返回首页
文学网 > 短文 > 教学教案 > 正文

八年级数学教案

2026/02/02教学教案

文学网整理的八年级数学教案(精选6篇),供大家参考,希望能给您提供帮助。

八年级数学教案 篇1

【教学目标】

一、教学知识点

1.命题的组成.

2.命题真假的判断。

二、能力训练要求:

1.使学生能够分清命题的条件和结论,能判断命题的真假

2.通过举例判定一个命题是假命题,使学生学会反面思考问题的方法

三、情感与价值观要求:

1.通过反例说明假命题,使学生认识到任何事情都是正反两方面对立统一

2.帮助学生了解数学发展史,拓展视野,激发学习兴趣

3.通过对《原本》介绍,使学生感受数学发展史和人类文明价值

【教学重点】准确的找出命题的条件和结论

【教学难点】理解判断一个真命题需要证明

【教学方】探讨、合作交流

【教具准备】投影片

【教学过程】

一、情景创设、引入新课

师:如果这个星期不下雨,我们就去郊游,这是命题吗?分析这句话,这个周日,我们郊游一定能成行吗?为什么?

新课:

(1)观察下列命题,你能发现这些命题有什么共同结构特征?与同伴交流。

1.如果两个三角形的三条边对应相等,那么这两个三角形全等。

2.如果一个四边形的一组对边平行且相等,那么这个四边形是平行四边形。

3.如果一个三角形是等腰三角形,那么这个三角形的两个底角相等。

4.如果一个四边形的对角线相等,那么这个四边形是矩形。

5.如果一个四边形的两条对角线相互垂直,那么这个四边形是菱形。

师:由此可见,每个命题都是由条件和结论两部分组成的,条件是已知的事项,结论是由已知事项推出的事项。一般地,命题都可以写成“如果……那么……”的形式,其中“如果”引出部分是条件,“那么”引出部分是结论。

二、例题讲解:

例1:师:下列命题的条件是什么?结论是什么?

1.如果两个角相等,那么他们是对顶角;

2.如果a>b,b>c,那么a=c;

3.两角和其中一角的对边对应相等的两个三角形全等;

4.菱形的四条边都相等;

5.全等三角形的面积相等。

例题教学建议:1:其中(1)、(2)请学生直接回答,(3)、(4)、(5)请学生分成小组交流然后回答。

2:有的命题的描述没有用“如果……那么……”的形式,在分析时可以扩展成这种形式,以分清条件和结论。

例2:上述命题哪些是正确的,哪些是不正确的?你是怎么知道它是不正确的?与同伴交流。

师:正确的命题叫真命题,不正确的命题叫假命题。要说明一个命题是假命题,通常可以举一个例子,使之具备命题的条件,却不具备命题的结论,即反例。

教学建议:对于反例的要求可以采取启发式层层递进方式给出,即:说明命题错误可以举例→综合命题(1)、(2)的两例,两例条件具备→例子结论不吻合→给出如何举反例要求。

三、思维拓展:

拓展1.师:如何证实一个命题是真命题呢?请同学们分小组交流一下。

教学建议:不急于解决学生怎么证实真命题的问题,可按以下程序设计教学过程

(1)首先给学生介绍欧几里得的《原本》

(2)引出概念:公理、定理,证明

(3)启发学生,现在如何证实一个命题的正确性

(4)给出本套教材所选用如下6个命题作为公理

(5)等式性质、不等式有关性质,等量代换也看作定理。

拓展2.师:任何公理、定理是命题吗?是真命题吗?为什么?

建议:在学生回答后归纳总结:公理是经过长期实践验证的,不需要再进行推理论证都承认的真命题。定理是经过推理论证的真命题。

练习书p197习题6.31

四、问题式总结

师:经过本节课我们在一起共同探讨交流,你了解了有关命题的哪些知识?

建议:可对学生进行提示性引导,如:命题的构成特点、命题是否都正确、如何判断一个命题是假命题、如何证实一个命题是真命题。

作业:书p197习题6.32、3

板书设计:

定义与命题

课时2

条件

1.命题的结构特征

结论

1.假命题——可以举反例

2.命题真假的判别

2.真命题——需要证明 学生活动一——

探索命题的结构特征

学生观察、分组讨论,得出结论:

(1)这五个命题都是用“如果……那么……”形式叙述的

(2)这五个命题都是由已知得到结论

(3)这五个命题都有条件和结论

学生活动二——

探索命题的`条件和结论

生:命题1、2如果部分是条件,那么部分是结论;命题3如果两个三角形两角和其中一角对边对应相等是条件,那么这两个三角形全等是结论;命题4如果是菱形是条件,那么四条边相等是结论;命题5如果两三角形全等是条件,那么面积相等是结论。

学生活动三

探索命题的真假——如何判断假命题

生:可以举一个例子,说明命题1是不正确的,如图:

已知:∠AOB,∠1=∠2,∠1,∠2不是对顶角

生:命题2,若a=10,b=8,c=5,此时a>b,b>c,但a≠c

生:由此说明:命题1、2是不正确的

生:命题3、4、5是正确的

学生活动四

探索命题的真假——如何证实一个命题是真命题

学生交流:

生:用我们以前学过的观察、实验、验证特例等方法

生:这些方法往往并不可靠

生:能够根据已知道的真命题证实呢?

生:那已经知道的真命题又是如何证实的?

生:那可怎么办呢?

生:可通过证明的方法

学生分小组讨论得出结论

生:命题的结构特征:条件和结论

生:命题有真假之分

生:可以通过举反例的方法判断假命题

生:可通过证明的方法证实真命题

八年级数学教案 篇2

一、教学目标

1.使学生理解并掌握分式的概念,了解有理式的概念;

2.使学生能够求出分式有意义的条件;

3.通过类比分数研究分式的教学,培养学生运用类比转化的思想方法解决问题的能力;

4.通过类比方法的教学,培养学生对事物之间是普遍联系又是变化发展的辨证观点的再认识.

二、重点、难点、疑点及解决办法

1.教学重点和难点 明确分式的分母不为零.

2.疑点及解决办法 通过类比分数的意义,加强对分式意义的理解.

三、教学过程

【新课引入】

前面所研究的因式分解问题是把整式分解成若干个因式的积的问题,但若有如下问题:某同学分钟做了60个仰卧起坐,每分钟做多少个?可表示为,问,这是不是整式?请一位同学给它试命名,并说一说怎样想到的?(学生有过分数的经验,可猜想到分式)

【新课】

1.分式的定义

(1)由学生分组讨论分式的定义,对于“两个整式相除叫做分式”等错误,由学生举反例一一加以纠正,得到结论:

用、表示两个整式,就可以表示成的形式.如果中含有字母,式子就叫做分式.其中叫做分式的分子,叫做分式的分母.

(2)由学生举几个分式的例子.

(3)学生小结分式的概念中应注意的问题.

①分母中含有字母.

②如同分数一样,分式的分母不能为零.

(4)问:何时分式的值为零?[以(2)中学生举出的分式为例进行讨论]

2.有理式的分类

请学生类比有理数的分类为有理式分类:

例1 当取何值时,下列分式有意义?

(1);

解:由分母得.

∴当时,原分式有意义.

(2);

解:由分母得.

∴当时,原分式有意义.

(3);

解:∵恒成立,

∴取一切实数时,原分式都有意义.

(4).

解:由分母得.

∴当且时,原分式有意义.

思考:若把题目要求改为:“当取何值时下列分式无意义?”该怎样做?

例2 当取何值时,下列分式的值为零?

(1);

解:由分子得.

而当时,分母.

∴当时,原分式值为零.

小结:若使分式的值为零,需满足两个条件:①分子值等于零;②分母值不等于零.

(2);

解:由分子得.

而当时,分母,分式无意义.

当时,分母.

∴当时,原分式值为零.

(3);

解:由分子得.

而当时,分母.

当时,分母.

∴当或时,原分式值都为零.

(4).

解:由分子得.

而当时,,分式无意义.

∴没有使原分式的值为零的的值,即原分式值不可能为零.

(四)总结、扩展

1.分式与分数的区别.

2.分式何时有意义?

3.分式何时值为零?

(五)随堂练习

1.填空题:

(1)当时,分式的值为零

(2)当时,分式的值为零

(3)当时,分式的值为零

2.教材P55中1、2、3.

八、布置作业

教材P56中A组3、4;B组(1)、(2)、(3).

九、板书设计

课题 例1

1.定义例2

2.有理式分类

八年级数学教案 篇3

【教学目标】

知识目标:

解单项式乘以多项式的意义,理解单项式与多项式的乘法法则,会进行单项式与多项式的乘法运算。

能力目标:

(1)经历探索乘法运算法则的过程,发展观察、归纳、猜测、验证等能力;

(2)体会乘法分配律的作用与转化思想,发展有条理的思考及语言表达能力。

情感目标:

充分调动学生学习的积极性、主动性

【教学重点】

单项式与多项式的乘法运算

【教学难点】

推测整式乘法的运算法则。

【教学过程】

一、复习引入

通过对已学知识的复习引入课题(学生作答)

1.请说出单项式与单项式相乘的法则:

单项式与单项式相乘,把它们的系数、相同字母的幂分别相乘,对于只在一个单项式里出现的字母,则连同它的指数作为积的一个因式。

(系数×系数)×(同字母幂相乘)×单独的幂

例如:( 2a2b3c) (-3ab)

解:原式=[2· (-3) ] · (a2·a) · (b3 · b) · c

= -6a3b4c

2.说出多项式2x2-3x-1的项和各项的系数项分别为:2x2、-3x、-1系数分别为:2、-3、-1

问:如何计算单项式与多项式相乘?例如:2a2· (3a2 - 5b)该怎样计算?

这便是我们今天要研究的问题。

二、新知探究

已知一长方形长为(a+b+c),宽为m,则面积为:m(a+b+c)

现将这个长方形分割为宽为m,长分别为a、b、c的三个小长方形,其面积之和为ma+mb+mc因为分割前后长方形没变所以m(a+b+c)=ma+mb+mc

上一等式根据什么规律可以得到?从中可以得出单项式与多项式相乘的运算法则该如何表述?(学生分组讨论:前后座为一组;找个别同学作答,教师作评)

结论单项式与多项式相乘的运算法则:

用单项式分别去乘多项式的每一项,再把所得的积相加。

用字母表示为:m(a+b+c)=ma+mb+mc

运算思路:单×多

转化

分配律

单×单

三、例题讲解

例计算:(1)(-2a2)· (3ab2– 5ab3)

(2)(- 4x) ·(2x2+3x-1)

解:(1)原式= (-2a2)· 3ab2+ (-2a2)·(– 5ab3) ①=-6a3b2+ 10a3b3 ②

(2)原式=(- 4x) ·2x2+(- 4x) ·3x+(- 4x) ·(-1) ①

八年级数学教案 篇4

菱形

学习目标(学习重点):

1.经历探索菱形的识别方法的过程,在活动中培养探究意识与合作交流的习惯;

2.运用菱形的识别方法进行有关推理.

补充例题:

例1. 如图,在△ABC中,AD是△ABC的角平分线。DE∥AC交AB于E,DF∥AB交AC于F.四边形AEDF是菱形吗?说明你的理由.

例2.如图,平行四边形ABCD的对 角线AC的垂直平分线与边AD、BC分别交于E、F.

四边形AFCE是菱形吗?说明理由.

例3.如图 , ABCD是矩形纸片,翻折B、D,使BC、AD恰好落在AC上,设F、H分别是B、D落在AC上的两点,E、G分别是折痕CE、AG与AB、CD的交点

(1)试说明四边形AECG是平行四边形;

(2)若AB=4cm,BC=3cm,求线段EF的长;

(3)当矩形两边AB、BC具备怎样的关系时,四边形AECG是菱形.

课后续助:

一、填空题

1.如果四边形ABCD是平行四边形,加上条件___________________,就可以是矩形;加上条件_______________________,就可以是菱形

2.如图,D、E、F分别是△ABC的边BC、CA、AB上的点,

且DE∥BA,DF∥ CA

(1)要使四边形AFDE是菱形,则要增加条件______________________

(2)要使四边形AFDE是矩形,则要增加条件______________________

二、解答题

1.如图,在□ABCD中 ,若2,判断□ABCD是矩形还是菱形?并说明理由。

2.如图 ,平行四边形A BCD的两条对角线AC,BD相交于点O,OA=4,OB=3,AB=5.

(1) AC,BD互相垂直吗?为什么?

(2) 四边形ABCD是菱形 吗?

3.如图,在□ABCD中,已知ADAB,ABC的平分线交AD于E,EF∥AB交BC于F,试问: 四 边形ABFE是菱形吗?请说明理由。

4.如图,把一张矩形的纸ABCD沿对角线BD折叠,使点C落在点E处,BE与AD交于点F.

⑴求证:ABF≌

⑵若将折叠的图形恢复原状,点F与BC边上的点M正好重合,连接DM,试判断四边形BMDF的形状,并说明理由.

八年级数学教案 篇5

教学目标:

1、经历用数格子的办法探索勾股定理的过程,进一步发展学生的合情推力意识,主动探究的习惯,进一步体会数学与现实生活的紧密联系。

2、探索并理解直角三角形的三边之间的数量关系,进一步发展学生的说理和简单的推理的意识及能力。

重点难点:

重点:了解勾股定理的由来,并能用它来解决一些简单的问题。

难点:勾股定理的发现

教学过程

一、创设问题的情境,激发学生的学习热情,导入课题

出示投影1(章前的图文p1)教师道白:介绍我国古代在勾股定理研究方面的贡献,并结合课本p5谈一谈,讲述我国是最早了解勾股定理的国家之一,介绍商高(三千多年前周期的数学家)在勾股定理方面的贡献。

出示投影2(书中的P2图1—2)并回答:

1、观察图1-2,正方形A中有_______个小方格,即A的面积为______个单位。

正方形B中有_______个小方格,即A的面积为______个单位。

正方形C中有_______个小方格,即A的面积为______个单位。

2、你是怎样得出上面的结果的?在学生交流回答的基础上教师直接发问:

3、图1—2中,A,B,C之间的面积之间有什么关系?

学生交流后形成共识,教师板书,A+B=C,接着提出图1—1中的A.B,C的关系呢?

二、做一做

出示投影3(书中P3图1—4)提问:

1、图1—3中,A,B,C之间有什么关系?

2、图1—4中,A,B,C之间有什么关系?

3、从图1—1,1—2,1—3,1|—4中你发现什么?

学生讨论、交流形成共识后,教师总结:

以三角形两直角边为边的正方形的面积和,等于以斜边的正方形面积。

三、议一议

1、图1—1、1—2、1—3、1—4中,你能用三角形的边长表示正方形的面积吗?

2、你能发现直角三角形三边长度之间的关系吗?

在同学的交流基础上,老师板书:

直角三角形边的两直角边的平方和等于斜边的平方。这就是的“勾股定理”

也就是说:如果直角三角形的两直角边为a,b,斜边为c

那么

我国古代称直角三角形的较短的直角边为勾,较长的为股,斜边为弦,这就是勾股定理的由来。

3、分别以5厘米和12厘米为直角边做出一个直角三角形,并测量斜边的长度(学生测量后回答斜边长为13)请大家想一想(2)中的规律,对这个三角形仍然成立吗?(回答是肯定的:成立)

四、想一想

这里的29英寸(74厘米)的电视机,指的是屏幕的长吗?只的是屏幕的款吗?那他指什么呢?

五、巩固练习

1、错例辨析:

△ABC的两边为3和4,求第三边

解:由于三角形的两边为3、4

所以它的第三边的c应满足=25

即:c=5

辨析:(1)要用勾股定理解题,首先应具备直角三角形这个必不可少的条件,可本题△ABC并未说明它是否是直角三角形,所以用勾股定理就没有依据。

(2)若告诉△ABC是直角三角形,第三边C也不一定是满足,题目中并为交待C是斜边

综上所述这个题目条件不足,第三边无法求得。

2、练习P7§1.11

六、作业

课本P7§1.12、3、4

八年级数学教案 篇6

一、教学目标:

1、加深对加权平均数的理解

2、会根据频数分布表求加权平均数,从而解决一些实际问题

3、会用计算器求加权平均数的值

二、重点、难点和难点的突破方法:

1、重点:根据频数分布表求加权平均数

2、难点:根据频数分布表求加权平均数

3、难点的突破方法:

首先应先复习组中值的定义,在七年级下教材P72中已经介绍过组中值定义。因为在根据频数分布表求加权平均数近似值过程中要用到组中值去代替一组数据中的每个数据的值,所以有必要在这里复习组中值定义。

应给学生介绍为什么可以利用组中值代替一组数据中的每个数据的值,以及这样代替的好处、不妨举一个例子,在一组中如果数据分布较为均匀时,比如教材P140探究问题的表格中的第三组数据,它的范围是41≤X≤61,共有20个数据,若分布较为平均,41、42、43、44…60个出现1次,那么这组数据的和为41+42+…+60=1010。而用组中值51去乘以频数20恰好为1020≈1010,即当数据分布较为平均时组中值恰好近似等于它的平均数。所以利用组中值X频数去代替这组数据的和还是比较合理的,而且这样做的好处是简化了计算量。

为了更好的理解这种近似计算的方法和合理性,可以让学生去读统计表,体会表格的实际意义。

三、例习题的意图分析

1、教材P140探究栏目的意图。

(1)、主要是想引出根据频数分布表求加权平均数近似值的计算方法。

(2)、加深了对“权”意义的理解:当利用组中值近似取代替一组数据中的平均值时,频数恰好反映这组数据的轻重程度,即权。

这个探究栏目也可以帮助学生去回忆、复习七年级下的关于频数分布表的一些内容,比如组、组中值及频数在表中的具体意义。

2、教材P140的思考的意图。

(1)、使学生通过思考这两个问题过程中体会利用统计知识可以解决生活中的许多实际问题

(2)、帮助学生理解表中所表达出来的信息,培养学生分析数据的能力。

3、P141利用计算器计算平均值

这部分篇幅较小,与传统教材那种详细介绍计算器使用方法产生明显对比。一则由于学校中学生使用计算器不同,其操作过程有差别亦不同,再者,各种计算器的使用说明书都有详尽介绍,同时也说明在今后中考趋势仍是不允许使用计算器。所以本节课的重点内容不是利用计算器求加权平均数,但是掌握其使用方法确实可以运算变得简单。统计中一些数据较大、较多的计算也变得容易些了。

四、课堂引入

采用教材原有的引入问题,设计的几个问题如下:

(1)、请同学读P140探究问题,依据统计表可以读出哪些信息

(2)、这里的组中值指什么,它是怎样确定的?

(3)、第二组数据的频数5指什么呢?

(4)、如果每组数据在本组中分布较为均匀,比组数据的平均值和组中值有什么关系。

五、随堂练习

1、某校为了了解学生作课外作业所用时间的情况,对学生作课外作业所用时间进行调查,下表是该校初二某班50名学生某一天做数学课外作业所用时间的情况统计表

所用时间t(分钟)人数

0

0<≤ 6

20

30

40

50

(1)、第二组数据的组中值是多少?

(2)、求该班学生平均每天做数学作业所用时间

2、某班40名学生身高情况如下图,

请计算该班学生平均身高

答案1.(1).15. (2)28. 2. 165

、课后练习:

1、某公司有15名员工,他们所在的部门及相应每人所创的年利润如下表

部门A B C D E F G

人数1 1 2 4 2 2 5

每人创得利润20 5 2.5 2 1.5 1.5 1.2

该公司每人所创年利润的平均数是多少万元?

2、下表是截至到20xx年费尔兹奖得主获奖时的年龄,根据表格中的信息计算获费尔兹奖得主获奖时的平均年龄?

年龄频数

28≤X<30 4

30≤X<32 3

32≤X<34 8

34≤X<36 7

36≤X<38 9

38≤X<40 11

40≤X<42 2

3、为调查居民生活环境质量,环保局对所辖的50个居民区进行了噪音(单位:分贝)水平的调查,结果如下图,求每个小区噪音的平均分贝数。

答案:1.约2.95万元2.约29岁3.60.54分贝