返回首页
文学网 > 短文 > 教学教案 > 正文

比的应用教学设计

2026/02/05教学教案

文学网整理的比的应用教学设计(精选6篇),供大家参考,希望能给您提供帮助。

比的应用教学设计 篇1

教学目的:

1.使学生熟练地掌握长方体和正方体表面积的计算方法,能灵活地解决一些实际问题。

2.培养学生分析、解决问题的能力,以及良好的思维品质。

教学过程:

一、复习

1.什么叫长方体、正方体的表面积?

如果告诉了长方体的长、宽、高,怎样求它的表面积?

如果要求正方体的表面积,需要知道什么?怎样求?

2.图中告诉了长方体的什么?

(1)要求前面或者后面的面积,需要用哪两个条件?怎样求?

用9厘米、3厘米这两个条件可以求出哪个面的面积,怎样求?如果要求左面或右面的面积,需要用哪两个条件,怎样求?

这个长方体的表面积怎样求?

(2)按要求列式,不计算。

3.(出示长方体教具)请同学生们看,这是什么体?它有几个面?

如果没有上面,(同时去掉上面)要求它的表面积,就是求几个面的总面积?是哪5个面呢?

如果没有上、下面,(再去掉下面)又是求几个面的总面积,哪几个面?

[说明:以上复习题的设计,突出了逻辑性和灵活性。为学生灵活运用表面积的计算方法,创造性地解决生活中的实际问题,埋下了伏笔。]

二、新课教学

1.揭示课题:长方体、正方体表面积的实际应用。

2.例3:粮店售米用的米箱(上面没有盖),长l.2米、宽0.6米、高0.8米,制作这样一个木箱至少要用木板多少平方米?

(1)读题,说出这道题的题意(或己知条件和问题)

(2)要求用木板多少平方米,就是求木箱的什么?这个木箱有几个面?少了哪一个面?

(3)怎样列式?

a.1.2×0.8×2+0.6×0.8×2+1.2×0.6

=1.92+0.96+0.72

=3.6(平方米)

答:至少要用木板3.6平方米。

b.谁还有不同的方法(并讲出列式思路)。

(1.2×0.8+0.6×0.8)×2+1.2×0.6

(l.2×0.8+0.6×0.8+1.2×0.6)×2-1.2×0.6

[说明:教师让学生审题时,强调题中的隐含条件"上面没有盖",抓住解答本题的关键,又从不同角度引导,加强学生逻辑思维的训练,培养思维的灵活性。]

3.小结:

通过例3的学习,我们知道在解答长方体、正方体表面积的问题时,首先要判断什么?然后就按照有几个面就直接求几个面的面积或先求出6个面的总面积再减去缺少面的面积的方法来解答。

4.如果原已知条件不变,再增加条件和问题,出示如果木箱外面四周都刷上油漆(底面不刷),刷油漆的面积一共有多少平方米?

(1)提问:求刷油漆的面积就是求几个面的面积,自你会解答吗?请独立完成。

(2)集体评讲。(师板书如下)

1.2×0.8×2+0.6×0.8×2=2.88(平方米)

(1.2×0.8+0.6×0.8)×2=2.88(平方米)

(1.2×0.8+0.6×0.8+1.2×0.6)×2-1.2×0.6×2=2.88(平方米)

(1.2+0.6)×2×0.8=2.88(平方米)

(3)利用教具演示,验证(1.2+0.6)×2×0.8是否正确:如果把它刷油漆的四个面展开,观察是什么形,要求长方形的面积需要知道什么,这个长方形的长是多少?长方形的宽是多少?面积是多少?

[说明:通过上题只改变一个问题,使学生灵活运用知识,变换思路,培养学生集中思维和随机应变的能力,发展思维的灵活性。当学生说出(1.2+0.6)×2×0.8时,教师给予表扬性的肯定,然后教师借助教具的演示,使学生明白刷油漆的四个面展开后与长方形的关系及计算的简洁性,利用了转化思想,培养了学生的思维独创性。]

5.看来,在实际生活中,有些物体不一定要求6个面的总面积。老师带来一幅图,请看,哪些物体是需要求6个面的总面积,哪些是求5个面的或4个面的总面积的?谁还能举出生活中的例子?

[说明:举例说明生活中的求六、五、四个面总面积的物体,不仅提高了学生学习的兴趣,开阔了数学视野,而且使学生感觉到生活中处处有数学,可以学以致用。]

三、巩固练习

1.只列式,不计算。

(1)农民伯伯要做一个不带盖的正方体水桶,底面是边长3分米的`正方形,做这样一个水桶至少要用铁皮多少平方分米?

(2)工人叔叔要做一个长方体烟卤,长宽都是3分米,高10分米,求至少要用铁皮多少平方分米?

2.判断下列算式是否正确,并说明理由

一个火柴盒长5厘米、宽4厘米、高1.5厘米,做这样一个外盒至少要用硬纸多少平方厘米?

(1)5×4×2+4×1.5×2 ( )

(2)(4×1.5+5×1.5)×2+5×4 ( )

(3)5×4×2+5×1.5 ( )

(4)(5×4+5×1.5)×2 ( )

(5)(4×1.5)×2×5 ( )

(4+1.5)×2×1.5对不对呢?

请同学们像图一样放置火柴盒,用剪刀沿长剪开,看看是什么图形?要求长方形的面积需要知道什么?长是多少?宽是多少?(4+1.5)冬2×1.5求的是什么?

[说明:老师在处理判断题时,不仅仅满足于学生说出正常的分析思路,而且紧跟一句"谁还有不同的理由也能说明这道题是错的",培养了学生的多向思维;"哪一种判断方法最快",又培养了学生思维的敏捷性和批判性。当学生的思维遇到障碍时,老师引导学生亲自动手操作去发现,相机点拨,教给了学生探索解决问题途径的策略。]

3.希望小学新盖了一间教室,长8米、宽6米、高4米,工人叔叔要粉刷教室屋顶和四壁。除去门窗和黑板的面积20平方米。

(1)粉刷的面积是多少平方米?

(2)如果每平方米用涂料0.25千克,需要用涂料多少千克?

想一想在实际粉刷过程中,工人叔叔准备35千克的涂料够用吗?为什么?

[说明:"在实际粉刷过程中,工人叔叔准备35千元的涂料,够用吗",看似一句无关紧要的问话,却把学生的思维引向更加严密和周全的角度,这是创造性思维不可缺少的重要品质。]

4.一个长方体的食品盒长6厘米、宽5厘米、高10厘米,在食品盒的四周贴上商标纸,宽度是1.5厘米,贴这样1个食品盒要用商标纸多少平方厘米?

读题后,让学生讲什么叫接头处。

独立思考,并把算式写在练习本上。

[说明:以变化激趣,在变中找不变,使学生养成多层次思考的习惯,培养思维的广阔性。]

四、全课小结

同学们,我们今天学习了什么?你有什么收获?

[说明:最后,教师没有总结本节课所学的知识,而是让学生谈自己的收获。学生不但总结了本节课的知识而且从中明白了许多道理,这一设计打破了原来的教学模式,加深了学生对知识的理解和掌握,诱发了创造性思维。]

[说明:这节课重点突出、逻辑严密、灵活多样,充分调动了学生思维的积极性,在学习的过程中,不时有创造性的思维火花产生。这样设计一是通过一题多解培养了学生探索精神,发展了他们思维的独特性;二是通过简缩思维,培养了学生思维的敏捷性;二是通过联想,培养思维的变通性。]

比的应用教学设计 篇2

教学目标:

1、使学生能正确判断应用题中涉及的量成什么比例关系。

2、使学生运用正、反比例的意义正确解答应用题。

3、渗透函数的初步思想,建立事物是相互联系的这一辨证观点,培养学生的判断推理能力和分析能力。

教学重点:让学生能正确判断应用题中的数量之间存在何种比例关系,并能利用正反比例的意义列出含有未知数的等式。

教学难点:利用正反比例意义正确列出等式,掌握用比例知识解答应用题的解题思路

教学准备:课件

教学步骤:(铺垫孕伏,建立表象;创设情境,探究新知;归纳总结,揭示意义;巩固练习,考考自己;分层练习,深化新知)

一、铺垫孕伏,建立表象

1、判断下面每题中的两种量成什么比例关系?

○1速度一定,路程和时间( ) ○2路程一定,速度和时间( )

○3单价一定,总价和数量( ) ○4每小时耕地公顷数一定,耕地的总公顷数和时间

○5全校学生做操,每行站的人数和站的行数

2、根据条件说出数学关系式,再说出两种相关联的量成什么比例,并列出相应的等式。

(1)一台机床5小时加工40个零件,照这样计算,8小时加工64个。

(2)一列火车行驶360千米,每小时行90千米,要行4小时;每小时行80千米,要行经X小时。

指名学生口答,老师板书。

二、创设情境,探究新知

从上面可以看出,日常生活生产的一些实际问题,应用比例的知识,也可根据题意列一个等式。我们以前学过的`一些应用题,还可以应用比例的知识来解答,这节课我们学习比例的应用(板题)

1、教学例1

(1)出示例1(课件演示)让学生读题

一辆汽车2小时行140千米,照这样的速度,从甲地到乙地共行驶5小时,甲乙两地之间的公路长多少千米?

师:你用什么方法解答,给大家介绍一下如何?(自由回答)

(提问:我们怎样解答的?(板式)先求什么,是按怎样的数量关系式来求的?这道题里哪个数量是不变的量)

学生解答如下几种:

解法一:140÷2×5=70×5=350千米

解法二:140×(5÷2)=140×2.5=350千米

如果有学生用比例方法解,老师及时给以肯定,如果没有,老师给以引导性的问题:

A题中涉及哪三种量?(路程、时间和速度三种量),其中哪两种是相关联的量?

B哪一种量是一定的?(固定不变),你是怎么知道的?(照这样的速度,就是说速度是一定的)

C它们有什么关系?(行驶的路程和时间成正比例关系)

D题中“照这样的速度”就是说 一定,那么 和 成 比例关系?因此 和 的 是相等的。

教师板书:速度一定,路程和时间成正比例。

师追问:两次行驶的路程和时间的什么相等(比值相等)

解法三:(用比例方法,怎样列式)

解:设甲乙两地间的总路长X千米

140 X 或 140:2=X:5

2 5 2X=140×5

X=350

答:甲乙两地之间公路长350千米。

小结:这一类型题,我们不仅可用过去的归一法、倍比法来解,还可用比例方法来解。

2、怎样检验这道题做得是否正确呢?

3、变式练习改编题

出示改编的问题,让学生说一说题意,请同学们按照例1的方法自己在练习本上解答,指名一人板演,然后集体订证,指名说一说是怎样想的,列等式的依据是什么?

4、教学例2(课件演示)

(1)出示例2,学生读题

例2:一辆汽车从甲地开往乙地,每小时行70千米,5小时到达,如果4小时到达,每小时要行多少千米?

提问:

(1)以前我们怎样解答的?(板书算式)这样解答先求什么?是按怎样的数量关系式来求的?(板书:速度×时间=路程)这道题里哪个数量是不变的量?

(2)谁能仿照例1的解题过程,用比例的知识解答例2来试试,指名板演,其余学生做在练习本上,练习后提问怎样想的?速度和时间的对应关系怎样?检查列式解答过程,结合提问弄清为什么列成积相等的等式解答。

学生利用以前的方法解答。

70×5÷4=350÷4=87.5(千米)

(3)提问:按过去的方法先求什么再解答的?先求总路程的应用题现在用什么比例关系解答的?谁来说说,用反比例关系解答这道应用题怎样想,怎样做的?(课件演示)

这道题里的路程是一定的, 和 成 比例,所以两次行驶的 和 的 是相等的。

指出:解答例2要先按题意列出关系式,判断成反比例,再找出两种关联量里相对应的数值,然后根据反比例关系里积一定,也就是两次行驶相对应数值的乘积相等,列式。

(4)设每小时行驶X千米(根据反比例的意义,谁能列出方程

4X=70×5 X=70×5/4 X=87.5

答:每小时行驶87.5千米。

师:A)该题中三个量有什么关系?其中哪两种量是相关联的量?

B)题中哪一种是固定不变的?从哪里看出来?

C)它们有什么关系?

D)这道题的 一定, 和 成 比例关系,所以两次行驶的和是相等的。

(5)变式练习(改编题)

出示改变的条件和问题,让学生说一说题意,指名一人板演,其余在练习本上独立解答,集体订证,说说怎样想,根据什么列式。

一辆汽车从甲地开往乙地,每小时行70千米,5小时到达,如果每小时行87.5千米,需要几小时到达?

解:设需要x小时到达

87.5x=70×5 x=4

答:需要4小时到达。

三、归纳总结,揭示意义

想一想,应用比例知识解答应用题,是怎样想怎样做的?同学们可互相讨论一下,然后告诉大家,指名说解题思路。

指出:用比例解答应用题的关键,正确找出题中的两种相关联的量,判断它们成哪种比例关系,然后根据正反比例的意义列出方程。(正确判断成什么比例,正比例比值相等,反比例乘积相等)

四、巩固练习,考考自己(课件演示)

请你们按照刚才学习例题的方法去分析,只要列出式子就行。

1、食堂买3桶油用780元,照这样计算,买8桶油要用多少元?(用比例知识解答)

2、同学们做广播操,每行站20人,正好站18行,如果每行站24人,可以站多少行?

以上1、2两题,学生做完将鼠标移到“看看做对了没有”进行自我判断。

3、先想想下面各题中存在什么比例关系?再填上条件和问题,并用比例知识解答。

(1)王师傅要生产一批零件,每小时生产50个,需要4小时完成 , ?

(2)王师傅4小时生产了200个零件,照这样计算 ?

4、四选一,每题只能选一次

(1)体积是30立方分米的钢体重150千克,重1200千克的这种钢材,体积是多少立方分米?(d)

a.150×30=1200x b.30:150=1200:x

c.150x=30×1200 d.150:30=1200:x

(2)机器厂制造一个零件所用的时间由原来8分钟减少到3分钟,过去每天生产零件60个,现在每天生产多少个?(a)

a.60×8=3x b.60:8=3:x

c.60×8=(8-3)x d.3:x=8:60

(3)机器厂生产一种零件,每制造5个零件需要40分钟,一天工作480分钟,能制造多少个零件?(b)

a.5×40=480x b.5:40=x:480

c.40x=5×480 d.40:5=x:480

(4)托儿所给小朋友分糖,原来中班24人每人可分5块,最近又调进6人,每人可分多少块糖?(c)

a.24×5=6x b.24:5=6:x

c.(24+6)x=24×5 d.(24+6):x=24:5

(5)小红从甲地到乙地,3小时行了全程的75%,几小时可以走一个来回?(b)

a.3×75%=2x b.75%:3=2:x

c.75%x=2×3 d.3:75%=2:x

五、分层练习,深化新知

○1修一条长6400米的公路,修了20天后,还剩下4800米,照这样计算,剩下的路要修多少天?(6400-4800):20=4800:x

○2工人装一批电杆,每天装12根,30天可以完成,如果每天多装6根,几天能够完成?

12×30=(12+6)×X

○3农具厂生产一批小农具,原计划每天生产120件,28天可完成任务,实际每天多生产了20件,可以提前几天完成任务?

120×28=(120+20)×X

六、全课总结,温故知新

解比例应用题的一般步骤是什么?(学生自己用语言叙述)

一般方法和步骤:

1、判断题目中两种相关联的量是成正比例还是反比例;

2、设未知量为x,注意写明计量单位;

3、列出比例式,并解比例式;

4、检查后写出答案;

5、特别注意所得答案是否符合实际。

七、课后反馈,挑战难题

小明受老师委托,编一些比例应用题,于是他前往“数学超市”选购了一些条件:

“计划每天生产30辆”、“实际每天生产40辆”、“计划25天完成”、“实际20天完成”、“计划一共生产了900辆”、“实际一共生产了1000辆”

小明需要你的帮助,你会怎样编题?

比的应用教学设计 篇3

设计说明

1.注重培养学生学习的自主性。引导和培养学生的自主学习能力是切实可行的,对学生养成终身学习的习惯起着不可估量的重要作用。本设计通过让学生找玩具汽车数量与小人书数量之间存在的比例关系和列举比例等,调动学生的学习热情,使学生的学习兴趣和求知欲望得到激发,思维得到拓展。

2.培养学生的解题能力。本设计以扶代讲,巧妙地引导学生主动探究,使学生在解决问题的过程中,不但能理解和掌握解比例的方法,而且能体会到数学与生活的密切联系,使学生的解题能力、合作能力及归纳能力得到提高。

教学目标

1、经历多种方法解决“物物交换”问题的过程,体会解决问题方法的多样性,提高综合运用知识解决问题的能力。

2、在解决问题的过程中,列出含有未知数的比例,并自主探索解比例的方法,理解根据“两个内项的积等于两个外项的`积,求比例中的未知项,”会正确解比例。

3、在生活中感受数学探索的乐趣,提高学生学习数学的兴趣。

教学重点:

使学生自主探索出解比例的方法,并能轻松解出比例中的未知项。

教学难点:

用比例的知识解决实际问题

教法学法

讲授法、讨论法、练习法、自主学习法

教学准备:

多媒体课件

教学过程:

一、回顾旧知,复习铺垫

1.上节课我们学习了有关比例的知识,谁能说一说什么叫做比例?比例的基本性质是什么?

2 .下面两个长方形的长和宽能组成比例吗?(白板出示长方形)

二、创设情境 引出新知

师讲《完璧归赵》的故事。秦王打算用什么来换和氏璧?其实这种物物交换的现象在我们现实生活中同样存在,学生举例,课前,老师就收到了这样一则信息,淘气是玩具汽车的收藏爱好者,笑笑喜欢收藏小人书,两人一商量,打算资源共享。引出新知——《比例的应用》

三、实践探究、精讲点拨

活动(一)“物物交换”,提出问题

呈现问题情境,引导学生读懂题意,并尝试提出问题。

他们经过商量,打算用4个玩具汽车换10本小人书, 14个玩具汽车,可以换多少本小人书?(设计意图:通过“物物交换”,激发学生的兴趣,接着呈现“玩具汽车换小人书”这一情境并提出问题,激发学生学习的热情,为探究新知奠定基础。

活动(二)尝试解决,体会联系

1、14个玩具汽车可以换多少本小人书?把你的想法记录在答题卡上。

2、 教师引导学生交流各自的想法,体会在“物物交换”的过程中,玩具汽车的数量与小人书的数量之间存在的比例关系。

3、学生介绍每种方法的思考过程,强调尽管思路不同,但各种方法都围绕玩具汽车个数与小人书本数之间的比例关系而展开。

活动(三) 拓展策略 列比例解答

1、教师引导:假设14个玩具汽车可以换x本小人书,同学们能否根据题意列出比例?并说说你是根据哪两句话写出比例的,你是怎么想的?

2、学生尝试列式。

3、交流汇报写出比例的主要依据。

4、学生独立解比例。

5、汇报结果。

6、验算:把求出的结果代入比例验算一下,看等式是否成立。 (学生自主验算)

7、教师小结。解比例的关键是根据“内项的积等于外项的积”写成等式,再用等式的性质解方程。

设计意图:将解比例的学习融入到问题解决的过程中,引导学生自主独立解决,然后组织学生汇报自己的解法,这样学生对新知识就会更加理解。

四、分层练习、生生过关

(1)完成练一练1、2题

(2)完成练一练3、题

五、拓展延伸、优化提升

1、根据小组评价结果编一道有关比例的应用题。

2、你能结合生活中的例子编一道有关比例的应用题吗?

比的应用教学设计 篇4

教学目标:

使学生进一步理解和掌握用比例知识解答应用题的方法。

抓住解题关键进行熟练准确的判断,从而找准题中的等量关系。

通过与算术方法解答相比较,加强知识之间的联系,使学生进一步理解能用比例知识解答应用题的数量关系。

教学过程:

师:谁能够说说用比例知识解应用题的关键是什么?

判断下题中各量成什么比例?并说明理由?

指导学习题例。

让学生独立解答例7。

在弄清题意后,把例5未完成的部分写完整然后比较这两种解答方法的异同点。

相同点:都是抓住商一定来建立等量关系列出方程或比例式解答的.。

不同点:第一种解法是直接设所求问题为X。

第二种解法是间接设,即解出X后,还要用X减3才是所求问题。

师:除了这两种方法解答外,还能用其它方法吗?请用算术方法解答例7。

学习例6

师:请同学们在教材上完成例6后,再用算术方法解答。说说用比例解例6的关键。

对比小结

比较例5例6有什么不同?分别是根据什么关系来解答的?

(强调用比例知识解应用题,关键是判断题中的数量成什么比例,再根据题中比例关系找准等量关系,把其中未知数量用X代替,列出方程解答)

算术解法和比例解法的比较和联系。

观察算式(例5)

练习巩固

笔答题:教材117页1~3题。

全课总结(略)

比的应用教学设计 篇5

教学目标

1、理解并掌握连减应用题的解题思路,能正确并迅速地计算连减应用题。

2、运用迁移规律,培养学生分析问题和解决问题的能力,渗透比较思想。

3、看图口编应用题,提高学生综合思维能力。

教学重点

1、分析从一个数里连续减去两个数的应用题的数量关系。

2、从一个数里连续减去两个数的应用题的第一种解法。

教学难点

提出从一个数里连续减去两个数应用题的中间问题。

教具学具准备

投影仪、投影片、小黑板、直尺。

教学步骤

一、铺垫孕伏。

1、投影出示复习题。

学校有30张彩色纸,做纸花用去11张,还剩多少张?

2、指名读题,找出题中的条件和问题。

3、学生独立解答,集体订正。

学生思考、回答:这道题要求的“还剩多少张”是干什么用去后剩下的张数?

二、探究新知。

1、导入新课:前面学习的应用题,都是把复习题的第一个条件改变成两个条件,把一步计算的应用题变为两步计算的应用题。现在,这道应用题前两个条件不变,我们在第二个条件后加上一个条件,看看变成什么样的应用题,该怎样解答。

2、教学例3。

(1)出示例3:学校有30张彩色纸,做纸花用去11张,做小旗用去9张,还剩多少张?

(2)指名读题,找出题中的条件和问题。

(3)初步理解题意:

教师引导学生从条件、问题入手对复习题和例3进行观察、比较、分析。使学生知道:虽然两道题都是求“还剩多少张?”,但复习题给出了两个条件:30张彩色纸、做纸花用去11张,所以求出做完纸花后剩下的张数,也就回答了最后问题,只需一步计算;例3给出了三个条件:30张彩色纸,做纸花用去11张,做小旗用去9张。由此可知,从30张彩色纸中用了两次,求最后剩下的张数,显然不能一步完成,而需计算两步。

(4)画线段图,进一步理解题意。

学生叙述题中的条件和问题,教师画出线段图:

指名看线段图说明题意。

(5)利用线段图,分析题中数量关系,找出中间问题,解答应用题。

学生看图、思考、讨论:从30张彩色纸中,做纸花用去11张,由这两个条件可以算出什么?

通过思考、讨论,使学生知道:由题中的前两个条件,可以求出做完纸花后还有多少张彩色纸。

指名在线段图上指出哪部分表示“做完纸花还有多少张”。教师随即在线段图的对应部分标出:

板书:做完纸花还有多少张?

学生看图思考:根据条件怎样求出做完纸花还有多少张?

指名在线段图上指出第一步是从哪一段里去掉哪一段,剩下的是哪一段。

学生叙述算式及得数,教师板书:30—11=19(张)

引导学生思考:这19张回答的是不是题中的问题?为什么?

通过分析,使学生知道:例3要求的是从总数30张中做纸花、做小旗用去两次后剩下的部分。19张是从30张中用去一次即做纸花后剩下的,它回答的是应用题的中间问题,而不是最后的问题。

学生看图思考:做小旗用的9张彩色纸是从哪部分中用去的?由这两个条件可以求什么?

指名在线段图上指出是从哪一段里去掉哪一段,剩下的是哪一段。

板书:(2)还剩多少张?

学生叙述算式及得数,教师板书:19—9=10(张)

答:还剩10张。

(6)回顾分析、解答例3的过程。

教师以叙述及问答的方式引导学生回忆例3的分析、解答过程。

①读题,找出题中的条件、问题。

指名叙述题中的条件和问题。

②分析题中的条件和问题,看由题中的已知条件能不能一步解答所求问题。

指名回答由例3的已知条件能否一步解答“还剩多少张”,为什么?

③画出线段图,看图分析由前两个条件可以求出什么问题,确定第一步该算什么。

指名叙述例3的前两个条件,回答用前两个条件可以求什么,第一步该算什么。

再分析由第一步的计算结果和第三个条件能木能解答所提问题,确定第二步算什么。

指名叙述例3第二步算什么。

④经过分析,知道先算什么,再算什么,就可以列式解答了。

指名叙述例3第一步、第二步的解答方法。

⑤写出答案,检查解答有没有错误。

教师总结:解答应用题关键是分析题中的数量关系,在今后的练习同学们可以根据题中的条件、问题自己画出线段图,根据直观图示进行分析,确定先算什么,再算什么,最后再解答。

3、完成“做一做”。

幼儿园买来30个梨,给小班12个,给中班9个,还有多少个?

(1)指名读题,找出题中的条件和问题。

随学生叙述,教师在黑板上画出不完整的线段图。

(2)引导学生画出:

①给小班12个后剩下的'部分。

②给中班9个后剩下的部分。

一名学生画在黑板上,其余学生画在书上。

(3)学生分析、解答。

(4)指名叙述解题思路。

三、全课小结。

今天我们学习的是两步计算应用题中,从一个数里连续减去两个数的应用题。

这种应用题有两种解答方法,今天我们学习的是其中的一种,即从总数中减去第一部分,再减去第二部分,下节课我们将学习这种应用题的第二种解法。

随堂练习

1、(1)河边有24只鸭,游走了7只,还剩多少只?

(2)河边有24只鸭,先游走7只,又游走9只,还剩多少只?

引导学生对上述两题进行分析比较:两题的第一个条件相同,即河边有24只鸭,问题相同,都是求还剩多少只。但第1小题的已知条件告诉我们,从24只鸭中游走了一次即7只,求剩下的,可一步解答。第2小题是从24只中游走两次,第一次游走7只,第二次游走9只,求剩下的不能一步解答,必须先求出游走7只后还有多少只。

学生独立解答,集体订正。

2、缝纫组买来35米花布,30米蓝布。做衣服用去59米,还剩多少米?

指名读题,找出题中的条件和问题。

学生独立解答。

指名叙述解题思路及答案,集体订正。

布置作业

商店运来35筐苹果。上午卖10筐,下午卖11筐,还剩多少筐?

比的应用教学设计 篇6

教学目标

1、理解以“和倍”问题为基础的分数应用题的解题思路、会列方程解答此类应用题。

2、培养学生的迁移类推能力。

3、培养学生运用所学的知识解决生活中的实际问题的能力。

教学重点

理解应用的数量关系,找到题目中的等量关系。

教学难点

找准题中的等量关系。

教学过程

一、复习。(用含有字母的式子表示)

1、果园里有苹果树x棵,梨树的棵数是苹果树棵数的3/4。梨树有|()棵。

苹果树和梨树一共有()棵。

2、饲养小组养了黑兔a只,白兔的只数是黑兔的5倍,白兔有()只;黑兔和白兔一共有()只。

二、生活引入

上一年,有一位学生问我|:“老师,您今年有多少岁啦?我说:我和杨莹的年龄和是42岁,杨莹的年龄是我的年龄的2/5。你能算出老师的年龄是多少岁吗?那杨莹的年龄又是多少岁呢?

1、老师说:你能解决这个问题吗?通过今天知识的学习,你们就能知道了。

2、板书课题:分数除法应用题。

3、学生读题,理解题意弄清谁是单位”1“,画出线段图。

4、分层指导。

思考:(1)根据我和杨莹的年龄和是42岁这个条件找到它的等量关系吗?

(2)根据杨莹的年龄是我的年龄的2/5这个条件,可以把谁设为?老师,杨莹的岁数用含有的式子怎么表示?

5、学生练习,集体订正,说明思路。

三、尝试练习

(一)出示例3

例3、饲养小组养的白兔和黑兔共有18只,其中黑兔的只数是白兔的、白兔和黑兔各有几只?

1、读题,理解题意弄清谁是单位”1“,画出线段图。

2、小组回答:

(1)根据饲养小组养白兔和黑兔共有18只这个条件找到它的等量关系吗?

(2)根据黑兔的只数是白兔的这个条件,可以把谁设为?白兔、黑兔的.只数用含有的式子怎么表示?

3、学生练习。

4、学生打开书本对答。(65页)

解:设白兔的只数为只,黑兔的只数是?

白兔只数+黑兔只数=总只数

答:白兔有15只,黑兔有3只。

4、教师提问:这道题还可以怎样列式?

18÷(1+)什么意思?

(二)写出下面应用题的等量关系,只列出含有未知数的等式,不解答。

1、商店运来苹果和沙果350筐,其中沙果的筐数是苹果的,苹果和沙果各有多少筐?

2、商店运来的苹果比沙果多60筐,其中沙果的筐数是苹果的,苹果和沙果各有多少筐?

教师归纳:今天学习的应用题在解答时要根据分率句确定单位”1“,把单位”1“设为,另一个数就是几分之几,根据已知条件列出方程解答。

四、巩固练习

(一)变式练习

小文买一支钢笔和一支圆珠笔,买钢笔的价钱比买圆珠笔多13元,圆珠笔的单价是钢笔的6/19,圆珠笔和钢笔各多少元?

(二)对比练习

1、李明家九月份用水18吨,十月份用的水是九月份的,九月份和十月份一共用水多少吨?

2、李明家九月份和十月份共用水34吨,九月份的用水吨数是十月份的,九月份、十月份各用水多少吨?

(三)选择练习

果园里苹果树和桃树共350棵,其中苹果的棵数是桃树的,桃树有多少棵?

解:设桃树有x棵。

A、B、

C、D、

五、质疑总结

1、用方程解这类题的关键是什么?

2、用算术方法解答时应注意什么?

六、板书设计

分数除法应用题

解:设老师的年龄是x岁。

......老师年龄

42-30=12......杨莹的年龄

答:老师30岁,杨莹12岁。