么我们就用梯形的面积公式解决一些实际问题吧!课件出示例3主题图

同学们知道这是哪儿吗?(三峡水电站)三峡水电站是我国最大的水电站,同学们请看图,你能求出这个梯形的面积吗?学生试做,二生板书。

(通过动手操作,自主探究,学生获得梯形面积的计算公式后,出示了课本的例题,求梯形大坝的横截面面积。通过实际问题的解决,将学生探究发现的数学知识转化为自身的能力,“学以致用”,来解决生活的实际问题。)

四、巩固练习

1、选择(进一步明白求梯形面积公式的条件)。

2、是非判断题。(判断出对错并且说出原因,提高学生对新课的理解。)

3、我最聪明。(拓展提高)

五、反思总结,拓展延伸

1、学生谈收获,谈学习方法。

2、组内互评:这节课你最想表扬谁,为什么?

3、完成课内作业。

现在请同学们再来看这幅汽车图片,现在你能计算这汽车的玻璃面积了吗?课件出示玻璃的数据,学生作业。

(解决了前面导课提出的的问题,回应引入,使学生更加深刻地感受到数学与实际生活的密切联系。)

【教学反思】

新的数学课程标准指出:教师不只做教材忠实的实施者,而应该做教材的开发者和建设者,教材的教育价值和智力价值能否得到充分发挥,关键在与教师对教材的把握。《梯形的面积》一课,是在学生掌握了平行四边形和三角形面积计算的基础上进行教学的。学生已掌握了一定的学习方法,形成了一定的推理能力。为了充分利用原有的知识,“猜想”、探索、验证,从而获得新知,给每个学生提供思考、表现、创造的机会,使他们成为知识的发现者、创造者,培养学生自我探究和实践能力。

一、动手操作,培养探索能力

在推导梯形面积计算公式时,安排学生合作学习,放手让学生自己利用前面的学习经验,动手把梯形转化成已经学过的图形,并让学生通过找图形之间的联系,自主从不同的途径探索出梯形的面积计算方法。首先让学生猜想可以把梯形转化成已经学过的什么图形?再通过“拼、剪、割”的动手操作活动,看一看能转化成什么图形,然后学生思考讨论:想想转化的图形与原梯形有什么关系?通过学生自主探索实践活动,学生亲自参与了面积公式的推导过程,真正做到“知其然,必知其所以然”,而且思维能力、空间感受能力、动手操作能力都得到锻炼和提高。让学生主动操作、讨论,在充分感知、理解的基础上总结出梯形面积的计算方法,达成了教学目的。

二、发散验证培养解决问题的能力

在学生验证自己的想法是否正确时,鼓励学生大胆地表达自己的想法,以说促思,开启学生思维的“闸门”,引导学生说一说,议一议,互相交流,达成共识。在此基础上让学生归纳出梯形面积的计算方法。通过“拼、剪、说”的活动过程,让学生在活动中发散,在活动中发展,学得主动、扎实,更重要的是培养了学生求异思维、创造能力和解决实际问题的能力。在本课教学中,老师应比较注重培养学生的推理、操作

《梯形的面积》教学设计 篇4

教学内容:

九年义务教育六年小学制数学第九册第74—75页。

教学目标:

1、在理解的基础上掌握梯形面积的计算方法,能正确地计算梯形的面积。

2、通过操作、观察、比较,发展学生的空间观念,培养学生分析、综合、抽象、概括和运用转化的方法解决实际问题的能力。

3、渗透旋转和平移的思想,充分发挥学生的主观能动性,启发学生探索合作,让学生在实验中感受数学知识的内在美,体验创新的乐趣。

教学重点:

理解并掌握梯形面积公式的推导,会计算梯形的面积。

教学难点:

理解梯形面积公式的推导过程。

教具准备:

两个完全一样的梯形若干个。

学具准备:

各小组准备两个完全一样的梯形一对。

教学过程

一、复习导入:

1.cai出示已学过的平面图形,说出它们的面积公式并计算出它们的面积。

(学生回答,cai依次出现相应图形面积的计算公式)

提问:三角形的面积公式为什么是用底×高÷2?

2.教师设疑:cai出示一个梯形,想一想你能仿照求三角形面积的方法,把梯形也转化成已学过的图形,计算出它的面积吗?

二、教学新课:

(一)、引入课题:那我们也用两个完全一样的梯形来做实验,共同研究“梯形面积的计算” 。(板书课题:梯形面积的计算)

(二)、实验探究:

1.猜一猜:① 两个完全一样的梯形可能拼成什么图形?

② 梯形的面积会跟梯形的什么有关呢?

2.小组合作实验,推导梯形面积的计算公式:

(1)教师谈话:利用手里的学具(标出上底、下底和高),仿照求三角形面积的方法试着推导出梯形面积的计算公式。

(2)思考:

①两个完全一样的梯形可以拼成已学过的什么图形?怎么拼?

② 拼成的这个图形的面积跟梯形的面积有什么关系?

③ 你觉得梯形的面积可以怎样计算?

(3)小组合作,学生实验。

3. 实验汇报。

4. 引导学生看图并提问:这个梯形的面积可以怎样计算?

现在给你一个任意梯形,你都能求出它的面积吗?怎么求?为什么?

5.概括总结、归纳公式。

教师提问:

①为什么计算梯形的面积要用(上底+下底)×高÷2?

②要求梯形的面积必须知道哪些条件?

三、练习:

(一).基本练习:

(二)解决问题:

四、小结:

通过这节课的学习你有哪些收获?你能详细的说说梯形面积的推导过程吗?

五、巩固提高。

板书设计:

梯形面积的'计算

梯形的面积=(上底+下底)×高÷2 )

s = (a+b)×h÷2

教学反思:

新的数学课程标准指出:教师不只做教材忠实的实施者,而应该做教材的开发者和建设者,教材的教育价值和智力价值能否得到充分发挥,关键在与教师对教材的把握。《梯形面积的计算》一课,是在学生掌握了平行四边形和三角形面积计算的基础上进行教学的。学生已掌握了一定的学习方法,形成了一定的推理能力。为了充分利用原有的知识,探索、验证,从而获得新知,给每个学生提供思考、表现、创造的机会,使他们成为知识的发现者、创造者,培养学生自我探究和实践能力。

一、动手操作 培养探索能力

在推导梯形面积计算公式时,安排了两次操作活动。首先让学生用两个完全一样的梯形拼一拼,看一看能拼成什么图形,然后引导学生思考讨论:梯形与你拼成的平行四边形有什么联系?引导学生发现每个梯形的面积是拼成平行四边形面积的一半,然后再让学生用一个梯形,想办法把它转化成已学过的图形来推导梯形的面积公式。通过两次实践活动,学生亲自参与了面积公式的推导过程,真正做到“知其然,必知其所以然”,而且思维能力、空间感受能力、动手操作能力都得到锻炼和提高。

二、发散验证 培养解决问题的能力

在学生验证自己的想法是否正确时,鼓励学生大胆地表达自己的想法,以说促思,开启学生思维的“闸门”,对学生的五花八门的想法不急于评价,应不失时机地引导学生说一说,议一议,互相交流,达成共识。在此基础上让学生理一理,归纳出梯形面积的计算方法。通过“拼、移”的活动过程,让学生在活动中发散,在活动中发展,学得主动、扎实,更重要的是培养了学生求异思维、创造能力和解决实际问题的能力。

在本课教学中,我比较注重培养学生的推理、操作探究及自主学习的能力。学生在动手操作以及推理归纳的学习过程中,多种感观参与学习,既理解、掌握了梯形的有关知识,同时又培养了学生获取知识的能力。

但也存在一些不足之处,例如:在推导验证的过程中,学生表达得不够清晰,对于推导的过程理解得还不够透彻。如果让他们充分地操作体会,时间又不允许。如何解决这样的矛盾,也是我需要反思的问题。

《梯形的面积》教学设计 篇5

【教学目标】

1.在实际情境中,认识计算梯形面积的必要性。

2.在自主探索活动中,经历推导梯形面积公式的过程。

3.能运用梯形面积的计算公式,解决相应的实际问题。

【教学重、难点】

教学重点:在自主探索中推导出梯形面积公式。

教学难点:能理解和运用梯形面积公式。

【教学准备】

尺子、两个完全相同的梯形纸片、ppt课件。

【教学过程】

一、创设情境,引出问题。

1.出示堤坝横截面,感受求梯形面积的必要性。

说一说:如何求出图中梯形的面积?

预设:联想到三角形等面积公式推导方法,可尝试把梯形转化成以前学过的图形,再比较转化前后图形之间的关系,也许就能求出梯形的面积。

二、自主探索,解决问题。

1.把梯形转化成学过的图形,并比较转化前后图形的面积。

(1)预设一:把两个完全相同的梯形,“拼组”成一个平行四边形。

发现:一个梯形的面积是拼成的平行四边形面积的一半;平行四边形的底等于梯形的上底加下底的和;平行四边形的高等于梯形的高。

推导:由“平行四边形的面积=底×高”得出“梯形的`面积=(上底+下底)×高÷2”。

预设二:可以把梯形通过“割补”转化成一个平行四边形。

发现:梯形的面积等于拼成的平行四边形面积;平行四边形的底等于梯形的上底加下底的和;平行四边形的高等于梯形高的一半。

推导:由“平行四边形的面积=底×高”得出“梯形的面积=(上底+下底)×高÷2”。

2.怎样计算梯形的面积?

(1)通过比较转化前后图形之间的关系,得出“梯形的面积=(上底+下底)×高÷2”。

(2)用字母表示梯形面积公式“S=(a+b)×h÷2”

(3)运用公式求出堤坝横截面的面积“(20+80)×40÷2=20xxm?”

3.师生小结。

三、练习应用,巩固提升。

1.滑梯侧面的形状是一个梯形,已知梯形的上底是2m,下底是5m,高是1.8m,求出它的面积。

2.在方格纸上画一个梯形,高是4cm,上底是5cm,下底是7cm,这个梯形的面积是多少平方厘米?(每个小方格的边长表示1cm)。

3.先测量,再计算下列图形的面积,并与同伴交流。

四、全课总结,强化延伸。

这节课,我们运用拼组法、割补法等,通过平行四边形的面积推导出梯形的面积,再一次感受了“转化”的思想。

《梯形的面积》教学设计 篇6

学习目标:

1、通过观察、操作、猜测、填表、讨论等方法探索并掌握梯形面积的计算方法,通过迁移前面学法,自主探究梯形上下底、高与平行四边形的底、高之间的关系,能正确计算梯形的面积,应用公式解决相关的实际问题。

2、培养观察、推理、归纳能力,体会转化思想的价值。

3、进一步积累解决问题的经验,增长新图形面积研究的策略意识,获得成功体验,提高学习自信心。

学习重点:

探索并掌握梯形的面积计算方法。

学习难点:

理解梯形推导公式过程中梯形上、下底与平行四边形的底之间的.关系。

学习准备:

剪下书后的梯形

学习过程:

一、先学探究

■先学提纲(另见《补充习题》、《当堂反馈》相关练习,有记号标明)

1、按算式画出相应的图形,说说自己是怎么想的?

算式:4×34×3÷2

2、复习梯形的有关知识:举一梯形。

说说梯形的基本特征及各部分名称。

■学情预判:学生在探索并掌握梯形的面积计算方法上可能会困惑不解,要加强引道。

二.交流共享

■后教预设:充分利用图形的可视化特性,进行教学,让学生自己得出结论。

【板块一】学习例6:

(1)出示例6:

用例6中提供的梯形拼成平行四边形。(注意:组内所选的梯形都要齐全)

(2)小组交流:

你认为拼成一个平行四边形所需要的两个梯形有什么特点?

测量数据计算拼成的平行四边形的面积和一个梯形的面积并填表。

(3)如何计算一个梯形的面积?

从表中可以看出梯形与拼成的平行四边形还有怎样的关系?(小组交流)

得出以下结论:

这两个的梯形,无论是直角梯形、等腰梯形、还是一般的梯形,都可以拼

成一个

这个平行四边形的底等于

这个平行四边形的高等于

因为每个梯形的面积等于拼成的平行四边形面积的

所以梯形的面积=

(4)用字母表示梯形面积公式:

三、反馈完善

1、试一试:一块梯形的麦田,上底是36米,下底是54米,高是40米。求这块麦田的面积。

2、完成P15练一练

一个梯形的面积与整个平行四边形的面积有什么关系?

3、P5动手做

四、总结回顾:

通过今天的学习,你有什么收获?想要提醒大家注意什么?

平行四边形,学习目标,计算方法,自信心,教学