返回首页
文学网 > 短文 > 教学教案 > 正文

六年级数学教案

2026/02/02教学教案

文学网整理的六年级数学教案(精选6篇),供大家参考,希望能给您提供帮助。

六年级数学教案 篇1

六年级数学教案(集合15篇)

作为一名人民教师,编写教案是必不可少的,教案是教学活动的总的组织纲领和行动方案。快来参考教案是怎么写的吧!下面是小编收集整理的六年级数学教案,欢迎大家借鉴与参考,希望对大家有所帮助。

六年级数学教案 篇2

教学目标:

1、使学生知道纳税的含义和重要意义,知道应纳税额和税率的含义,以根据具体的税率计算税款。

2、在计算税款的过程中,加深学生对社会现象的理解,提高解决问题的能力。

3、增强学生的法制意识,使学生知道每个公民都有依法纳税的义务。

教学重点:税额的计算。

教学难点:税率的理解。

教学过程:

一、复习

1、口答算式。

(1)100的5%是多少?(2)50吨的10%是多少?

(3)1000元的8%是多少?(4)50万元的20%是多少?

2、什么是比率?

二、新授

1、阅读P122页有关纳税的内容。说说:什么是纳税?

2、税率的认识。

(1)说明:纳税的种类很多,应纳税额的计算方法也不一样。应纳税额与各种收入的比率叫做税率。一般是由国家根据不同纳税种类定出不同的税率。

(2)试说以下税率表示什么。

A、商店按营业额的5%缴纳个人所得税。这里的5%表示什么?

B、某人彩票中奖后,按奖金的20%缴纳个人所得税。这里的20%表示什么?

3、税款计算

(1)出示例5(课本99页)

一家大型饭店十月份的营业额是30万元。如果按营业额的5%缴纳营业税,这家饭店十月份应缴纳营业税多少万元?

(2)理解:这里的5%表示什么?(应缴纳营业税款占营业额的百分比。)

(3)要求应缴纳营业税款多少就是求什么?

(4)让学生独立完成?

4、看课本98页内容。读一读,什么是纳税?什么是税率?

三、练习

1、巩固练习:练习三十二第4题。(要点:5%对应的单位1是营业额,7%对应的单位1是营业税。)

2、依据第5题,学生各自发表意见。

六年级数学教案 篇3

本学期总第7课时

教学课题:百分数折扣

教学内容:第8页“折扣”、做一做及练习二第1至3题。

教学目标:知识与技能明确折扣的含义,能熟练地把折扣写成分数、百分数,正确解答有关折扣的实际问题。

过程与方法:学会合理、灵活地选择方法,锻炼运用数学知识解决实际问题的能力。

情感态度与价值观:感受数学知识与生活的紧密联系,激发学习兴趣。

教学重点:会解答有关折扣的实际问题。

教学难点:合理、灵活地选择方法,解答有关折扣的实际问题。

教法与学法:引导交流,合作探究

教学准备:白板课件

教学过程:

一、情景导入

圣诞节期间各商家搞了哪些促销活动?谁来说说他们是怎样进行促销的?

二、新课讲授

1、理解“折扣”的含义。

(1)刚才大家调查到的打折是商家常用的手段,是一个商业用语,那么你所调查到的打折是什么意思呢?比如说打“七折”,你怎么理解?

(2)你们举的例子都很好,老师也搜集到某商场打七折的售价标签。(课件出示)

(3)引导提问:如果原价是10元的铅笔盒,打七折,猜一猜现价会是多少?如果原价是1元的橡皮,打七折,现价又是多少?

(4)仔细观察,商品在打七折时,原价与现价有一个什么样的关系?

(5)学生动手操作、计算、讨论,找出规律:原价乘以70%恰好是标签的售价或现价除以原价大约都是70%。

(6)归纳定义。

通俗来讲,商店有时降价出售商品,叫做打折扣销售,通称“打折”。几折就是十分之几,也就是百分之几十。如八五折就是85%,九折就是90%。

2、解决实际问题。

(1)爸爸给小雨买了一辆自行车,原价180元,现在商店打八五折出售。买这辆车用了多少钱?

①导学生分析题意:打八五折怎么理解?是以谁为单位“1”?

②先让学生找出单位“1”,然后再找出数量关系式:原价×85%=实际售价

③学生独立根据数量关系式,列式解答。

④全班交流。根据学生的汇报,板书:

(2)爸爸买了一个随身听,原价160元,现在只花了九折的钱,比原价便宜了多少钱?

①导学生理解题意:只花了九折的钱怎么理解?以谁为单位“1”?

②学生试算,独立列式。

③全班交流。根据学生的汇报并板书。

3、提高运用

在某商店促销活动时,原价200元的商品打九折出售,最后剩下的个,商家再次打八折出售,最后的几商品售价多少元?

引导学生分析,学生独立完成,再集体交流,让学生明确:“折上折”相当于连续求一个数的百分之几是多少。

三、巩固练习

1、完成教材第8页“做一做”练习题。

2、完成教材第13页练习二第1~3题。

四、课堂小结

通过这节课的学习你有什么收获?

六年级数学教案 篇4

教学要求:

1.使学生掌握工程问题的特点和解答方法,并能解答有关的简单实际问题。

2.培养学生分析解答应用题的能力,及迁移类推触类旁通的能力。

教学重点:

使学生掌握工程问题的特点和解题方法。

教学难点:

工作总量用单位1表示及工作效率所表示的含意。

教学手段:

多媒体

教学过程:

一.设计情境,复习铺垫:

1.谈话:同学们,你发现最近我们南雄城发生了哪些变化?

生答:略

师:如果我们要把新建沿江路人行道两边进行绿化。

①这项工程计划15天完成,平均每天完成几分之几?

②如果这项工程每天完成 ,几天可以完成全部工程?

2、导入新课:在日常生活中,像搞绿化、修马路、盖房屋、造桥、运货等各种工作,统称为工程,今天我们就一起来研究工程问题。

二.尝试探究、探讨新知:

1.谈话:如果我们将新建路两旁的绿化工程进行招标,应聘单位有三个,他们都承诺能保质保量完成任务,但甲工程队单独完成需10天,乙工程队单独完成需15天,丙工程队单独完成需18天。请问:

①你选择哪个队施工?为什么?

②为了加快工程完成速度,又该做怎样的选择?

2.(投影)出示例题,进行研讨。

(1)要绿化30公顷土地,甲队单独完成要10天,乙队单独完成要15天,两队合作,几天可以完成?

要求:①学生独立完成。

②分析题意:明确:3010 、 3015与(3010+3015)各求出的是什么?怎样求合作时间?

(2)把30公顷改为10公顷、1公顷。这时分别怎样求合作时间?学生独立完成,并汇报。

板书: 30(3010+3015)=6天

10(1010+1015)=6天

1(110+115)=6天

问:通过这三个算式,你发现了什么?(工作总量在变化可用的时间都一样)

怎样求出合作时间呢?

板书:工作总量效率和=合作时间

为什么绿化面积加大了,可用的时间却都一样呢?

(3)(出示去掉具体绿化面积是多少的题目)

通过读题看看现在这道题与前面三道题有什么不同?

①、学生独立解答,相互交流。

②、弄清:表示什么?表示什么?

又表示什么?要求合作时间,为什么要用1( + )?

讨论:已知条件中去掉了具体的数量也能求出问题,这种做法与前面具体的数量计算结果的方法比较,有什么相同的地方与不同的地方?

不同:一是具体的工作总量,另一题是没有具体的工作总量,而是用单位1表示。

相同:解题的思路是一致的,数量关系也相同,合作时间=工作总量工作效率和。

把全部工作量看作单位1是工程问题的特点,这个1可代表一项工程,一块地,一堆煤,一段路程等等。

再看一看:为什么绿化面积水逐渐加大,可用的时间却都一样呢?

明确:工作总量虽然变化了,但每天完成工作量的几分之几没有变。把工作量30公顷、45公顷、60公顷都可以看作单位1,这三个算式实际就是例题的后一种形式,所以工作时间不变。

三、综合应用、巩固提高:

(1)为了加快工程速度,三个工程队一起完成这项工程需几天?

(2)根据上面给出的情境,绿化工程,甲队单独完成需10天,乙队单独完成需10天,丙队单独完成需18天。

大家提问,共同解答。

①甲乙合做几天完成全工程的一半?

②甲乙合做几天后,还剩全工程的 ?

③甲乙合做2天后,剩下的丙队来完成还需几天?

④甲、乙、丙合做3天后,还剩全部工程的几分之几?

4、看书质疑。

三、全课总结:

这节课我们共同研究了工程问题这类应用题,了解了工程问题的特点及解题思路和方法,同时解决了我们生活中的问题。同学们通过学习还有什么新的想法和见解。

四、课外实践:

编题练习:

五、回归评价:

希望同学们能够用我们所学的知识解决生活中的实际问题,把我们南雄建设得更加美好

六年级数学教案 篇5

教材分析:

在学习本单元的内容之前,学生已经在第一、二学段学习了前后、上下、左右等表示物体具体位置的知识,也学习了简单的路线等知识。这些知识为学生进一步认识物体在空间的具体位置打下了基础。而本单元的学习则是第一、二学段学习内容的发展,它对提高学生的空间观念,认识生活周围的环境,都有较大的作用。

教材从学生自己十分熟悉的座位表着手,通过说一说张亮的座位,引出第几组与第几个的话题。接着,再从第几组第几个引出抽象的数对表示方法。这一从学生的经验中,逐步抽象出数学的表示方法,符合学生的由具体到抽象、由特殊到一般的数学认知规律。有助于学生理解“数对”在确定位置中的作用。

教学目标:

1.在具体的情境中,能在方格纸上用数对确定位置。

2.通过具体的情境,理解数对对确定位置的作用,并能根据数对确定物体的位置。

教学重点:

掌握确定位置的方法,说出某一物体的位置。

教学难点:

在方格纸上用"数对"确定位置。

教学过程:

一、活动一:活动引入,认识数对

1、明确列、行排列规则

(1)学生按座位卡找座位。

位置卡

第 -列,第 -排

学生可能出现

A、找不到座位。

B、两人找到了同一个座位。

(2)请同学说说找座位的方法,明确排与列的数法。

我们把竖排叫做列,确定第几列一般从左往右数,引导生按列报数;横排叫做行,确定第几行一般从前往后数,引导生按行报数。

(3)重新找自己的座位。

(4)班长坐在第几列第几行?(同时板书)

2、体会学习数对的必要,认识数对

(1)用学生自己喜欢的简便的方法表示班长的位置,可以是数字,也可以是符号。(学生板演表示的多种形式)

这么多的方法都对不对呢?你有什么意见?

(2)在数学上就有一种“统一的方法”可以既清楚又简便的表示位置。

班长的位置3列2排就可以用(3,2)来表示。

(3)你在教室里的位置是第几列第几行?用数对怎样表示?小组交流。

小结:根据两个数组成的数对,能很快确定教室里每个人的位置。

生活中有没有运用数对解决的问题呢?

3、生活中应用数对

(1)根据位置写数对

①出示哈尔滨旅游景点的分布图。

你能表示出各个景点在图中的位置吗?

②独立书写,全班交流。

(2)根据数对找位置

①出示残缺的太阳岛景点分布图。

你能帮忙把地图补充完整吗?

②学生操作后交流。

得出:表示同一行中景点位置的数对,它们的第二个数相同;表示同一列中景点位置的数对,它们的第一个数相同。一个数能准确说出一个地点的位置吗?数对中的两个数能帮助我们很快在平面图上找到某个具体的地点。

二、活动二:学生小结

学习了确定位置,你有什么收获?

三、活动三:课外引申——数对在国际象棋中的运用。

1、课件出现国际象棋棋盘和棋子

(1)介绍:国际象棋的棋盘是一个正方形,等分为六十四方格。这些方格有深浅两种颜色,交替排列。国际象棋的八条直线分别用a、b、c、d、e、f、g、h表示,八条横线分别用1、2、3、4、5、6、7、8表示。每个方格便有了自己的名字。国际象棋的棋子有黑白两色,各有一个王、一个后、两个车、两个象、两个马和八个兵。

(2)如果白王所处的位置用国际象棋专用的方法记录为g2,你知道是用什么方法记录棋的位置的吗?

(3)课件出现三枚棋子在棋盘上的不同位置,问:其他棋各在什么位置?

(4)如果有一枚棋走一步记录为C6—C2,你知道是哪枚棋从什么位置走到什么位置上吗?

四、活动四:游戏——摆子连线

比赛规则:每3人一个小组,第一个学生先掷两次骰子。假如第一次是2,第二次是4,就将自己的棋子放在(2,4)的位置上(说明:棋子用一点来表示)。

第二个学生接着同样的操作,按所掷的点数放棋子。如果位置被其他棋子占了,可以重新再掷。

另外的一个学生负责记录。

每放对一个棋子加1分、如果你将两个棋子连在一起就奖2分,3个棋子连在一起就奖3分,依此类推,将你们俩的得分记录在一张纸上、谁先得8分,谁就赢了。(学生操作,教师下去巡视)

活动五:全课总结

刚才,我们是怎样探究总结出用数对表示位置的方法的?

板书设计:

位 置

六年级数学教案 篇6

【教材分析】

正比例是刻画某一现实背景中两种相关联的量的变化规律的数学模型,从常量到变量,是学生认识过程的一次重大飞跃。通过学习,学生可以进一步加深对过去学过的数量关系的理解,初步学会从变量的角度来认识两种量之间的关系,感受函数的思想方法。同时这部分知识在日常生活和生产中有着广泛的应用,学号这一内容,既可以锻炼学生用数学的眼光观察现实生活的意识,通过解决问题的能力,又可以为进一步学习函数知识奠定扎实的基础。

【学情分析】

学生已经认识了比、比例的意义,掌握了一些常见的数量关系。虽然学生在过去学习用字母表示数和运算律的过程中,对变量的思想有一些感知,但真正用函数的观念探索两种相关联的量的变化规律是从本课开始的。在学习过程中,使学生结合生活实例通过观察、操作、讨论等学习方式初步理解正比例的意义。

【设计理念】

数学学习应从学生的认知发展水平和已有的知识经验出发,让学生亲身经历、体验、探索。”在认真分析教材,深入了解学生的实际认知水平的基础上,本节课的设计,我注意了以下几个方面:

1.从学生已有的知识经验出发,将数学学习与生活实际相联系。

2.让学生经历发现和提出问题、分析和解决问题的过程,自主探索、合作交流。

3.注重积累数学学习经验,渗透数学思想方法。

4.注重学生过程的评价,让学生在评价中不断认识、调整自我,建立自信心。

【教学目标】

1.使学生结合具体实例认识正比例的量,初步理解正比例的意义,能正确判断两种相关联的量是不是成正比例。

2.使学生在认识正比例的量的过程中,初步体会变量的特点,感受用数学模型表示特定数量关系及其变化规律的过程和方法,获得从生活现象中抽象出数学知识和规律的意识,发展数学思维能力。

3.使学生在参与数学活动的过程中,进一步体会数学与日常生活的密切联系,获得一些学习成功的体验,激发对数学学习的兴趣。

【教学重点】

理解正比例的意义。

【教学难点】

掌握成正比例的量的变化规律及其特征,学会根据正比例的意义判断两种相关联的量是不是成正比例。

【教学准备】

教学课件。

【教学过程】

一、激趣设疑,铺垫衔接。

1.谈话:看到“正比例的意义”这个课题,你有什么疑问?

2.结合现实情境回忆常见的数量关系。

【设计说明:数学课堂教学应激发学生兴趣,调动学生积极性,引发学生思考。正比例的意义建立在对常见的数量关系间变化规律探索的基础之上,适当的回顾既有利于激活学生已有的知识经验,又为探究新知做好准备,有效沟通新旧知识间的内在联系。

二、合作探究,发现规律。

1.教学例1

出示例1的表格,让学生说一说表中列出的是哪两种量。并联系这辆汽车的行驶过程,体会表中行驶时间和路程之间有什么关系。

谈话:请同学们仔细观察和比较表中数据,说一说这两种量分别是怎样变化的。

组织反馈,并通过交流,使学生认识到这里的路程和时间是两种相关联的量,汽车的行驶时间变化,路程也随着变化。

谈话:请大家进一步观察表中数据,这辆汽车行驶的时间喝路程的变化是否有一定的规律?

预设:

(1)一种量扩大到到原来的几倍,另一种量也随着扩大到原来的几倍;一种量缩小到到原来的几分之几,另一种量也随着缩小到原来的几分之几。

(2)路程除以对应时间的商都是一样的,也就是相对应的路程和时间的比值都是80。

根据学生的交流的实际情况,如果学生不能主动发现规律的,及时引导学生写出机组相对应的路程和时间的比,并求出比值。

提问:这个比值表示什么?你能用一个式子来表示上面几个量之间的关系吗?

根据学生的回答,板书:

提问:括号里的“一定”表示什么意思?你能结合这个式子说一说上面的例子中汽车行驶路程和时间的变化规律吗?

小结:路程和时间是两种相关联的量,时间变化,路程也随着变化。当路程和对应时间的比的比值总是一定(也就是速度一定)时,我们就说行驶的路程和时间成正比例关系,行驶的路程和时间是成正比例的量。

请学生完整地说一说表中的路程和时间成什么关系。

【设计说明:正比例的意义比较抽象,建立正比例的概念,首先要对变量有比较充分的感知。为此,在呈现表格后,先引导学生联系汽车行驶的过程体会到汽车行驶的时间和路程是在不断变化的,再通过观察和比较进一步体会到时间和路程是两种相关联的量,时间变化,路程也随着变化。这既有利于学生联系已有的生活经验感知变量的特点,又渗透了变量和自变量的含义,有利于学生初步体会变量之间的关系。在此基础上,引导学生观察表格,讨论时间和路程的变化规律,并对学生中可能出现的情况作充分预设,既为学生自主发现规律提供了足够的空间,凸显了学生的主体地位,又突出了本课的教学重点,使每一个学生都能在观察、比较、分析、归纳等具体活动中经历学习过程,获得对正比例意义的充分感知。在揭示文字表达式后,让学生交流这里的“一定”表示什么意思,并结合文字表达式说一说两种量的变化规律,促使学生对已经积累的感性认识进行抽象和概括,为进一步揭示正比例的意义做好准备。】

2.教学“试一试”。

让学生自主读题,根据表中已经给出的数据把表格填写完整。

谈话:请同学们仔细观察表格,先想一想购买铅笔的数量和总价是怎样变化的,再写出几组对应的总价和数量的比,并比较比值的大小,看这两种量是按什么样的规律变化的。

提问:这里总价好数量的比值表示什么?你能用式子表示它们之间的关系吗?

根据学生的回答,板书:

让学生结合上面的关系式,判断铅笔的总价和数量是否成正比例,并说明理由。

【设计说明让学生继续结合具体的实例进一步感知成正比例的量的特点,积累对成正比例的量的感性经验,为理解正比例的意义提供更丰富的感性认识。】

3.抽象概括

请大家回顾一下,例1和“试一试”中分别是什么样的两种量?成正比例的两种量有什么共同特点?

启发:如果用字母x和y分别表示两种相关联的量,用k表示它们的比值,正比例关系可以用什么样的式子来表示?

根据学生的回答,板书:,并揭示课题。

请大家想一想,生活中还有哪些成正比例的量?

【设计说明:引导学生回顾例1和“试一试”的学习过程,说一说成正比例的量有什么共同特点,并在充分交流的基础上,通过抽象和概括得到正比例关系的字母表达式,既可以促使学生主动把已经积累的的感性经验上升的理性认识,获得对正比例意义的准确把握,又有利于学生初步感悟数学抽象的过程和方法,体验符号化的思想,发展数学思考。】

三、分层练习,丰富体验

1.“练一练”第1题。

出示题目后让学生说一说表中列出了哪两种量,这两种量是怎样变化的。

讨论:这两种相关联的量是按什么规律变化的的呢?请大家先写几组相对应的的生产零件的数量和所用时间的比,并比较比值的大小,再想一想这个比值表示什么,可以用什么样的式子表示题中几种量之间的关系。

学生按要求活动,并组织反馈。

提问:张师傅生产零件的数量和时间成正比例吗?为什么?

2.“练一练”第2题。

出示题目后,请学生说一说表中列出的是哪两种量,它们是怎样变化的,在独立进行判断,并交流判断时的思考过程。

3.练习十第1题。

先请学生说一说是怎样发现订阅数量与总价的变化规律的,可以用什么样的式子表示它们的关系,为什么说订阅的总价和数量成正比例关系?

4.练习十第2题。

出示题目后,让学生按要求在方格纸上把正方形放大,并演示放大后的正方形,并说说是怎样画出放大后的正方形的,放大后的正方形的边长各是多少厘米。

出示题中的表格,让学生独立填表并比较填出的数据,说一说正方形的周长和边长是按什么规律变化的,它们是否成正比例;正方形的面积和边长是按什么规律变化的,它们是否成正比例。

结合学生的回答小结。

追问:判断两种相关联的量是否成正比例关系,关键看什么?

【设计说明:紧紧围绕本节课的重点和难点,有层次、有针对地设计练习,既有利于学生进一步加深对正比例意义的理解,掌握判断两种量是否成正比例关系的过程和方法,又有利于学生初步体会变量的特点,感悟函数的思想,发展用数学语言表达的能力。】

四、反思回顾,提升认识

谈话交流:这节课我们学习了什么?怎样判断两种相关联的量是不是成正比例关系?你还有哪些收获和体会?

【板书设计】

正比例的意义

两种相关联的量