返回首页
文学网 > 短文 > 教学教案 > 正文

初中数学一元一次方程说课稿

2026/01/30教学教案

文学网整理的初中数学一元一次方程说课稿(精选6篇),供大家参考,希望能给您提供帮助。

初中数学一元一次方程说课稿 篇1

初中数学一元一次方程说课稿(通用15篇)

作为一位兢兢业业的人民教师,时常要开展说课稿准备工作,是说课取得成功的前提。怎么样才能写出优秀的说课稿呢?下面是小编帮大家整理的初中数学一元一次方程说课稿,仅供参考,大家一起来看看吧。

初中数学一元一次方程说课稿 篇2

近期我们不断探索新形势下的课堂教学,下面就让我通过“一元一次方程的应用——追及问题”的教学设计,展示我们对问题的思考和实践,向在座的领导、专家请教,并衷心的希望你们给我提出宝贵的意见,改进我们的教学,进一步提高教学效益。

我们这堂课主要有五个特色:

1、学而时习之。

2、新课当旧课上。

3、重视引导学生再创造,再发现。

4、突出学习和强度,角度和反思。

5、创设情景,让学生主动积极参加

一、学而时习之。

“学而时习之”就是说,通过反复地、多次地进行对知识的复习、巩固,提高学习能力,使知识学习呈螺旋式结构。这是符合人的认知规律的。这里我们具体设置了三种类型的题目。

(1)、对知识进行系统的复习。例如课前训练一中的1-6题与13-15题,作业部分的1-5题,通过对以往学习的知识进行系统复习,使基本技能再形成。

(2)、过去学生经常出错,疑难的重要知识点进行析疑、再次理解。例如:课前训练一,第7-10题和作业第6-10题,我们有意设计一些隐藏错误或缺漏的题目让学生养成质疑的习惯和能力,对自己学习严格要求,并时常进行反思,这也是创造性思维的发展的基础。

(3)、练题例如课前训练11-12题,作业11-15题,都是以大题小做的形式出现,让学生了解哪一些是关键之处,通过局部训练提高学生学习的强度。

有些老师认为训练题的题量不少,学生在课堂上完成吗?但我们在求学生定时不定量目的是为不同层次学生提供了更多的空间。在教学实践,不少教师都埋怨学习学生的知识遗忘率大,学习的内容有章节性和阶段性,针对这些问题,我们采用学而时习之的思想。但不是说要在3分钟过后,我们不论学生完成实践了多少都让学生必须进入课堂训练二的部分。

二、新课当旧课上。

这里具体体现在课前训练二上,这里遵循了从人的学习规律而设计的。古人云:“温故而知新。”因此,把新课当旧课上,让学生在教师创设的情境下,完成一组递[进的变式的训练课。让学生在不知不觉中学习了新课。另外,把现代数学手段引进课室,通过电脑的声、色、象等功能,把动态与静态的结合起来,使不能完整看到的现实问题,再次呈现眼前。

第1题是相遇问题,通过电脑模拟情境,让学生进一步对相遇问题的本质有深刻的理解,并复习解应用题的一般思维习惯与解题步骤,强化学生的实践路和找相等关系的能力,为本节学习打下坚实的基础。

问题1在第1题中改变条件,产生了不同于相遇问题的新情况,重点是让学生知道追是及有一定条件下的。

问题2在问题1的'基础上改变了条件。从不同角度、不同方向去同向追及问题作全面的正确的分析,通过电脑模拟,直观地反映两种情况的数量关系和本质。第一种,随着时间增加,距离越越大,也不能追及。第二种,随着时间的增加,距离越来越短,有可能追及。然后再与问题1结合在一起,通过对比向学生交待一个追及问题必须具备的三个条件:

1、速度不同;

2、快者追慢者;

3、同方向。

让学生观察模拟后,加以想象、分析,先画出线略图再完成局部训练题,弄清追及问题的数量关系。

而问题3,实质是问题2中的追及问题,不同的只是甲、乙两人的距离,不是本身固有的,是通过先后出发而产生的。也就是说;“把两人相距40千米“用“让乙早出发12分钟“代替,其实,还是将问题3回复到问题2上。

在这里我们对本节例题作适当的处理,把原例题放入A组练习中,使学生在不知不觉中解决了本几节的问题。打破了传统教学中例题一定在讲解的习惯。整个训练二,以一题多变化作为新课当旧课上的切入点,创设一个让人学得轻松,学得容易,学有所得的氛围。

三、重视引导学生再创造、再发现。

为了发挥分层教学的优势,我们设计了两种层次的题目,定时不定量要求各层次的学生完成。从而使学生在一节课内,不同趣点,不同在求地在原有基础上得到巩固和发展,让学生有收获感、满足感,提高对学习的兴趣。

A组训练题是本节知识的直接运用,面向全身学生,要求每个学生都掌握本节基本技能的方法。

第1、2题用填直线型示意图和填表的形式让学生弄清已知与未知之间的关系,把实际问题建立抽象的,科学的数学模型。

B组训练题较A组灵活,适用于学有余力的学生。

(1)-(3)题是通过对A组题目进行变成训练形成的。因为是通过题型多样化,让学生从多角度去思考问题而后用局部与全过程相结合,多渠道拓展学生的视野。

第(4)题,学生要考虑两种情况;目的是通过分类讨论的思想,培养学生思维的严密性。

第(5)题,把常规的追及问题变为一个人,自身追及问题,这题比较注重思维训练,目的是培养学生“发现问题、提出问题”的能力,并注重联系实际,注重应用数学,保证了数学成为再创造、再发现的教学。从而使学生从定势思维过渡到发散性思维。从不同角度地让学生分析问题,充分体现了学习的强度,让学生始终处于一个主动参与的状态。

同样这里也是限时20分钟,但并不是说,在20分钟学生必须全部完成,学生因应自己的情况,有选择的进行练习。

以上不同起点的练习设置,不但照顾了差生,解放了优生,同时也调动了中层学生的积极性,达到抓两头,促中间的效果。

四、突出学习的速度、角度、强度和反思

在当今的社会,人必须有时间观念、竞争意识和社会责任感,而学习就必须有速度和强度。所以我们设置了限时训练和反馈卡。目的是为了让学生对自己的事负责,促使他们有一个时间观念。从而提高解题速度,并与其他的同学产生一种竞争意识,形成一个良好的学习环境和学习风气。

俗语说:“授人以鱼,不如授之以渔。”所以教师在教学过程中,要让学生从“学会”到“会学”就必须在教学中体现学习的角度。也就是说,必须培养学生思考和解决问题要从多角度进行,强化联系,强化转换。所以我们在引入训练时运用变式,分类讨论的形式。目的是培养学生分析、思考的角度性。在练习的设计上,通过局部训练,填图或填表弄清题目的已知与未知的关系,培养学生审题的角度。而B组题主要是培养学生思维的角度,使优生有更多的空间去提高解题能力,学会多角度去思考问题。通过更高层次的要求,锻炼了优生思考问题的零活性。

在教学过程中要体现学习的强度,就必须在课内利用一切的时间,对本课内容进行多次的、反复的训练,以达到熟练和应用自如的强度,具体表现在本节重点和难点的反复,大容量的局部训练和具有层次安排的题组训练上。

例如:课前训练一和作业中对新旧知识的系统复习,通过多次巩固达到强化训练的目的。

又如:练习中的局部训练。在一堂课,只有45分钟,时间是有限的,老师不能面面区到的为学生讲解全部知识,只能有针对性的集中解决本节的重点和难点,这就要求通过局部训练来强化学生的基本技能的形成。进一步体现在教学过程中“生为主体,师为主导”的指导思想。

另外,我们设计了强化A组题,在学生完成A组训练题后,可以自由选择是进入强化A组题还是进入B组训练题中。这部分的设计主要是让学生养成客观的自我评价,和为在A组训练中未能形成基本技能的学生再次创造一个条件和空间,务求使学生掌握基础知识,再次有机会形成基本技能,充分体现学习强度和分层教学。

“学问”的意义就是在学习过程中必然有问题存在,并且要主动的通过多种渠道解决问题,扫除成长中的障碍。

作业中反思的设计,是培养学生对自己严格要求,通过对所学知识的回顾、反省,并不断好问、好思的解决问题,从而培养学生的质疑能力。

五、创设情境,让学生主动积极参与

学生学习最好的动力是对素材的兴趣。所以,我们在整个教学过程中为学生创设了情境,把数学问题溶入到一个与他们密切相关的生活问题中,使学生形成浓厚的学习兴趣和求知欲望。

初中数学一元一次方程说课稿 篇3

一、说教材

方程是应用非常广泛的数学工具,它在义务教育阶段的数学课程中占重要地位。本节课的教学内容是《解一元一次方程》的第3课时。解方程既是本章的重点也为今后学习其他方程、不等式及函数有重要基础作用。为了使学生牢固掌握解方程体会方程是刻画现实世界的一个有效的数学模型,产生学习解方程的欲望,教材设置了新颖的问题情境,让学生从具体的情境中获取信息,列方程,然后尝试主动探究方程的解法。并通过练习归纳掌握解方程的基本步骤和技能。

教学目标

(1)、知识目标:

掌握解一元一次方程中"去分母"的方法,并能解这种类型的方程

了解一元一次方程解法的一般步骤

(2)、能力目标:

经历"把实际问题抽象为方程"的过程,发展用方程方法分析问题、解决问题的能力,

(3)、情感目标:

1、通过具体情境引入新问题(如何去分母),激发学生的探究欲望

2、通过埃及古题的情境感受数学文明。

教学重点:

通过"去分母"解一元一次方程

3、教学难点:

探究通过"去分母"的方法解一元一次方程

4、教学关键:

找最简公分母、合并同类项

二、说教法:

在前面的学段中,学生已学习了合并同类项、去括号等整式运算内容。解一元一次方程就成为承上启下的重要内容。因此,它既是重点也是难点。我根据学生认识规律和教学的启发性、直观性和面向全体因材施教等教学原则,积极创设新颖的问题情境,以“学生发展为本,以活动为主线,以创新为主旨”,等有效手段,以引导法为主,辅之以直观演示法、讨论法,向学生提供充分从事数学活动的机会,激发学生的学习积极性,使学生主动参与学习的全过程。

我的教学设计的指导思想是:

1、让学生自己去尝试发现问题,而不是被动的回答老师的问题、接受老师的答案。

2、精心设计问题,因为好的问题设计能不断激发学习动机,还能给学生提供学习的目标和思维的空间,使学生自主学习真正成为可能。授课中通过一系列层层递进的问题,给学生充分的时间和广阔的思维空间,充分表达自己的想法,在此基础上解决问题并得出结论。

三、说学法

本课时主要让学生分析、观察、归纳出用等式基本性质二,让学生进一步解答方程中系数为分数时,如何使其“整数化”,从而化归到上课时见过的方程类型上去。

纵观这三节课的安排,在内容的呈现顺序上让我们感觉到了:

(1)数学知识的阶梯性。新内容的学习解答过程,总是借助一些已知的知识与方法,将其转化,让旧知识服务于新内容;

(2)数学知识的规律性。解方程中方程的类型多种多样,但它的解法过程,有一个常见的规律,“去分母,去括号,移项,合并同类项,将未知数的系数化为1,把一元一次方程转化为x =a(a为常数)的形式。”

(3)运算过程的技巧性。如解方程时,解法有:

①可以先去括号,整理后去分母;

②可以去括号后,不去分母,直接求解;

③先去分母,再去括号。经检验,三种方法都很好。

④运算过程的合理性。

如:解方程时,去分母要计算正确,就必须清醒地知道,“方程两边同时乘以6”意义是什么。

总之,本部分内容要求学生掌握解一元一次方程的基本思路:灵活运用解一元一次方程的'步骤,将“复杂”转化为“简单”,把“陌生”转化为“熟知”。

②可以去括号后,不去分母,直接求解;

③先去分母,再去括号。经检验,三种方法都很好。

④运算过程的合理性。

四、教学过程设计:

本节课设计了五个教学环节:第一环节:学生自学,独立自主;第二环节:教师讲解,示范作用;第三环节:讨论研究,深入理解;第四环节:课堂小结;第五环节:布置作业;第六环节:小测

第一环节:学生自学,独立自主

先创设问题情境:古代埃及人用象形文字写在一种特殊的草上的著作,至今已有3700多年的历史了在文书中记载了许多有关数学的问题

问题一个数,它的三分之二,它的一半,它的七分之一,它的全部,加起来总共是33。(板书)

(1)能不能用方程解决这个问题?

(2)能尝试解这个方程吗?

(3)不同的解法有什么各自的特点?

设计意图:

1、利用列方程、解方程解决实际问题,再一次让学生感受方程的优越性,提高学生主动使用方程的意识

让学生自学课本P178例题5,培养学生自学能力,同时提高学习效率(时间5分钟)

第二环节:教师讲解,示范作用

(一)例5解方程

解法一:去括号,得

移项、合并同类项,得

两边同时除以(或乘以),得

X=—28

解法二:去分母,得

4(x+14)=7(x+20)

去括号,得

4x+56=7x+140

移项、合并同类项,得

—3x=84

两边同时除以—3,得

x=—28

(二)讲解课前提出的问题:一个数,它的三分之二,它的一半,它的七分之一,它的全部,加起来总共是33。

列出方程

经过对同一方程不同解法到去分母能够使解方程的过程更加便捷,明白为什么要去分母,这是"去分母"这一步骤的必要性;同时,让学生认同"去分母"是科学的、可行的,明确为什么能去分母这样,学生就会自觉参与探索去分母的一般做法的活动,从而发现"方程两边同时乘以所有分母的最小公倍数"这一方法,也首次由学生自行突破了难点。

第三环节:讨论研究,深入理解;

内容:本课时的想一想、例题6及练习题1、(3)、(5)、(6),分析它们的解答过程

目的:

1、进一步体会规范做题对解题的严谨、准确的积极影响作用。

2、对于较复杂的方程,培养学生自觉反思求解过程和自觉检验方程解是否正确的良好习惯。

3、让学生自觉发现解方程的方法,是他们体会解法步骤可以灵活多样,但其基本思路是把“复杂”转化为“简单”,把“新”转化为“旧”。

实际效果:

1、学生在分析例6:解方程的解题过程时,认为采用上课时的解题的方法——先去括号,再求解的方法,运算量比先去分母,再去括号求方程解要大的多,且容易出错,学生自然地接受了去分母的思想与方法。同时在分析过程中提出:去分母时,依据等式的基本性质二,要让各分母的最小公倍数同时乘以方程两边的每一项。

如:上例去分母以后得

6(x+15)=15—10(x—7)

此过程也显示了学生解题过程的规范性。

2、在对方程的解题过程分析中,有的学生认为不去分母直接写成:x=8也比较方便。学生转化代数式,合并同类项等方面的运算能力较过关,他们处理问题的方法也较灵活。

3、教学过程学生讨论热烈,尤其是每一步解题过程的正确,增强了自信心,肯定了自己的许多想法,形成了许多解决问题的有效的方法。

第四环节:课堂小结

内容:交流本节课的收获

目的:

1、小结本课时的知识点

2、使学生理性地归纳解一元一次方程的解法思想与解法思路

3、在生生、师生的交流过程中,欣赏别人的优秀之处,让学生充分展示自己。

实际效果:

学生们不仅将近几节课学的解一元一次方程的思想方法给予适当的小结归纳。而且对例6解题的每一步都说出它的变形依据,充分看出了他们研究数学问题的思维方式。同时还提出其他类型一元一次方程的解题方法与技巧。

第五环节:布置作业

课本P178,习题5.5的知识技能(1)、(2)、(4)、(5)、(8)及问题解决1

第六环节:小测,检查学生学习情况

解下列方程:(5分钟)

五、评价分析

数学教学是数学活动的教学,是师生之间、学生之间交往互动与共同参与发展的过程。本节课的评价要让学生体会到参与学习、与人合作的重要性,获得成绩的喜悦,从而激发性的学习动力。在这节的数学课,如要获得最直接、真实的反馈,就要尽量让学生多说、多思考,对于学生提出的问题和解决问题的方法,教师都要给予鼓励和引导,并随时观察解决,评价应充分考虑到每个学生的差异,这节课通过现代化的技术的运用,节省出尽可能多的时间,提出挑战性的问题,让学生通过开放式的数学讨论提高学生学习的兴趣,在交流中获益。通过随堂练习和作业来激励其学习。同时做练习时,将评价及时反馈给学生,树立学习数学的自信心,促进学生的进一步发展。并在课后作成长记录,使学生比较全面了解自己的学习过程,特别感受自己的不断成长和进步,为下一步教学提供重要依据。

初中数学一元一次方程说课稿 篇4

一、 教学目标的确定

1、教材分析

本节课是在学生已经掌握了一元一次方程的解法,并已了解列方程解决实际问题的基本步骤的基础上进行教学的。

本节课的内容和学生的生活关系密切,因而学生会很感兴趣。本节课中,学生进一步经历列方程解决销售问题的过程,既是对前面所学知识的巩固、应用和加深理解,又是今后学习其它应用问题的铺垫。

2、学情分析

小学阶段,学生已经学习了用算术方法解应用题,并能用借助方程表示简单情境中的等量关系。

根据课程要求和教学内容的特点,结合我校学生的实际情况,确定本节课的教学目标如下:

3、教学目标

(1)理解进价,售价,标价,利润,利润率等相关概念含义及它们的关系;会根据实际问题中的数量关系列方程解决实际问题。

(2)培养学生建模能力,分析问题、解决问题的能力。

(3)在用方程解决实际问题的过程中,体会数学来源于生活,又服务生活。

二、 教学重点、难点的分析

重点:理解进价,售价,标价,利润,利润率等相关概念的含义及它们之间的关系;根据实际问题寻找等量关系。

难点:设未知数找等量关系。

三、 教学方式与手段的选择

根据教学内容的特点和学生的认知水平,我在本节课同时采用讲授式和启发式的教学方法,并借助于多媒体展开教学。

四、 教学过程的设计

具体教学过程分为:复习旧知;创设情境,导入新课;探究学习;练习巩固;归纳总结,布置作业。

(一) 复习旧知

问题:列方程解应用题的一般步骤是什么?

设未知数,列方程 ,解方程 ,检验,求解其他未知量,答题。

设计意图:复习列方程解应用题程序化步骤,为本节课的学习做准备。

(二) 创设情境 导入新课

阅读本小节开篇引例,引出本节课课题——销售中的盈亏问题。

学习销售问题中的关系式:(通过设置三个小题,借助于题目得出公式)

问题1:某商品每件进价是120元, 售价是150元,每件利润是______,利润率是_____

归纳公式:利润=售价-进价;利润率=(利润/进价)*100%。

问题2:某种品牌的彩电进价2000元,商家要获得20%的利润,每台售价应为 ________元

归纳公式:利润=进价×利润率;售价=进价×(1+利润率)

问题3:某种品牌的彩电按标价打八折后,每台售价为a元,则该品牌彩电每台标价应为________元

归纳公式:售价=标价*n/10(打n折)

设计意图:提出问题,引发学生思考打折销售中常用销售术语的含义,结合具体问题理解他们之间的数量关系,便于学生理解记忆公式,同时为后面的学习做铺垫。

(三) 探究学习

学习了销售问题的一些基本关系,回来探究本节课的引入问题:例一

读懂题目,思考下面几个问题:

1、猜一猜

2、如何用数学方法判断?需要求出那些量?

3、依据计算结果,能对总的盈亏情况做出说明吗?

4、回顾反思:通过解答上述问题,你有哪些体会?

设计意图:问题层层递进,通过猜想——发现问题——解决问题,让学生培养严谨的数学思维和科学的解决问题的方法、能力。

例2:某商场把进价为1980元的商品按标价的.八折出售,仍获利10%,则该商品的标价为多少元?

分析:

(1)销售问题中的基本量有哪些?

(2)根据已知,如何用数字或代数式表示基本量?

(3)你有几种方式表示售价?分别是什么?

设计意图:本小题主要训练学生对折扣问题的处理,通过不同类型题目的解答,训练学生分析、解决问题的能力。

(四) 练习巩固

练习1:某小家电的进价400元,标价600元,打折促销时的利润5 %该商品是按几折销售的?

设计意图:依然是销售问题,所用关系式和前面练习相似,只是问题稍作改变,要引起注意!主要培养学生解决问题的能力。

练习2:某商场将某种DVD产品按进价提高35%, 然后打出“九折酬宾,外送50元打的费”的广告,结果每台DVD仍获利208元,则每台DVD的进价是多少元?

设计意图:针对例2的配套练习,通过练习,熟练等量关系的表达以及公式的使用。

(五) 归纳总结 布置作业

1、本节课你学到了哪些知识?

2、通过本节课的学习你掌握了哪些方法,有什么体会?

3、通过今天的学习,你想进一步探究的问题是什么?

设计意图:以上设计通过对三个问题的思考引导学生回顾自己的学习过程,畅所欲言,加强反思、提炼,将新知纳入自己原有的知识体系。

作业:目标检测

板书设计

课题:3.4.1实际问题与一元一次方程—销售问题

销售问题基本量之间的数量关系

教学反思

本课以学生已有的知识经验和生活中的实例入手引入新课。教学方式灵活化,根据学习内容与学生年龄特点确定教与学的方式,在授课过程中,以学生自主探究为主体,弄清销售中的盈亏问题。如学习问题探究时先让学生猜一猜总的盈亏情况,采用自由发言的方式,目的是让学生说出真实的想法,调动学习的积极性,以便把问题引向深入。

初中数学一元一次方程说课稿 篇5

我今天说课的题目是“解一元一次方程(一)——合并同类项与移项”。下面我就从教材分析、教学方法、学法指导、说教学流程、课后反思、评价分析及学生谈收获等方面进行说课。

一、教材分析

(一)、教材地位、作用“解一元一次方程(一)——合并同类项与移项”是义务教育教科书七年级数学上册第三章《一元一次方程》第二节《解一元一次方程

(一)——合并同类项与移项》中第三课时的教学内容。

本节课是在学生学习了用字母表示有理数,列代数式、依据相等关系列出含未知数的等式——方程,合并同类项与移项以及有理数运算律,整式加减运算等基础知识之后来学习的。人们对方程的研究有悠久的历史,方程是重要的数学基本概念,它随着实践需要而产生,并且具有极其广泛的应用。以方程为工具分析问题、解决问题,即根据问题中的等量关系建立方程模型是全章的重点,而对一元一次方程的有关概念和解法的讨论,是在建立和运用方程这种数学模型的大背景之下进行的。列方程中蕴涵的“数学建模思想”和解方程中蕴涵的“化归思想”,是本节乃至全章始终渗透的主要数学思想。教材在第3课时结合这一实际问题展开,重点讨论两方面的问题:

(1)如何根据实际问题列方程?(这是贯穿全章的中心问题).

(2)如何解一元一次方程?(这节重点讨论用“移项”法解方程)。

首先用教材问题2说明什么是移项,再安排例3教学,给用移项方法解一元一次方程以巩固、提高、拓展。

通过本节教学,使学生认识到方程是更方便、更有力的数学工具,体会解法中蕴涵的化归思想,这将为后面几节进一步讨论一元一次方程中的“去括号”和“去分母”解法准备理论依据.因此这节课是一节承上启下的课。

基于上面对教材与学情的分析,考虑到学生已有的认知结构、心理特征,结合新课改理念,结合《新课标》的要求,我确定以下教学目标、教学重点和难点:

(二)、教学目标

1、知识与技能目标:

(1)通过分析实际问题中的数量关系,建立方程解决实际问题,进一步认识方程模型的重要性;

(2)、掌握移项方法,学会解“ax+b=cx+d”的.一元一次方程,理解解方程的目标,体会解法中蕴涵的化归思想。

2、过程与方法目标:

(1)、通过具体情境的观察、思考、类比、探索、交流和反思等数学活动培养学生创新意识和化归思想,使学生掌握研究问题的方法,从而学会学习。

(2)、通过具体情境贴近学生生活,让学生在生活中挖掘数学问题,解决数学问题,使数学生活化,生活数学化。会利用合并同类项的知识解决一些实际问题。

(3)、通过知识梳理,培养学生的概括能力、表达能力和逻辑思维能力。

3、情感、态度与价值观目标:进一步认识解方程的基本变形,感悟解方程过程中的转化思想.

(三)、教学重难点:

重点:用一元一次方程分析和解决实际问题;用“移项“法解一元一次方程的方法。

难点:分析实际问题中的相等关系,列出方程。会用“数学建模思想”、 “化归思想”分析和解决实际问题.

二、教学方法、手段

(一)、教学设想

突出以学生的“数学活动”为主线,激发学生学习积极性,向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流过程中真正理解和掌握基本的数学知识与技能、数学思想与方法,获得广泛的数学活动经验。

(二)、设计思路:

1.采用“问题情境——建立模型—解释、应用与拓展”的模式展开教学。这样设计,能让学生经历知识的形成与应用过程,从而更好地理解知识,掌握其思想方法和应用技能。

2、引导学生主动地从事观察、猜想、推理、论证、交流与反思等数学活动;鼓励学生动手操作与合作交流,使学生主动地获取知识,积累数学活动经验,学会探索、学会学习。

3、关注学生的情感与态度,实施开放性教学,让学生获得成功的体验。

(三)、教学方法

本节是新课内容的学习。为了达到教学目标,实现我的设计效果,在教学过程中,我注重体现教师的导向作用和学生的主体地位,采用以自学引导法、观察法、探究法为主的教学法,尽力引导学生成为知识的发现者,把教师的点拨和学生解决问题结合起来,为学生创设情境,从而不断激发学生的求知欲望和学习兴趣,使学生轻松愉快地学习不断克服学生学习中的被动情况,使其在教学过程中在掌握知识同时、发展智力、受到教育。

(四)、教学手段

新课标提倡教学中要重视现代教育技术、要引导学生独立思考、自主探索与合作交流,让学生掌握知识的发生发展过程,主动去获得新的知识,学会获取知识的方法,因而在教学中创设情境让学生乐意并全身心投入到现实的、探索性的数学活动中去。所以本节课充分利用多媒体课件等教学手段创设教学情境,引导学生观察、探索、发现、归纳来激发学生学习兴趣、激活学生思维,以利于突破教学重点和难点,提高课堂教学效益。

三、学法指导

以自主探究法为主

学生在学习过程中首先通过主动“观察→分析→思考→比较→探索→联想→猜测→类比→归纳→例题探索”等初步了解用移项法解一元一次方程的方法,归纳总结出用移项方法解一元一次方程的一般步骤。然后经过练习挑战、巩固提高→总结,最终完成学习任务的过程,实现教学目标。

四、说教学流程

为达到教学目标,充分发挥学生的主体作用,最大限度地激发学生学习的主动性、自觉性、积极性,本节课教学程序设计如下:

1、引入:创设两个用合并同类项解方程的练习:目的在于复习上一节课的内容,引发学生学习的积极性,启发学生的探索欲望,同时为本课学习做好准备和铺垫。

2、提出问题,总结方法:出示课本中的问题2,鼓励学生通过自主探索与合作交流,认识用“移项”法解一元一次方程的方法,学会应用,对有困难的同学,教师通过适当的语言提示,引导学生体验探求规律的思想方法。让学生亲身参加了探索发现,获取知识和技能的全过程。由学生对规律进行归纳总结补充,体验合作的愉快与收获。感受成功的喜悦。

通对问题2解方程中“移项”起了什么作用?”探究,让学生加深认识,掌握列方程中蕴涵的“数学建模思想”和解方程中蕴涵的“化归思想”的实质,感到学习它的重要性、必要性。

3、例题讲解:对于例3,首先鼓励学生试着解方程,只要学生的解法合理就鼓励。让学生进行展示。教师注意发现学生可能出现的错误,把错误集中起来,组织学生进行组织交流。最后教师指导规范的书写格式,使学生形成一个完整的解题过程,进一步理解解方程中蕴涵的“化归思想”。

4、巩固练习:出示四道由易而难,分层次练习的一元一次方程,让学生根据自己的情况选做一题,然后展示。及时反馈、巩固提高、拓展。通过练习,使不同程度的学生都能得到不同的发展,使学生知识技能螺旋式上升。展示后发现,仍存在问题,教师又让学生组成学习小组,学会了的学生教不会的学生,进一步巩固方法。活跃课堂气氛,充分调动学生的积极性。使学生在一种比较活跃的氛围中,解决各种问题。

5、课堂小结:教师引导学生做出本节课小结,归纳解方程的方法及易出错的地方。通过学生的自我反思,将知识条理化、系统化。

6、达标测试:最后进行达标测试。检查学生对本节知识的掌握情况。完成本节课的学习目标。

五、课后反思:

通过这节课的教学,我有以下几点反思:

成功方面:

1、绝大多数学生都能积极参与到数学活动中来。

2、绝大多数学生掌握了分析应用题,列方程的方法;

3、通过本节课的合作学习,绝大多数学生掌握了用移项方法解一元一次方程的方法;

4、绝大多数学生会解形如“ax+b+cx+d”形式的一元一次方程;

5、绝大多数学生在学习中都能积极主动的展示自己的学习成果;

6、大多数学的较好的学生都能积极帮助学的较差的学生,精神可嘉。

7、教学中注重让不同的学生得到不同的发展。

8、本节课完成了教学任务,基本实现了教学目标。

存在的不足之处是:

1、学生独立完成题量不多,主要是学生做题速度慢;

2、让学生展示自己的机会还不够;

3、课堂练习方法单一,且没有梯度,没有给优秀学生提供机会。

六、评价分析

在本课的教学过程中,我严格遵循由感性到理性,将数学知识始终与现实生活中学生熟悉的实际问题相结合,不断提高他们应用数学方法分析问题、解决问题的能力。在重视课本基础知识的基础上,适当进行拓展延伸,培养学生的创新意识,同时根据新课程标准的评价理念,在教学过程中,不仅注重学生的参与意识,而且注重学生对待学习的态度是否积极。课堂中也尽量给学生更多的空间、更多展示自我的机会,让学生在和谐的氛围中认识自我、找到自信、体验成功的乐趣。使学生的主体地位得到充分的体现,使教学过程成为一个在发现在创造的认知过程。

七、学生谈收获:

①通过本节课的学习,你学会了哪些知识?

②通过本节课的学习,你最大的体验是什么;

③通过本节课的学习,你掌握了哪些学习数学的方法。

初中数学一元一次方程说课稿 篇6

尊敬的各位评委:

大家好,我今天说课的课题是人教版数学七年级上册第三章第四节《实际问题与一元一次方程》。下面我将从教材分析、学情分析、教法与学法、教学过程和板书设计五个方面对本节课的设计进行说明。

首先我们来看教材分析,教材分析包括3部分。

一、教材分析

1、教材的地位和作用

本节课是在学习了解一元一次方程的基础上,进一步探究如何找出实际问题中的相等关系,学习如何用一元一次方程解决实际问题,是实际问题与一元一次方程的第一课时,示范性强,同时也为下节课探究问题做铺垫,在本章中起着承上启下的作用。

根据新课标素质培养的要求通过本节课的学习,我认为应该达到以下教学目标

2、教学目标

(1)知识目标:

分析实际问题,寻找相等关系,建立方程模型,并根据问题的实际背景进行检验。

(2)能力目标:

培养学生分析问题,解决实际问题,归纳整理的能力。

(3)情感目标:

培养学生勤于思考、乐于探究的学习习惯,体会数学的应用价值,激发学生学习兴趣,培养学生的爱国情怀和自强不息的精神。

3、教学的重点及难点

本着课程标准,在吃透教材的基础上,我认为本节课的重点为

重点:列出一元一次方程解决实际问题

在列方程解应用题的时候找出最正确的等量关系式十分重要,因此本节课的难点为

难点:找出问题中的相等关系

下面再从学情分析谈一谈

二、学情分析

七年级学生初学列方程解决实际问题时,往往弄不清解题步骤,不设未知数就直接进行列方程,我认为学生可能存在两方面的困难:

(1)抓不准相等关系;

(2)找出相等关系后不会列方程;

还可能存在分析问题思路不同,列出方程不同,这样一来部分学生可能认为存在错误,实际不是,作为教师应鼓励学生开拓思路,只要思路正确,所列方程合理,都是正确的,让学生选择合理的思路,使得方程尽可能简单明了。

(基于以上我对教材和学情的分析,我采用了以下教学方法,和学法指导)

三、教法与学法

教法:

教学过程中坚持启发式教学的原则,采用讲练结合、探索发现法进行教学,引导学生从实际生活中抽象出数学问题,充分体现学生是学习的主人,教师是学习的组织者、引导者、合作者。

学法:让学生经历由简单到复杂的学习过程,教师设疑提问,学生自己体会解决实际问题的过程并鼓励学生自己归纳总结。

通过以上我对教材、学情、教法与学法的分析,我设计了下面的教学过程:

四、教学过程

1、创设情境,引入新课

本节课开始我将讲解华罗庚的生平,引入新课,这样可以更好地激发学生的学习兴趣

国际数学家华罗庚,1910年出生于江苏金坛县,被誉为中国现代数学之父。初中毕业后因交不起学费而中途退学,但经过顽强自学完成了高中和大学的全部课程,20岁时进入清华大学工作,6年后前往剑桥大学,他一生的1/5的时间在国外学习。此后,他毅然放弃了美国的优厚待遇,将余生的34年献给了祖国。

(1)提出问题

你能算出华罗庚活了多少岁吗?

(2)探究问题

a.他的一生分为几个重要阶段?

b.如果设他活了x岁,各个阶段如何表示?

c.你能根据题意找出相等的关系吗?

(3)解决问题

他的一生分为了三个阶段:

国内求学工作+出国学习+归国工作=他的一生

学生经历提出问题、探究问题、解决问题的过程,体会用一元一次方程解决简单实际问题的步骤,让学生从大段文字中提取有用的数学信息,培养学生的分析问题、寻找相等关系、解决问题和提取信息的能力,并且我认为可以趁此机会对学生进行爱国主义和自强不息的精神教育,这样可以实现情感目标,更好的体现新课标的教学理念。这就是本节课要学习的实际问题与一元一次方程问题,接下来我将对例题进行讲解,例1是配套问题,

2、例题讲解

例1、某车间有22名工人,每人每天可以生产1200个螺钉或2000个螺母。1个螺钉需要配2个螺母。为使每天生产的螺钉和螺母刚好配套,应安排生产螺钉和螺母的工人个多少名?分析:

每天生产的螺母数量是螺钉数量的2倍时,它们刚好配套。

螺母的数量=螺钉数量的2倍是本题中特有的相等关系,是解决本例题的重点所在。

每天每人的工作效率x人数=每天的工作量(产品数量),是工作问题中的基本相等关系,上述两者结合起来就能列出方程。本题有两个未知数,在此可以鼓励学生勤于思考,设其中哪个为x都可以。

通过对例1的讲解学习,可以使学生自己寻找问题中的基本相等关系,引导学生体验用一元一次方程解决实际问题的基本过程,让学生突破找相等关系的难点。

为了加深学生对解题过程的理解及自我分析问题能力的提高,下面安排了例2。我认为例2可以采取教师引导,学生为主体自己写出分析过程,从而师生共同解决实际问题。

例2、整理一批图书,由一个人做需要40 h完成。现计划由一部分人先做4 h,然后增加2人与他们一起做8 h,完成这项工作。假设这些人的.工作效率相同,具体应先安排多少人工作?根据我对本课的理解,我认为此题关键在于以下三个问题

1、引导学生自己找出正确的基本相等关系两时段的工作量之和=总工作量

2、使学生理解在工程问题中把全部工作量简单表示为1,那么人均效率是个平均值,它

表示平均每人每单位时间完成的工作量

3、工作量=人均效率X人数X时间

解决了以上3个问题,题目自然迎刃而解,通过对稍微增加难度的例2的学习探究,可以更进一步提高学生寻找相等关系的能力以及分析解决问题的能力,再次经历设、列、解、检、答的过程,以便下一步的过程归纳

下面让学生由以上三道题的过程,自己试着总结出用一元一次方程解决实际问题的基本过程。

3、归纳总结

这样设计,可以让学生自己讨论,自己归纳,从而提高学生的归纳概括能力

4、巩固练习

接下来通过巩固练习,让学生自己练习两道问题,第一题是例1的配套问题,第二题是例2的工程问题,检查学生对本节课的掌握情况,以便我可以及时进行补充,也起到了加深理解,巩固知识的作用。(检查学生对本节课的掌握情况,对学生易错点进行纠正,并再次强调如何列一元一次方程,提高学生解题能力)

5、小结反思

通过以上的学习,我认为可以让学生自己总结本节课的学习内容,进一步提高学生的归纳概括能力。

6、布置作业

让学生举一反三,熟练掌握本节课的知识。

五、板书设计

下面是我的板书设计,呈现给大家的是本节课的主要内容,通过板书的直观形象可以再次加深学生对知识的理解和记忆

我的说课到此结束,谢谢大家!

使学生能在更加贴近实际生活的问题情境中运用所学数学知识,提高分析问题和解决问题的能力。