加法交换律教案
文学网整理的加法交换律教案(精选6篇),供大家参考,希望能给您提供帮助。
加法交换律教案 篇1
一、说教材
1、教材地位:加法是数学中最基本的运算之一。在前三年半学生已经学会加法的计算方法。本节课是在学生已经学过加法知识的基础上,明确概括出加法的意义,学生学会整数加法的意义,为以后学习小数、分数加法的意义打下基础。加法运算定律的学习,不仅有助于加深理解加法的一般计算方法,还能使一些计算简便。同时也为以后学习用字母表示数打下初步基础。
2、教学目标:
知识和技能方面:理解加法的意义。理解并掌握加法交换律。
能力方面:培养学生观察、比较、归纳、概括等初步的逻辑思维能力。培养学生应用所学知识解决实际问题的能力。
思想品德方面:通过概括加法的意义,初步渗透辩证唯物主义思想。通过变式练习,培养学生良好的学习习惯。
发展性方面:通过日常生活中的事例,将数学知识应用于生活中,用数学的思想、方法分析生活中遇到的问题。
3、教学重点:理解加法的意义,掌握加法交换律及其应用。
难点:加法交换律的应用。
二、说教法
本节课设计的基本思路是:观察——比较——讨论——概括——应用,教学中以学生为主体,激励学生动眼、动手、动口、动脑积极探究问题,促使学生积极主动地参与学习的全过程。根据本节课教学目标和教材特点,我采用以下几种教法:
1、情境教学法。我们知道创设问题情境,能使学生的学习兴趣得到激发,使学生融入到数学情境中去,积极动脑思考,使学生认识到数学来源于生活,又服务于生活。如:通过教师左右手分别出示铅笔,导入问题,求一共有多少支铅笔?用什么方法解答,从而“引出什么叫加法”,激起同学们的学习兴趣。为后面学习加法的意义做好认知准备。
2、直观引导观察法。理解加法的意义是本课的重点。将例题以线段图的形式出现,唤起学生的感性认识。从线段图上学生直接感受到求花的朵数,北京到济南的路程,就是要把两个数合并成一个数,所以要用加法计算。让学生用自己的语言表述为什么用加法算,既讲清楚两例题目的算理,又为加法意义的概括奠定良好的认知基础。
3、小组讨论交流法。掌握加法交换律及应用是本课重点也是难点。学习加法交换律,用四组加法算式为观察点,让学生个人探索,小组交流讨论,通过计算、观察、比较、讨论等一系列实践活动,从几组算式间的联系去发现并总结规律,逐步概括出加法交换律。最后抽象出用字母表示的定律。它是学生自己探索得到的,有实感才能有认识,认识深刻才能理解透彻,理解透彻才能熟练地应用。这样的设计基本体现了学生学习的主体性、积极性、创造性。
4、分层练习法。学生在理解了加法交换律后,就要应用它,这是本课的重点也是难点。《数学课程标准》指出:能综合运用知识,灵活、合理地选择与运用有关的方法完成特定的数学任务。根据教学目标,练习分为基本练习、巩固练习、深练习等,这样既有助于学生掌握知识,又利于满足不同层次学生的需求。贯彻全面发展与因材施教相结合的教学原则?/SPAN>
5、教具:小黑板两块,铅笔13支。
三、说学法
“教会学生如何学习”,是当前教改研究热点。学生掌握了学习方法,就等于拿到了打开知识宝库的金钥匙。在教学过程中,应重视学习方法的指导,主要学法有:
1、个人自学法。加法各部分名称比较容易懂,通过学生自己看书,明确加法的各部分名称,从而培养学生的学习能力。
2、观察比较法。概括加法的意义是学习的重点,通过线段图引导学生观察、比较,从感性认识上升到理性认识,使学生对加法的意义有深刻的认知。
3、交流讨论法。学生个人探索,同桌交流,小组讨论。通过计算、观察、比较、讨论等活动,去发现并总结出加法交换律。发挥学生的`主体作用,让学生敢想、敢说、敢问,培养学生初步的归纳推理能力。
4、练习法。练习是为了使学生更好掌握新知,深化理解。学生掌握了加法交换律,应用加法交换律是本课的难点。练习上采用基本练习、巩固练习、深化练习等。通过练习加深学生对加法交换律的理解,初步培养学生演绎推理能力。
四、说教学程序
㈠创设情境,导入新课。
师双手分别出示铅笔,问:求一共多少支?学生列式解答后,提出问题:为什么用加法算?引出课题:加法的意义。(板书)
(意图:使学生初步感知加法的意义。)
㈡直观观察,抽象概括。
1、学习加法的意义。
⑴出示两个线段图,列式解答。
⑵根据列式,说说为什么要用加法算?把自己用加法算的理由告诉大家。
教师引导学生概括出加法的意义。(板书)把两个数合并成一个数的运算,叫做加法。找出关键字词。
(意图:通过两个线段图列式,并引导观察比较,概括出加法的意义。)
⑶应用加法的意义。
用小黑板出示练习十一第1题。先指名说,再同桌说。
(意图:加深巩固什么是加法?什么样的运算是加法。)
2、学生自学加法各部分的名称。
⑴看书P47自学后,师问生答师板书(加数、和)。
⑵观察比较讨论。
观察比较:加法算式中的和与其中一个加数比较,你发现了什么?
讨论:是不是任何一个加法算式中的和都比其中一个加数大呢?
引出:任何自然数相加的和都比一个加数大。
一个数加上0,还得原数。举例:0+7=7,7+0=7。
0和0相加得0。0+0=0。
㈢探索加法交换律。
1、(出示四组算式)计算各式,并根据结果探索加法交换律。
学生计算后,观察每组算式的结果,发现了什么?比较它们的相同点和不同点。引导得出结论:(板书)两个数相加,交换加数的位置,它们的和不变。学生举例。
2、用字母表示加法交换律。
a+b=b+a(板书),说说用字母表示加法交换律有什么好处?
㈣巩固练习,深化理解。
1、基本练习,体现知识的目的性。
(小黑板出示)填空:
⑴把两个数成一个数的运算。叫做加法。
⑵相加的两个数叫做,加得的数叫做。
⑶两个数相加,加数的位置。它们的不变。
⑷用字母表示加法交换律:。
2、巩固练习,体现知识的层次性。
用小黑板出示P48做一做的第1题。
3、深化练习,体现知识的灵活性。
用小黑板出示练习十一第3题。
㈤课堂小结。
今天学习了什么知识?你懂得了些什么?
㈥布置作业。
P48做一做的第2题,练习十一的第2、4题。
板书设计:
加法的意义和加法交换律
例⑴25+20=45(朵)⑴20 +30 =30+20
加数 加数和⑵125+243=243+125
⑵137+357=494(千米)⑶14 +80 =80+14
把两个数合并成一个数⑷23 +505=505+23
的运算,叫做加法 。a+b=b+a
两个数相加,交换加数的位置,它们的和不变。
这叫做加法交换律
加法交换律教案 篇2
第一课时:
教学内容:P28例1(加法交换律)P29/例2(加法结合律)
教学目标:
1.引导学生探究和理解加法交换律、结合律。
2.培养学生根据具体情况,选择算法的意识与能力,发展思维的灵活性。
3.使学生感受数学与现实生活的联系,能用所学知识解决简单的.实际问题。
教学过程:
一、主题图引入
观察主题图,根据条件提出问题
(1)李叔叔今天一共骑了多少千米?
(2)李叔叔三天一共骑了多少千米?
等等。
引导学生观察主题图
教师根据学生提出的问题板书。
二、新授
练习本上用自己的方法列出综合算式,解答黑板上问题。
教师巡视,找出课堂上需要的答案,找学生板演。
学生观察第一组算式,发现特点。
引导学生观察第一组算式,总结出:
40+56=56+40
试着再举出几个这样的例子。
根据学生的举例,进行板书。
通过这几组算式,你们发现了什么?
学生发现规律:两个加数交换位置,和不变。这叫做加法交换律。
教师根据学生的小结,板书。
你能用自己喜欢的方式表示出加法交换律吗?
板书:a+b=b+a
学生用多种形式表示。
符号表示:△+☆=☆+△
引导学生观察第二组算式,总结出:
(88+104+96)=88+(104+96)学生观察第二组算式,发现特点。
学生继续观察几组算式。
出示:
(69+172)+28
69+(172+28)
155+(145+207)
(155+145)+207
通过上面的几组算式,你们发现了什么?
学生总结观察到的规律。
教师板书:先把前两个数相加,或者先把后两个数相加,和不变。这叫做叫法结合律。
学生用自己喜欢的方式表示加法结合律。
符号表示:(△+☆)+○=△+(☆+○)
教师板书:
(a+b)+c=a+(b+c)
学生根据这两个运算定律,举一些生活中的例子。
三、巩固练习
P28/做一做
P31/4、1
四、小结
学生小结本节课学习的加法的运算定律。
今天这节课你们都有什么收获?
你能把这些运用于以后的学习中吗?
五、作业:P31/3
板书设计:
加法的运算定律
(1)李叔叔今天一共骑了多少千米?(2)李叔叔三天一共骑了多少千米?
40+56=96(千米)56+40=96(千米)88+104+96104+96+88
=192+96=200+88
=288(千米)=288(千米)
40+56=56+40(88+104)+96=88+(104+96)
┆(学生举例)(69+172)+28=69+(172+28)
两个加数交换位置,和不变。155+(145+207)=(155+145)+207
这叫做加法交换律。先把前两个数相加,或者先把后两个数相加,和不变。这叫做加法结合律。
a+b=b+a(a+b)+c=a+(b+c)
加法交换律教案 篇3
加法交换律教案
作为一名辛苦耕耘的教育工作者,有必要进行细致的教案准备工作,编写教案助于积累教学经验,不断提高教学质量。教案应该怎么写才好呢?以下是小编为大家收集的加法交换律教案,仅供参考,希望能够帮助到大家。
加法交换律教案 篇4
设计说明
加法交换律的学习是在学生已经掌握了加法的意义,积累了大量的用交换两个加数的位置进行验算的知识经验的基础上进行教学的,因此,本节课的学习对于学生来说并不困难。本节课的教学教师注重唤醒学生的已有认知,借助归纳和演绎推理,引导学生自主发现加法交换律。具体设计如下:
1.创设情境,唤醒认知经验。
数学知识的学习是螺旋上升的,任何一个新知的学习都能在旧知的基础上找到生长点,因此,数学的学习实际就是同化和顺应的过程。新课伊始,教师为学生呈现“李叔叔骑车旅行”的生活化情境,并引导学生根据数学信息,借助已有的加法知识提出数学问题:李叔叔今天一共骑了多少千米?并提出不同的列式解答方法。学生在熟悉的情境中,自觉调动已有认知经验解决问题,使新知的学习植根于学生已有的知识基础上。
2.遵循教学主线,教给学生学习方法。
遵循这样一条教学主线:发现规律—验证规律—应用规律。在教学加法交换律时,先引导学生从解决情境图的实际问题中发现规律,再引导学生验证这个规律,最后应用规律来解决一些问题,这也是学习数学的一种很好的方法。学生如果能真正掌握这种方法,并能把这种方法应用到以后的学习生活中去,可以受益终生。
3.关注运算定律的形式化表达,培养学生的抽象能力和模型思想。
让学生用自己喜欢的方式把加法交换律表示出来,用文字、符号、字母都可以,并不加以限制,这样有利于培养学生的符号意识,提高学生的抽象概括能力,为以后学习用字母表示数打下基础,同时,也有助于学生发散性思维的训练。
课前准备
教师准备 多媒体课件
教学过程
⊙创设情境,导入新课
师:同学们,你们喜欢旅游吗?(喜欢)
师:你们打算去什么地方旅游呢?(生汇报)
师:看来喜欢旅游的同学还真不少,有谁骑车旅行过呢?(生举手表示)骑车旅行不仅能锻炼身体,还能开阔视野,给我们带来好心情。瞧,李叔叔正骑车旅行呢!(播放课件)
你从中获取了哪些信息?和你的同桌互相说一说。(同桌交流)
师:谁愿意把你获取的.信息和大家分享一下?
预设
生1:李叔叔准备骑车旅行一个星期。
生2:李叔叔今天上午骑了40 km,下午骑了56 km。要求李叔叔今天一共骑了多少千米。
师:说得不错!今天我们就来解决这个问题。
设计意图:从创设贴近学生生活实际的情境出发,让学生观看情境图并自主搜集信息,可以培养学生看图搜集信息的能力。
⊙自主探究,寻找规律
(课件出示例1)
1.解决问题,发现规律。
(1)独立计算,汇报结果。
师:在练习本上算一算李叔叔今天一共骑了多少千米。(学生独立计算)
师:谁来汇报一下自己解决问题的方法和结果?
(生汇报,教师板书)
预设
生1:用李叔叔上午骑的路程加上他下午骑的路程就是他今天一共骑的路程。40+56=96(km)。
生2:用李叔叔下午骑的路程加上他上午骑的路程也是他今天一共骑的路程。56+40=96(km)。
(2)引导学生观察算式,比较这两种算法。(出示课堂活动卡)
师:请同学们观察这两个算式,说说你有什么发现。
(相同点:两个算式都可以求出李叔叔今天一共骑了多少千米;不同点:两个算式的加数交换了位置)
(3)思考:你能表示出这两个算式的关系吗?
[课件出示:40+56( )56+40]
师:想一想,( )里能填什么符号?(课件出示:=)
设计意图:引导学生观察,发现两种算法的相同点与不同点,从而确定这两个加法算式的关系,进而使学生对加法交换律有了感性认识,培养了学生的发现意识。
2.验证、总结加法交换律。
(1)思考:这一组算式交换了两个加数的位置,它们的和没有变,是不是任意两个数相加,都有这样的规律呢?谁能任意说出一个加法算式来验证一下呢?(18+17=17+18)
(2)验证。
师:这两个数相加符合这个规律,其余的数是不是也符合这个规律呢?请同学们在练习本上举几个例子并验证,然后在小组内交流一下。(小组内交流汇报,教师板书)
预设
生1:28+71=71+28,这两个算式的加数相同,只是交换了位置,它们的和都是99,所以这两个算式用等号连接。
生2:36+54=54+36,加数相同,位置不同,但是这两个算式的结果都是90,所以这两个算式用等号连接。
加法交换律教案 篇5
教学内容:加法交换律和乘法交换律
教学目标:
1.经历教法交换律和乘法交换律的探索过程,会用字母表示加法交换律和乘法交换律,培养发现问题和提出问题的能力,积累数学活动经验。
2.通过列举生活实例解释加法交换律和乘法交换律的过程,认识运算律丰富的现实背景,了解加法交换律和乘法交换律的用途,发现应用意识。
教学重点:经历观察、归纳、猜想、验证的过程,培养学生的观察、概括能力,渗透归纳猜想的数学思想方法。
教学难点:归纳猜想的`数学思想方法渗透。
教学过程:
一、导入阶段:
出示主题图,向学生介绍“爱心助学大行动”,某商店为帮助贫困山区学生特别举行义卖活动把营业额全部献给希望小学。看,小胖和小亚也来帮忙了。
问:从图中你能获得哪些数学信息?
你还能提出哪些数学问题?
二、探究阶段:
1.投影演示:(果汁)师:小亚和小胖各有多少罐果汁?合起来桌上有几罐果汁?谁能列式计算?
师:谁能说出两道加法算式中各部分的名称?
提问:仔细观察一下,这两个算式有什么相同点和不同点?
(相同点是两个加数分别是8和18,和都是26,而不同处只是两个加数的位置不同)
师:因为8+18=2618+8=26所以8+18=18+8
师:有谁能模仿这道题目的形式举出类似的例子?同桌两组相互交流。
(1)根据我们举的例子你发现了什么?(小组交流)
提示:这些例子都是几个数相加?两者之间发生了什么变化?结果怎样?
归纳:两个数相加,交换加数的位置,它们的和不变。这叫做加法交换律。
(2)让学生用自己喜欢的方式表示加法交换律(启发学生用符号或字母)
例:◆+●=●+◆甲数+乙数=乙数+甲数a+b=b+a这里的a、b可以是哪些数?
加法交换律用字母表示:a+b=b+a
(3)竖式计算74+641
师:运用加法交换律,我们还可以验算加法的计算结果是否正确。
74验算:641
+641+74
715715
小结:验算时,可以将两个加数交换位置后再加一遍。也可以用原来的竖式,把每一位上的数从下往上再一遍。
2.投影演示:
(1)图中小箱里共有几罐果汁?6×3=183×6=18
师:请学生分别读一下以上两个算式,因为这两个算式计算结果相等,所以我们可以把这两个算式用等号连接。
(2)根据我们举的例子你发现了什么?(小组交流)问题:等式左边各有什么相同的地方?
每一组等式的左右两边又有什么联系?
师:这就是我们这节课所要学习乘法交换律。刚才同学们已经用自己的话归纳了一下,那么什么是乘法交换律?(出示结论)
小结:两个数相乘,交换因数的位置,它们的积不变。这叫做乘法交换律。
(3)如果用字母a、b分别表示两个数,那么乘法交换律用字母可以怎样表示?仿这道题目的形式举出类似的例子?同桌两组相互交流。
(4)如果用字母a、b分别表示两个数,那么乘法交换律用字母可以怎样表示?
板书:a×b=b×a
三、运用阶段:
1.根据加法交换律填数
()+270=270+80400+500=()+()()+56=()+44a+()=b+()
2.根据乘法交换律,在()里填上适当的数
34×71=()×()25×976=976×()45×()=55×()303×786=()×303()×▲=()×■()×54=54×37()×()=c×Da×()=c×a
3.竖式计算
64验算:27
×27×64
四、总结:
今天这节课我们学习了加法交换律和乘法交换律,并且学会了用字母来表示。还学习了用这两个运算定律来验算加法和乘法。
板书设计:
加法交换律和乘法交换律
8+18=263×6=18
18+8=266×3=18
8+18=18+83×6=6×3
加法交换律:a+b=b+a乘法交换律:a×b=b×a
加法交换律教案 篇6
教学内容:
国标本苏教版四年级上册P56—57例题,完成P58的“想想做做”。
教学目标:
1、使学生经历探索加法交换律和结合律的过程,理解并掌握加法交换律和结合律,初步感知加法运算律的价值,发展应用意识。
2、使学生在学习用符号、字母表示自己发现的运算律的过程中,初步发展符号感,初步培养归纳、推理的能力,逐步提高抽象思维能力。
3、使学生在数学活动中获得成功的体验,进一步增强对数学学习的兴趣和信心,初步形成独立思考和探究问题的意识和习惯。
教学过程:
一、故事导入,激发兴趣
(播放《朝三暮四》视频)师:同学们,听了这个故事你想说什么?猴子很笨,同学们很聪明,栗子的总颗数有没有变化呢?什么发生变化?
引入:这个故事的名字叫《朝三暮四》,在数学中也有类似《朝三暮四》故事里的规律,同学们想不想研究一下?
二、创设情境,联系生活
谈话:天气渐渐转凉,学校要组织大家参加冬季比赛了,看,四年级同学正在操场上开展体育活动。
(课件出示例题情境图)
提问:从图中你了解到哪些数学信息?(指名说一说)
提问:你能提出用加法计算的问题吗?
学生提到的问题可能有:跳绳的有多少人?女生有多少人?参加活动的一共有多少人?
谈话:同学们提出的问题都非常好,下面我们先来解决第一个问题。
三、探索加法交换律,初步感知
课件出示问题(1)要求参加跳绳的有多少人?
提问:应该怎样列式?
指名口答,教师板书:28+17=45(人)
提问:还可怎么列式?板书:17+28=45(人)
提问:这两道算式都是求什么的人数?(跳绳的人数)结果都是多少?
谈话:既然得数相同,我们就可以把这两个算式用“=”连接起来。改写成28+17=17+28
板书:28+17=17+28(学生齐读这个等式)
提问:比较这两个算式,你有什么发现?(引导学生说出:加数相同,得数也一样,只不过是把加数的位置调换了一下)。
提问:你能照样子再写出几个像这样的等式吗?试试看。(学生动笔写,指名学生回答,教师把学生说的等式有序地板书在黑板上,板书三个)。
提问:像这样的等式你能写得完吗?
谈话:既然写不完,可以用省略号表示(板书省略号)
提问:请同学们仔细观察这些等式,你发现每一组的两个算式都有什么共同的地方?有什么不同的地方(同桌交流)?
提问:你能用自己喜欢的方法表示出像这样的等式吗?可以用符号、字母、文
字等等表示,试试看。
学生写在练习本上,教师巡视,并作相应辅导。教师实物投影出学生写得情况。
师:在数学上,我们通常是用字母a、b来表示两个加数,说来说说怎么表示?
生:a+b=b+a
提问:a和b分别代表什么?
小结:两个数相加,交换这两个加数的位置,和不变。这是加法运算律中的一条很重要的规律,我们这节课就是来研究加法运算中的规律。
板书课题:加法的运算律
师:下面老师想考考大家。
考考你:(1)您能在()里填上合适的`数字吗?
96+35=35+()204+57=()+204
指名回答,为什么?
(2)下面的等式符合加法交换律吗?为什么?
75+25=25+7546+59=46+5990+10=5+95
(没有交换加数的位置;等号两边的加数不同。)
(3)同学们学的真不错,接下来我们来玩个游戏,看看同学们的反应快不快。
游戏:对口令
师:83+17=生:17+83=
97+44=35+65=
88+75=300+600=
a+b=785+68=
(4)提问:同学们,想一想:过去我们学过的计算中,哪些地方应用过加法交换律?
下面一道题357+218,请同学们计算并用加法交换律进行验算。
四、探索加法结合律,自主合作
谈话:同学们,刚才我们通过解决“跳绳的有多少人”这个问题,得到了加法交换律,现在我们再来研究其他同学提到的问题,看看有什么发现。
出示问题(2):参加活动的一共有多少人?
提问:你会列综合算式解决这个问题吗?
指名回答,教师板书:28+17+23
返回首页