《平均数》教学设计
文学网整理的《平均数》教学设计(精选6篇),供大家参考,希望能给您提供帮助。
《平均数》教学设计 篇1
教学目标
1.在具体问题情境中,感受求平均数的需要,通过操作和思考体会平均数的意义,学会计算简单数据的平均数(结果是整数)。
2.能运用平均数的知识解释简单的生活现象,解决简单实际问题,进一步积累分析和处理数据的方法,发展统计观念。
3.进一步增强与同伴交流的意识与能力,体验运用知识解决问题的乐趣,建立学好数学的信心。
教学重点
理解平均数的意义,学会求简单数据的平均数。
教学难点
理解平均数的意义
教学准备
多媒体课件,作业纸
教学过程
一、谈话导入
谈话:同学们,你们喜欢玩游戏吗?你们经常玩些什么游戏呢?
追问:图上的小朋友们再玩什么游戏啊?(套圈游戏)
二、创设情境,自主探索
1.呈现套圈情境。
多媒体演示“套圈比赛”的场景。
谈话:这是三年级第一小队正在进行的套圈比赛,一队是男生,另一队是女生。比赛规则是每人套15个圈。
2.引入平均数。
出示男、女生套圈成绩统计图。
谈话:老师已经分别把男、女生的套圈成绩制成了统计图。看。
提问:看了这两张统计图,你知道了什么?
主要引导学生读出男女生每人的套圈个数。
提问:根据这两张统计图,你能提出一些什么问题呢?
谈话:男女生套完圈以后,他们想要知道到底是男生套得准一些还是女生套得准一些,想请我们的同学做小裁判帮帮他们,你们有什么方法去比较呢?先请小组4人交流一下。
结合学生的想法,相机进行引导。
想法一:因为吴燕套中的个数最多,所以女生队套得准(比最多)。
追问:用一个人的成绩代表整个队的成绩,这样合适吗?
想法二:先要求出每个队一共套中了多少个,再比较哪一队套得多(比总数)。
谈话:那请同学们口算一下男生一共套了多少个?女生呢?
男生:28个女生:30个
谈话:如果比总数看起来是女生获胜了,男生对这样的比法有意见吗?为什么?
追问:这种想法已经注意到从整体的方面去比较,但是这样比公平吗?为什么?(他们两队人数不相等)那可以怎么办呢?
想法三:先要求出两个队平均每人套中了多少个,再比较哪个队套得准(比平均数)。
追问:这样比公平吗?(公平)我们就用“求平均每人套中的个数”这种方法试一试。(板书:求平均每人套中的个数)
想法四:去掉一个女生或者添上一个男生。
谈话:这样的想法是不错的,可是女生谁也不愿意被去掉,而且男生也没有人了。
【说明:富有启发性的“追问”,旨在引导学生认识到用原有认知结构中数据处理的方式,如比最多、比总数等解决这一问题并不合适,从而引出平均数,并在这一过程中初步感受平均数能表示一组数据的整体水平。】
3.理解平均数。
操作:男生平均每人套中多少个呢?下面请同学们仔细观察男生的统计图,先在小组里讨论用什么方法找出男生的平均成绩,再完成作业纸上的问题1。看哪些小组想的办法又多又好。
提问:你是怎么找到男生平均每人套中的个数?
学生可能出现两种方法:一是移多补少;
让学生讲解移的过程。
二是先合后分。
学生说一说怎样用先合后分的方法求平均数,并引导列式:6+9+7+6=28(个),28÷4=7(个)。
提问:第一步算得是什么?这里的7表示什么意思?
【说明:将学生对平均数的探求发端于操作和讨论,让学生在活动中获得有关平均数的'多种求法。】
谈话:统计图中的红色线条表示什么?
根据学生回答,板书课题:这就是我们今天要研究的统计中的平均数。(板书课题:统计—平均数)
观察:男生套圈的平均数是7,这四个男生套中的个数分别是6个、9个、7个和6个,从图上看你能猜测一下平均数和每人套中的个数相比较,它在哪两个数之间呢?你是怎么想的?
引导:平均数不可能比最大的数大,也不可能比最小的数小,因此平均数的范围在最小的数和最大的数之间。
多媒体出示平均数的取值范围。
提问:根据我们刚才的发现,谁能估一估女生队平均每人套中的个数在什么范围之间?
谈话:女生平均每人套中多少个圈呢?请你结合作业纸上的第二幅图和问题2,自己动手做一做。
反馈时,引导学生交流求女生队平均数的方法及所求平均数的意义。列式计算时注意让学生说说为什么要除以5而不除以4?
提问:现在你能判断男生套得准还是女生套得准吗?
小结:通过刚才的活动,我们认识了什么?那你认识了平均数的哪些知识呢?
小结:平均数的大小应该在一组数据中的最大数与最小数之间。平均数是我们计算出的结果,它表示的是一组数据的平均水平,并不一定这一组数据都等于这个平均数,有些可能比平均数大,有些可能比平均数小,有些可能和平均数相等。
【说明:多媒体演示与学生的交流有机结合,使学生对求平均数的方法——移多补少、先合后分,平均数的意义及取值范围等建立清晰的表象。】
三、巩固深化,拓展应用
1.完成“想想做做”第1题。
先数一数每个笔筒里笔的枝数,引导学生用两种方法分别求出“平均每个笔筒里有多少枝”铅笔。
2.想想做做2
谈话:要求的是这三条丝带的平均长度是多少,那你能估计一下平均长度在什么范围之间呢?
学生回答后谈话:那请你动手算一算,看看你得到的结果和你估计的结果是否符合。
3.谈话:生活中有很多事都是和平均数有关的,请看,这是我校篮球队的情况(出示想想做做3)
《平均数》教学设计 篇2
一、教学目标
(一)知识与技能
理解平均数的意义,初步学会简单的求平均数的方法。
(二)过程与方法
学生经历用平均数知识解决简单生活问题的过程,积累分析和处理数据方法,发展统计观念。初步感知“移多补少”“对应”等数学思想。
(三)情感态度和价值观
感受平均数在生活中的应用价值,体验学习数学解决实际问题的乐趣。
二、教学重难点
教学重点:理解平均数的含义,掌握求平均数的方法。
教学难点:借助“移多补少”的方法理解平均数的意义。
三、教学准备
课件、实物投影。
四、教学过程
(一)创设情境
1.谈话引入。
以幻灯片形式出示教师家的书橱。
现在,我的书架上层有12本书,下层有10本书,我想请同学们帮忙,重新整理一下,使每层书架上的书一样多。
2.感知课题。
(1)学生思考,想象移动的过程。
(2)教师操作并提问:现在每层都有11本书了,这个11是它们的什么数?
(3)教师:像这样把几个不同的数,通过“移多补少”的方法,得到相同的数,就是这几个数的平均数。
今天,我们就来认识一下“平均数”这个新朋友,好吗?
(板书:平均数)
(二)探究新知
1.引发质疑,探索新知。
教师:看到这个课题,你想通过这节课学习到哪些知识?
预设:
(1)平均数是一个什么数?
(2)怎样计算平均数?
(3)平均数在生活中有什么用?
2.理解含义,探求方法。
出示例1,为了保护环境,学校四年级1班的一组同学利用业余时间收集矿泉水瓶,做环保小卫士。
仔细观察统计图,从图中知道了什么?你能根据统计图提出什么问题?
预设:
(1)小红比小兰多收集多少个瓶子?
(2)小明再给小亮几瓶,他俩的瓶子就一样多?
(3)他们平均每人收集了多少个瓶子?
你怎样理解“平均每人收集了多少个瓶子?”你怎样才能让他们的瓶子数量一样多呢?
学生汇报交流。
小结1:求平均数实际就是把多的补给少的,在数学上叫做“移多补少”。
小结2:求平均数也可以采用计算的'方法,用他们一共收集的矿泉水瓶个数总和除以人数,得到平均每人收集多少个。
(14+12+11+15)÷4=13(个)。
【设计意图】注重让学生自主探索、合作交流,通过解决平均每人收集多少个矿泉水瓶的问题,引导学生思考并理解求平均数的方法,掌握“移多补少”以及“先求和再平均分”的数学方法。
3.理解平均数的含义。
教师:刚才我们通过移多补少和计算,求出平均每人收集了13个矿泉水瓶,看这个平均数13,它是不是每个人真正收集的矿泉水瓶数量?
引导学生体会13不是每个人真正收集的矿泉水瓶数量,而是4个人的总体水平。
小结:平均收集13个矿泉水瓶,不是每个人真正收集的数量,是一个“虚拟”的数,反映了这组收集矿泉水瓶数的情况。
教师:生活中你还在哪些地方或什么事情中遇到或用到过平均数吗?举例说一说。
预设:
(1)本周平均最高气温6摄氏度。
(2)三年级学生的平均身高是140厘米。
(3)四年级2班五位同学平均每人捐10本图书。
(4)李莉同学平均每天上学路上花费15分钟。
【设计意图】初步理解平均数的意义,并在现实生活中寻找实例,感受数学源于生活。
(三)知识应用
1.判断。
(1)某小学全体同学向希望工程捐款,平均每人捐款3元。那么,全校每个同学一定都捐了3元。
( )
(2)学校排球队队员的平均身高是160厘米,有的队员身高会超过160厘米,有的队员身高不到160厘米。
( )
(3)小明所在的1班学生平均身高1.4米,小强所在的2班平均身高1.5米。小明一定比小强矮。
( )
【设计意图】让学生结合具体情境,进一步理解平均数的含义,初步感受平均数的特点:一组数据的平均数比数据中最大数小,比最小数大。
2.选择。
小明家平均每月用水( )吨。
A.(16+24+36+27)÷365
B.(16+24+36+27)÷12
C.(16+24+36+27)÷4
【设计意图】通过解决平均用水量的问题,巩固所学知识,根据所求问题找准与总数相对应的份数。
(四)全课小结
今天你有什么收获?
再看看开始想解决的问题:(1)平均数是一个什么数?(2)怎样计算平均数?(3)平均数在生活中有什么用?现在能解决了吗?
《平均数》教学设计 篇3
教学设计教学目标:
1、使学生理解平均数的含义,初步学会简单的求平均数的方法。
2、理解平均数在统计学上的意义,感受数学与生活的联系。
3、发展学生解决问题的能力。
重点难点:使学生理解平均数的含义,初步学会简单的求平均数的方法。
教学过程:
一、理解平均数
1、周末,妈妈买了许多糖果,分给哥哥6颗,妹妹4颗,你对妈妈的做法有什么看法?你有什么办法让哥哥和妹妹分到的糖果一样多?是多少?
2、老师(出示两个笔筒)分别装了27枝送给23个女同学,23枝送给23男同学,学生动手分:让女同学和男同学分的一样多。
3、引入平均数象哥哥和妹妹分得一样多的5颗就是哥哥和妹妹分到的糖果的平均数。25枝就是男同学和女同学分的笔的平均数。
4、学生讨论:你们喜欢刚才谁的方法?导入板书课题。
二、探究体验
1、出示情景图:说说老师和同学们在干什么?
2、出示统计图:引导学生收集信息。
3、引导学生运用移多补少的方法求平均每人收集了多少个:利用这个统计图,你们有什么办法,可以解决这个问题?学生独立思考后交流方法。
4、提出问题:生活中,大家分头收集了许多矿泉水瓶,大家是怎样集中过来的?如果没有这个统计图,只是每个人汇报自己收集了几个?你们有什么办法可以知道这个小组平均每个人收集了多少个?
5、小组讨论解决的.方法并派代表交流,并说说13个就是平均数,那是不是说他们每个人都是收集13个呢?理解平均数是个虚的数。
6、小结求平均数的方法。
三、实践应用
1、另外一个环保小组也收集了许多矿泉水瓶,小军收集15个,小伟收集16个,小朋收集12个,小新收集了13个,这个小组平均每个人收集了几个?请你算一算。
2、根据统计表算一算,三年段平均每班踢几下?
班级 三(1) 三(2) 三(3) 三(4)
踢的次数 632 654 668 646
3、生独立完成练习十一第2题。
四、全课总结
1、通过今天的学习,你学到了什么新的知识?
2、师总结。
平均数 教学设计
共4课时 总第23课时
教学目标:
1、体会平均数可以反映一组数据的总体情况和区别不同组数据的总体情况这一统计学上的意义。
2、使学生认识统计与生活的联系,发展学生的实践能力。
3、巩固求平均数的计算方法。
教学过程:
一、情景导入
1、师出示一杯水,告诉学生这一大杯水大约600克,而后把这杯水分别倒入4个杯子中(每个杯子的水不同)提出:你们能求出这4个杯子的水的平均重量吗?
2、学生动手解决,并交流解决的方法。
3、六一节,老师带了许多糖果想送给大家吃,老师给奋飞组6人共分36块,给前进组8人共分了40块,给蓝天组5人共35块,你们认为哪一组的同学分到的糖果多?怎么解决?
(1)组织交流解决的方法。
(2)小结:象这种情况下,每组的人数不一样,不能直接拿总数来比较,而是要求出每组同学的平均数来比较。板书课题。
二、探究体验
1、出示情景图,告诉同学穿兰色衣服的是开心队,穿黄色衣服的是欢乐队。
2、引导学生观察后猜一猜:你认为哪一队的身高高?并说说理由。
3、出示统计表,组织学生收集有关数据,根据统计表估一估,欢乐队和开心队的平均身高分别是多少?并说说估的方法。
4、同桌合作,一人求欢乐队的平均身高,另一个求开心队平均身高,然后比较哪一队高?
5、组织交流计算的方法与结果。
6、组织讨论:从刚才的这件事,你有什么发现?
7、小结:平均数能较好地反映一组数据的总体情况。
三、实践应用
1、说说生活中还有哪些事要通过求平均数来解决问题。
2、生独立完成练习十一第4、5题。
四、全课总结
1、通过本节课的学习,你有什么收获,有什么问题需要帮助的吗?
2、师总结。
《平均数》教学设计 篇4
教学内容:《义务教育课程标准实验教科书数学》三年级下册P92-94页
教学目标:
1、在具体的问题情境中,感受求平均数是解决一些实际问题的需要。在操作和思考中体会平均数的意义。学会计算简单数据的平均数(结果是整数)。
2、在运用平均数的知识解释简单生活现象、解决简单实际问题的过程中,进一步积累分析和处理数据的方法,发展统计观念。
3、进一步增强与他人交流的意识与能力,体验运用已学的统计知识解决问题的乐趣,建立学习数学的信心。
教学重点:平均数的意义、计算简单数据的平均数
教学难点:平均数的意义
教学过程:
一、创设情境,引入问题
1、前不久,我们漆桥中心小学三年级同学举行了套圈比赛,每人套15个。老师统计了男、女生套中的个数,并制成了统计表。
2、男生套圈成绩统计表
姓名李小钢张明王宇陈晓杰
个数4896
女生套圈成绩统计表
姓名吴燕刘晓娟史敏敏孙云
个数8645
师问:男生几人参加了比赛?女生几人参加了比赛?你觉得怎样才能比出谁赢了呢?学生观察表后回答:
男生一共套了多少个?4+8+9+6=27(个)
女生一共套了多少个?8+6+4+5=23(个)
结果是男生胜了。
3、师:哎呀!男生赢了,女生输了。为了增强实力,女生再派1名代表参加比赛,和实力强大的男生进行了第二次的比赛。老师统计了第二次的比赛情况制成了统计图,我们看男、女生分别套了多少个?(板书:6、9、7、6)(10、4、7、5、4)
请你算一算这一次男、女生的总成绩分别是多少?
6+9+7+6=28(个)10+4+7+5+4=30(个)
这次比较总数,结果是女生获胜!
4、对这样的比法,你有什么想法?为什么?(人数不一样,不公平)为什么不公平呢?第一次比赛我们不是比较总数吗?
5、看来在人数不相等的情况下,比总数行不行?
二、自主探索,解决问题
那么怎样比才公平呢?同桌交流。(分别算出男、女平均每人套中的个数)
我们怎样才能知道男生平均每人套多少个圈呢?先想,想好后同桌交流。
想出几种方法?(必要时可以写写)
6+9+7+6=28(个)28÷4=7(个)7就是6、9、7、6这组的平均数。板书:7
先求的是什么?再求的是什么?除了这种方法还有什么方法?在图上移(移多补少)板书
那么你能算出女生平均每人套中了多少个?
学生计算后汇报,师板书:10+4+7+5+4=30(个)30÷5=6(个)
6就是10、4、7、5、4这组数的什么数?(平均数)
求女生平均每人套中几个圈要除以5,而求男生时为什么除以4?
5、现在你知道男生胜了还是女生胜了吗?
男生平均每人套中的个数比女生多,表示每个男生套中的都比女生多吗?你能举举例吗?
这个平均数和平均分不一样,平均数比较好的表现了这一队套圈的整体水平,并不表示每一个人真的套了7个。
6、(1)我们算了2组数的平均数了,现在同学们来观察平均数和原来一组数,你发现了什么?先观察平均数7和原来每个男生套中的个数,你发现了什么?
a、每个男生套中的个数有比平均数多的,有比平均数少的,还有一样的三种情况。
b、平均数在最大的'数和最小的数之间。
(2)小结:平均数的大小在最大的数和最小的数之间。一组数的平均数是我们计算出的结果,表示的是这组数的平均水平,并不一定这一组数都等于平均数,有些数可能比平均数大,有些数可能比平均数小,还有些数和平均数一样。
三、巩固练习,拓展应用
1、今天的数学课上,我发现了有3位同学听的特别认真,老师讲课他们听得很认真,同学发言他们也听得很认真。(三人上台领奖品,老师分别奖励他们1支、3支、5支铅笔)
师:请上台的三个小朋友数一数,手里有几只铅笔,然后大声的告诉大家。你们说老师这样奖励公平吗?怎样才公平吗?那么你能用小棒代替把它们移一移。
师:在移之前想好了怎样移?同桌的先说,再移,台上的3个小朋友互相商量一下,再移。
学生移好后,说说移的过程。
师:你还有什么方法求出来吗?
学生计算,指名说出算式,师板书。
我们知道了平均数的特点。谁来说一说,求平均数一般可以用哪些方法?你喜欢用哪种方法?
2、估一估。为了布置教室,小丽买来一些丝带,帮小丽估一估这三条丝带平均长度是多少?
同学们先估一估,平均长度在()㎝和()㎝之间,为什么?平均数在大数和小数之间。
再算一算,写在自备本上。
你是怎么算的?都是先求和再平均分吗?为什么这个题目你不用移多补少的方法?
我们要根据实际情况来选择合适的方法。数量少,相差不大,用移多补少简单;数量多,相差大,用先和再平均分。
3、平均数是分析数据的一种重要方法,在日常生活中,特别是在工农业生产中经常要用到。如平均产量、平均速度、平均成绩、平均身高等等。
4、辨一辨
(1)漆桥中心小学的老师平均年龄是38岁,那么诸老师一定是38岁。
(2)漆桥中心小学全体同学向希望工程捐款,平均每人捐款3元。马倩同学不可能捐4元。
5、说一说
(1)李强是学校篮球队队员,他身高155厘米,可能吗?
(2)学校篮球队可能有身高超过160厘米的队员吗?
平均身高是怎么算出来,把篮球队员一共的身高除以篮球队员的人数。
6、想一想:出示游泳图,平均水深110厘米,小明身高145厘米,下去游泳有危险吗?
《平均数》教学设计 篇5
教学内容:
义务教育课程标准青岛版(五·四分段)小学数学四年级上册P131~133。
教学目标:
1、通过学生自主探究,理解平均数的意义,掌握求平均数的方法,学会求平均数。
2、学生经历探究求平均数的过程,培养操作、观察、归纳、概括和自主探究的能力。
3、培养学生在探究活动中获得积极的情感体验和合作意识,激发学习数学的兴趣,增强学好数学的信心。
教学重点:理解平均数的意义,掌握求平均数的方法,并能灵活运用所学知识解决实际问题。
教学难点:平均数意义的理解。
教学准备:课件、小正方体、学习评价表。
教学过程:
一、创设情境,提出问题
课件展示校园篮球场上四(1)班和四(2)班篮球比赛的精彩片断[四(1)班的得分明显落后,学生观赏。
提出问题:假如你是四(1)班的教练,这时你准备怎么做?你在换运动员上场时,会考虑哪些因素?
出示两名运动员平日训练在小组赛中的得分情况统计表,如下:
现在就请你当教练,根据上面统计表中的数据,你会选谁上场?并说出自己强有力的理由。(学生充分讨论,发表自己的意见)
[评析:教师恰当运用CAI课件,创设一个学生熟悉且比较喜欢的真实生活情境,让学生身临其境,自己提出在比分落后的情况下“需要换人”这样一个生活化的问题。这样,不仅一下子激发了学生积极参与的兴趣,培养了学生的问题意识,而且在不知不觉中引发了学生的思考。通过小组赛中得分情况统计表,又将生活化问题转化为根据“平均分”换人这样一个数学问题,使学生感受到平均数产生的需要,为下面的探索活动提供了动力与明确了方向。]
二、解决问题,探求新知
怎样计算7号和8号运动员的平均分呢?下面,请同学们根据统计表中的数据和手中的操作材料,小组合作,共同来探讨。注意:一个小正方体代表一分。看哪个小组最先完成。
1、小组合作探求算法。
2、汇报交流。
操作法:重点让学生把移多补少求平均数的方法讲明白。
小结:刚才同学们都是在总数不变的情况下,把多的移走补给了少的.,使它们变得同样多,这个同样多的数就是它们的平均分。
计算法:重点让学生理解平均分除了可以用移多补少的方法求出来外,还可以先求出各场得分总数,再除以上场的次数,也可以得出每个队员的平均分。
小结:同学们通过自己的探索,解决了选谁上场的问题。因为7号运动员的平均分11分高于8号运动员的平均分10分,所以应选7号运动员上场。同时,我们知道求平均数有两种算法,数据少的时候可以用移多补少的方法,数据多的时候用计算的方法会更方便。(板书课题和算式,如下)
(9+11+13)÷3=11(分)(7+13+12+8)÷4=10(分)
[评析:学生的学习过程充满了自主性、探索性与合作性。教师充分发挥学生的主体作用,放手让他们在开放的空间里运用手中的材料动手操作、自主探索,解决了问题。这既是一个学生自我探究的过程,也是一个相互交流的过程。教师只是以参与者、合作者的身份融入学生的活动中,和他们平等相处,及时获取反馈信息,引领学生归纳概括出平均数的计算方法。]
3、理解平均数的意义。
对10分的理解:你对10分这个数是怎样认识与理解的?与它的各场得分相比较,你有什么发现?10分是8号运动员哪一场的得分?
对11分的理解:11分是7号运动员第三场的得分吗?为什么?它是什么?
小结:平均数比大数小,比小数大,介于二者之间。它不是一个实实在在的数,可能存在于一组数据之中,也可能不存在。平均数能较好地反映出一组数据的整体水平。(板书:比最大数小、比最小数大、较好地反映出一组数据的整体水平)
[评析:在学生的亲自感受中,他们用自己质朴而稚嫩的语言道出了他们对平均数意义的理解,虽然这只是粗浅的,但却是非常有价值的。]
三、实践运用,体验生活
在生活中,你见过平均数吗?
(学生列举日常生活中见到的平均数的例子)
在我们的生活、生产,特别是在统计当中,平均数的应用非常广泛,因为它能帮助我们了解事物的整体水平与分析存在的问题。
评价时,师问:看着王红的成绩,你想对她说点什么?
不计算,估一估他们的平均身高会是哪个答案?(让学生谈观点,加深对平均数意义的理解)
先不计算,同学们估计可能会是多少?然后用自己喜欢的方法计算一下,他们的平均成绩是多少次?
4。过河问题。
身高145厘米的小华,要过平均水深110厘米的小河到底有没有危险?(让学生在讨论的过程中,进一步感受平均数的意义)
通过这个题目的思考,你觉得应该对大家说点什么?(没错,徐老师希望同学们每天都能安安全全地来校,平平安安地回家)
[评析:练习设计由浅入深,形式多样,且能紧密联系现实生活实际,不仅加深了学生对本课知识的理解,同时提高了学生运用知识解决实际问题的能力。]
四、评价总结,拓展延伸
通过本节课的学习,大家肯定都想知道自己表现如何。现在请拿出学习评价表,给自己一个诚恳的评价吧!(附表,如下)
学习评价表
本节课,你认为自己的表现怎样?请在相应栏目中填上相应的分数,并算出平均分。(优秀90分,良好80分,一般70分)
(小组交流后,学生展示)
看着自己的评价表,你想对大家说点什么?你觉得本节课有什么收获?
师评价:其实,从平均分可以看出你整节课的表现还是非常不错的!徐老师相信在评价过程中,同学们又一次加深了对平均数的理解。
[评析:让学生自我评价,增强了学生数学学习的自信心。通过自己给自己打分及平均分的计算,既强化、巩固了本课学习的内容,再现了“求平均数”在生活中的实际应用,又体现了课程标准倡导的评价形式多元化的思想,同时还为随后的课堂小结作了巧妙的预设,可谓“一举三得”。]
注:本文中所涉及到的图表、注解、公式等内容请以PDF格式阅读原文。
《平均数》教学设计 篇6
教学内容:人教版四年级下第90—91页例1、例2及相关内容。
教学目标:
1、使学生理解平均数的含义,知道平均数的求法。
2、了解平均数在统计学上的意义。
3、学习解决生活中有关平均数的问题,掌握应用数学知识解决问题的能力。
教学重点:理解平均数的意义,掌握平均数的方法。
教学难点:理解平均数的意义。
教、学具准备:课件、题卡、磁扣等。
一、 导入
同学们,你们喜欢做游戏吧?我们班级的同学也特别喜欢搬运玻璃球的游戏。今天老师带你们看一场30秒的运球比赛,不过看比赛有个任务,请第一、二、三组的同学分别为女1、2、3号选手计数,第四、五、六组同学分别为男1、2、3号选手计数。听清楚了吗?请看大屏幕。
二、 讲授新知
1、探究平均数的方法
师:紧张的比赛结束了,请小组长统计一下选手的成绩。我们用1个磁扣表示运了1个球,请组长们汇报运球数,把运球的个数贴到黑板上。(说一个贴一个)
师:大家看,他们每人各运了几个球?
师:请同学们观察,如果比较两组同学的成绩,你认为哪组成绩好?为什么?
生:男生成绩好。女生总数12,男生总数15。
师:对,我们比较总数,可以看出男生队成绩更好。
师:大家能不能再分别找出一个数能代表每一组的平均水平,让他们比一比,还很公平。
生:用3或者2等表示,教师要抓住问其他同学,用3代表这一组每个人的成绩可不可以。(2号7个,用3不合适)
生:4.
师:用4表示可以吗?
生:可以。
师:男生队用几表示呢?
生:5.
师:那么请大家借助手中题卡,小组合作,画一画,写一写。用什么方法得到4或者5的。想一想,为什么用这个4或5可以代表每组的水平?
生:小组合作。
师:哪个小组愿意派代表汇报一下?(只出示女生的)
生:女生队2号最多,给1号2个,给3号1个。
师:结果怎样呢?
生:让他们变得同样多。
师:谁还想说说你们的方法。(两种移多补少画法),把两种画法放在一起,他们都是把多的补给少的,然后使他们变得同样多。画一条虚线。想法都一样,只是表现方式不同而已。
师:大家听清楚了吗?谁愿意到黑板上摆一摆?
生:移多补少演示。
师:大家同意吗?
师小结:在总数不变的前提下,我们把多的匀给少的,最终让它们变得同样多,(手笔画这黑板磁扣这)数学上把这叫做移多补少(板书)。通过移多补少得到的(箭头)同样多的数(板书同样多)(向上箭头),就是这组数据的平均数。(板书)今天我们就来学习平均数的知识。那么2、7、3这组数据的平均数就是4。
师:你们用移多补少的方法表示出男生队的平均成绩吗?
生:到前面来演示。
师:同意吗?(再移回来)同学们,除了用移多补少的方法表示出平均数,还有其他的方法吗?
生:列算式。学生到黑板上演示。
(4+5+6)÷3
=15÷3
=5(个)
师:你是怎么想的?(写的同学说说自己的想法)
生:用男生队运球的总数除以3,就是每人平均运5个球。
师:听明白了吗?括号里的式子表示?除以三呢?结果5是?
师小结:我们先求总数,再除以三个人,也可以使这组数据变得同样多,这种方法就是合并平分。得到同样多的数,就是这组数据的平均数,它也是求平均数的一种方法。
师:你能用合并平分的方法,求出女生队的平均数吗?
生:汇报
师:现在我们来说一说哪一个队成绩更好呢?
生:男生队
师小结:比总数女生12,男生15。比平均数女生4,男生5。比总数和平均数都是男生胜,看来在人数相等的情况下,比总数比平均数都很公平。
2、平均数的作用
师:马老师看同学们玩得特别开心,也想玩一玩,我运了4个球,我看女生成绩少,就把这4个球加给女生了(操作,老师 4个)这回女生总数由12变成了15,反超了男生,我宣布了此次比赛女生获胜?我这个裁判公平吧。
生:公平,再观察一下,他们为什么不同意。
不公平,人数不同。
师:大家同意吗?人数不同的情况下,比总数不合理,那我们就比平均数吧!你们比一比,谁的平均数多呢?
生:4.
师:你们怎么这么快就知道了呢?
师:比较平均数哪一个对成绩更好呢?还是男生队。小结:在人数相同的情况下,我们比较总数和平均数。人数不相同,我们比较总数就不够公平了,比较平均数比较公平。
师:看来老师加入也没改变女生队输了这个结果,假如老师运了8个球(贴),这回女生队的平均数是几了呢?(5)
师:打平了。假如想让女生队的平均成绩是6,老师至少需要运几个玻璃球呢?
生:12个。
师小结:女生队其他人运球没变,随着老师运球数的增加,这组的平均数变大,所以说平均数随整组数据每一个数变化而变化。
3、平均数的性质
师:请大家观察女生队的成绩
我们得出来的平均数4是1号的实际运球数吗?是2、3号?(不是)
平均数4和这组数据的每一个数比较一下。(具体点)你发现了什么?
生:4比7少3个,比2多2个,比3多1个。
师:所以平均数4在7和2之间,也就是平均数在最大数和最小数之间。
师:我们再来看看男生队平均成绩,是不是也有这个规律?平均数5是每位选手实际运球的`数量吗?
生:不是
师:平均数5和男生队每个人实际运球数比较一下。
生:平均数5和2号选手实际运球数一样多。
师:那么这个5和2号的成绩5表示的意义一样吗?
生:不一样。一个是2号的成绩,表示他在比赛中运了5个,代表自己,一个是一组的平均水平。
师小结:我们用平均数和每个数据进行比较,在数据不等的前提下,发现平均数介于最大数和最小数之间,也可能在数值上和某个数相等。例用这个规律,我们就可以在计算平均数时,先估计平均数的大小范围,或者检验平均数是否合理。
习题:小强在20秒时间内拍球4次,分别是24下、27下、28下、29下。1、请你估一估小强拍球的平均成绩,可能是多少下?2、动笔算一下,平均成绩是多少下(27下)两张幻灯片。
师:同学们都是用哪种方法算平均成绩的?(合并平分)一般情况下,我们计算平均数时经常用合并平分的方法。
师:其实平均数在我们生活中无处不在,你知道哪些平均数呢?
生汇报:
师:对,我们经常接触的有平均身高,平均成绩,平均时间,平均气温等。早在三千年前,我国《周易》已产生了平均数的思想:
1:统计平均数就是对研究对象的某数量标志的变量,减有余而补不足所求得的一般水平。
2:计算统计平均数的作用,在于衡量事物要均等。
所以说平均数很重要,我们可以用平均数解决生活中的很多问题。
三、习题
1、课件出示“小小”冷饮店习题。
2、水深。
四、全课总结同学们,这节课我们认识了平均数,学习了平均数的计算方法。那么,让我们在以后的学习中细细去体会吧。
板书设计
平均数
合并平分 移
返回首页