返回首页
文学网 > 短文 > 教学教案 > 正文

七年级数学教案

2026/02/07教学教案

文学网整理的七年级数学教案(精选6篇),供大家参考,希望能给您提供帮助。

七年级数学教案 篇1

一、课题

2.1数怎么不够用了(2)

二、教学目标

1.使学生理解有理数的意义,并能将给出的有理数进行分类;

2.培养学生树立分类讨论的思想。

三、教学重点和难点

重点

难点

有理数包括哪些数.

有理数的分类及其分类的标准.

四、教学手段

现代课堂教学手段

五、教学方法

启发式教学

六、教学过程

(一)、从学生原有的认知结构提出问题

1.什么是正、负数?

2.如何用正、负数表示具有相反意义的量?数0表示量的意义是什么?举例说明.

3.任何一个正数都比0大吗?任何一个负数都比0小吗?

4.什么是整数?什么是分数?

根据学生的回答引出新课.

(二)、讲授新课

1.给出新的整数、分数概念

引进负数后,数的范围扩大了.过去我们说整数只包括自然数和零,引进负数后,我们把自然数叫做正整数,自然数前加上负号的数叫做负整数,因而整数包括正整数(自然数)、负整数和零,同样分数包括正分数、负分数,即

2.给出有理数概念

整数和分数统称为有理数,即

有理数是英语“Rational number”的译名,更确切的译名应译作“比

3.有理数的.分类

为了便于研究某些问题,常常需要将有理数进行分类,需要不同,分类的方法也常常不同根据有理数的定义可将有理数分成两类:整数和分数.有理数还有没有其他的分类方法?

待学生思考后,请学生回答、评议、补充.

教师小结:按有理数的符号分为三类:正有理数、负有理数和零,简称正数、负数和零,即

并指出,在有理数范围内,正数和零统称为非负数.并向学生强调:分类可以根据不同需要,用不同的分类标准,但必须对讨论对象不重不漏地分类.

(三)、运用举例 变式练习

例1

将下列数按上述两种标准分类:

例2

下列各数是正数还是负数,是整数还是分数:

课堂练习

25、-100按两种标准分类.

2、下列各数是正数还是负数,是整数还是分数?

(四)、小结

教师引导学生回答如下问题:本节课学习了哪些基本内容?学习了什么数学思想方法?应注意什么问题?

七、练习设计

1.把下列各数填在相应的括号里(将各数用逗号分开):

正整数集合:{ …};

负整数集合:{ …};

正分数集合:{ …};

负分数集合:{ …}.

2.填空题:

的数是______,在分数集合里的数是______;

(2)整数和分数合起来叫做______,正分数和负分数合起来叫做______.

3.选择题

(1)-100不是

A.有理数 B.自然数 C.整数 D.负有理数

(2)在以下说法中,正确的是[ ]

A.非负有理数就是正有理数

B.零表示没有,不是有理数

C.正整数和负整数统称为整数

D.整数和分数统称为有理数

八、板书设计

2.1数怎么不够用了(2)

(一)知识回顾 (三)例题解析 (五)课堂小结

(二)观察发现 例1、例2

(四)课堂练习 练习设计

九、教学后记

在传授知识的同时,一定要重视数学基本思想方法的教学.关于这一点,布鲁纳有过精彩的论述.他指出,掌握数学思想和方法可以使数学更容易理解和更容易记忆,更重要的是领会数学思想和方法是通向迁移大道的“光明之路”,如果把数学思想和方法学好了,在数学思想和方法的指导下运用数学方法驾驭数学知识,就能培养学生的数学能力.不但使数学学习变得容易,而且会使得别的学科容易学习.显然,按照布鲁纳的观点,数学教学就不能就知识论知识,而是要使学生掌握数学最根本的东西,用数学思想和方法统摄具体知识,具体解决问题的方法,逐步形成和发展数学能力.

为了使学生掌握必要的数学思想和方法,需要在教学中结合内容逐步渗透,而不能脱离内容形式地传授.本课中,我们有意识地突出“分类讨论”这一数学思想方法,并在教学中注意渗透两点:

1.分类的标准不同,分类的结果也不相同;

2.分类的结果应是无遗漏、无重复,即每一个数必须属于某一类,又不能同时属于不同的两类.

七年级数学教案 篇2

教学目标

知识与能力

从简单的转盘游戏开始,使学生在生活经验和试验的基础上,进一步体验不确定事件的特点及事件发生的可能性大小。

教学思考

能用实验对数学猜想做出检验,从而增加猜想的可信度。 解决问题

在转盘游戏过程中,经历猜测结果,实验验证,分析试验结果等数学活动,增加数学活动经验。

情感态度与价值观

在合作与交流过程中,体验小组合作更有利于探究数学知识,敢于发表自己观点,提高个人认识。

教学重点难点:

在实验中,体会不确定事件的特点及事件发生可能性大小;使每个学生都能积极认真参与课堂设计中的实验,真正在实验中获得知识上的认识。

教学过程

创设情境,切入标题

同学们,商场经常利用转盘游戏进行抽奖,你认为顾客们的中奖可能性有多大呢?这节课我们就来探究一下有关转盘游戏的问题。 新课探究

请同学们猜测,当我自由转动转盘时,指针会落在什么颜域呢?

请各小组分别派一名代表,看哪组能转出红色。

结果,8小组有6组转出了红色。

为什么会出现这样的结果呢?

因为,在这个转盘中,红域的面积大,白域的面积小,因此,当转盘停上转动时,指针落到红域的可能性大。

大家同意这种看法吗?下面我们亲自动手感受一下。

学生按照题目要求进行实验。

请各组组长把你组的实验数据汇报一下(教师把数据填写在表格里) 实验结果:六个小组每组实验16次,全班共实验96次,指针落在红域的次数分别如下9,6,10,5,8,12。共计50次。

请同学们对我们的实验结果进行分析交流,谈谈你在试验中有哪些心得。

根据观察,转盘上红域的面积为总面积的`一半,指针落在红域的可能性也应该是一半。通过对我们全班的实验结果分析,指针落在红域的比例是50∶96,结果接近百分之五十。

在小组内实验结果不明显,实验次数越多越能说明问题。

通过实验,我们确定感受到,转盘游戏中各区域的面积的可能性大小与指针落在什么区域的可能性大小有直接关系。以后在生活中再遇到转盘游戏问题可要想想今天的实验结论。

游戏与交流

下面我们利用转盘做一下数学游戏(出示幻灯片),学生按教学设计中要求进行游戏,教师巡回指导。

每组每人游戏一次,全班共游戏48次。其游戏结果是,平均数增大1的,共35次,平均数减小1的,共13次。

请同学们对下列问题进行交流(幻灯片出示教材206页4个问题)。 这个转盘转到“平均数增大1”区域的可能性大,从面积大小就可以看出。

如果平均数增大1,我是在卡片上增加一个数,这个数等于卡片上数字的个数加1,如果是平均数减小1,我就在每个数上都减去1。

同学们说出很多种方法,不一一列举。

“平均数增大1”的次数占总次数的百分之七十三,“平均数减小1”占百分之二十七。

如果将这个实验继续做下去,卡片上所有数的平均数会增大。

同学们说的都很好,课后能不能自己也利用转盘设计一个新的游戏,感兴趣的同学可以在课下与我交流。

以下过程同教学设计,略去。

随堂练习

指导学生完成教材第206页习题。

课时小结

学生可从各个方面加以小结。 布置作业

仿照课堂游戏,自编一个新的游戏。 能否利用扑克牌设计本节转盘游戏。

七年级数学教案 篇3

本节课的主要任务是引导学生完成由立体图形到视图,再由视图想到立体图形的复杂过程。这对于刚刚接触几何的初一学生而言,无疑是一次较大的挑战,顺利地完成教学,对今后学习兴趣、信心的培养都是至关重要的,因此,我针对学生的心理特点及接受能力对教材做如下设计:

首先我用苏轼的《题西林壁》巧妙地唤起学生的生活感受,让他们认识到视图的知识在生活中我们早有亲身体验,只是还没有形成概念,然后我再用“粉笔”这一简单的教具,让学生再次体会,加深认识,这样,教学与生活紧密相连,既有自然地导入课题,又消除学生对新知识的恐惧,同时还激发了学生浓厚的学习兴趣。

然后,我不适时地出示“三视图”这一概念,通过实验,让学生认识到视图就是由立体图形转化成的平面图形,并不断地训练、讨论、总结,得出画三视图的正确方法。这时教师要巧妙点拨,学生如何从正面、上面、侧面三个角度来观察,既体现了学生的主体地位,又突出了教师的主导作用,锻炼了学生的动手操能力。

由视图到立体图形与上面的过程恰恰相反,需要学生根据视图进行想象,在大脑中构建一个立体形象。我引导学生利用直观形象与生活中的实物进行联系,通过归纳、总结、对比的方法,有效的突破这一难点。为了进一步地激发学生的学习兴趣,培养学生的想象能力和思维能力,可以让学生用一些小立方体随意摆出几种组合并描绘出它的视图,再由视图到立体图形的课堂训练。最后,让学生归纳所学知识,进一步锻炼学生的概括能力,使知识系统化。以上设计如有不妥之处,望老师们不吝赐教,我不胜感激。

评课记录

开发区李玉:于坤老师这节课有几个突出特点:

1、给学生创设了生动的问题情境。

本节课用宋朝文学家苏轼的一首的诗《题西林壁》。“横看成岭侧成峰,远近高低各不同……”来引入课题,从横、侧、远、近、高、低等不同角度来观察庐山,引出如何观察生活中的立体图形,这个切入点非常好,一下子就能抓住学生的心,吸引学生的注意力。在平日的教学中,我们也应该多找这样的例子。如在教七年级《代数式》时,有的老师这样引入“童年是美好而幸福的,大家还记得那首“唱不完的儿歌吧”,然后同学们一起念“一只青蛙一张嘴,两只眼睛四条腿,扑腾一声跳下水;两只青蛙两张嘴,四只眼睛八条腿,扑腾两声跳下水;三只青蛙三张嘴,六只眼睛12条腿,扑腾三声跳下水……”,然后问:你能不能用一句话来唱完这首儿歌?引发学生思考的兴趣,有的学生通过思考得出:n只青蛙n张嘴,2n只眼睛4n条腿,扑腾n声跳下水,将字母表示数的优点一下子表现出来,令学生顿觉耳目一新。

2、注重过程教学和学法指导

在教学画圆柱体、长方体、球体和圆锥体的三视图时,老师不是直接给学生讲解它们的三视图是什么,然后让学生记忆、变式练习,而是引导学生通过看书、观察老师手中的教具、学生自己的学具或学生自制的模型,再找学生回答、小组讨论,然后教师和学生一起确定答案。这种教学模式:提出问题,创设问题情境———观察实物或学生看书、计算、画图、独立思考、猜想———小组讨论交流———让一个小组代表发言,其它小组补充说明———师生交流总结———拓展应用的模式,比较符合学生的认知规律,能让学生经历探索知识的发生发展过程及在合作学习中学会与他人交流,不仅学会了知识,而且能锻炼学生的各种能力。

3、体现学生主体地位,注重学法指导

教师在本节课上处处关注学生学习的主观能动性,学生自始至终处于被肯定、被激励之中,时时感受到自己是学习的主人,教师给学生留有较大的学习的空间:如观察、讨论、动手摆放学具等,提出问题后让学生充分思考并给予适时的点拨。教科院李洪光老师:

1、周六研究课的定位:本学期的周六研究课不再是一节公开课,而是为解决我们在平日教学中存在的问题而开设的研究、研讨课。

2、在平日的教学中,不少学校和老师存在这样的现象:课堂上老师讲的多,学生学的少;学生听明白的多,学会的少。究其原因,是我们只注重了终端的`结果,而忽视了学习知识的过程。因此在今后的课堂教学中,我们应该让学生掌握知识的发生、发展的过程,让教师和学生充分暴露思维的过程,另外让学生学会学习数学的方法,这也是我们的任务之一。这两节课在这些方面都做了有益的探索。如王长山老师给学生提供了丰富的材料让学生思考、探索,在教学过程中渗透数学思想和方法。于坤老师抓住本节课的核心问题,处处让学生参与到学习探究活动中,教学生观察事物的方法,寻找数学与生活的联系等作法,就很好地体现了新课改的理念。当然并不是所有的课型都让学生探究、讨论,如果讲解能引发学生思维的就用讲解法,讨论交流能引发思维的就用讨论法,总之,在教学中要充分调动学生思维的积极主动性。另外一定要突出数学自身的特点,在我们的老师的课上,多数老师在一节课的结尾都让学生谈谈本节课学会了哪些知识、方法,有什么体会,对本节的内容进行概括性总结,这样做就让学生对本节课有了整体认识。另外不少老师强调严密的逻辑思维、严格的解题步骤等作法都值得发扬。

七年级数学教案 篇4

教学目标:

1.了解正数与负数是实际生活的需要.

2.会判断一个数是正数还是负数.

3.会用正负数表示互为相反意义的量.

教学重点:会判断正数、负数,运用正负数表示具有相反意义的量,理解表示具有相反意义的量的意义.

教学难点:负数的引入.

教与学互动设计:

(一)创设情境,导入新课

课件展示珠穆朗玛峰和吐鲁番盆地,让同学感受高于水平面和低于水平面的不同情况.

(二)合作交流,解读探究

举出一些生活中常遇到的具有相反意义的量,如温度是零上7℃和零下5℃,买进90张课桌与卖出80张课桌,汽车向东行50米和向西行120米等.

想一想以上都是一些具有相反意义的量,你能用小学算术中的数来表示出每一对量吗?你能再举一些日常生活中具有相反意义的量吗?该如何表示它们呢?

为了用数表示具有相反意义的量,我们把具有其中一种意义的量,如零上温度、前进、收入、上升、高出等规定为正的,而把具有与它意义相反的'量,如零下温度、后退、支出、下降、低于等规定为负的,正的量用算术里学过的数表示,负的量用学过的数前面加上“-”(读作负)号来表示(零除外).

活动每组同学之间相互合作交流,一同学说出有关相反意义的两个量,由其他同学用正负数表示.

讨论什么样的数是负数?什么样的数是正数?0是正数还是负数?自己列举正数、负数.

总结正数是大于0的数,负数是在正数前面加“-”号的数,0既不是正数,也不是负数,是正数与负数的分界点.

(三)应用迁移,巩固提高

【例1】举出几对具有相反意义的量,并分别用正、负数表示.

【提示】具有相反意义的量有“上升”与“下降”,“前”与“后”、“高于”与“低于”、“得到”与“失去”、“收入”与“支出”等.

【例2】在某次乒乓球检测中,一只乒乓球超过标准质量0.02g,记作+0.02g,那么-0.03g表示什么?

【例3】某项科学研究以45分钟为1个时间单位,并记为每天上午10时为0,10时以前记为负,10时以后记为正.例如,9:15记为-1,10:45记为1等等.依此类推,上午7:45应记为()

A.3B.-3C.-2.5D.-7.45

【点拨】读懂题意是解决本题的关键.7:45与10:00相差135分钟.

(四)总结反思,拓展升华

为了表示现实生活中具有相反意义的量引进了负数.正数就是我们过去学过(除零外)的数,在正数前加上“-”号就是负数,不能说“有正号的数是正数,有负号的数是负数”.另外,0既不是正数,也不是负数.

1.下表是小张同学一周中简记储蓄罐中钱的进出情况表(存入记为“+”):

星期日一二三四五六

(元)+16+5.0-1.2-2.1-0.9+10-2.6

(1)本周小张一共用掉了多少钱?存进了多少钱?

(2)储蓄罐中的钱与原来相比是多了还是少了?

(3)如果不用正、负数的方法记账,你还可以怎样记账?比较各种记账的优劣.

2.数学游戏:4个同学站或蹲成一排,从左到右每个人编上号:1,2,3,4.用“+”表示“站”,“-”(负号)表示“蹲”.

(1)由一个同学大声喊:+1,-2,-3,+4,则第1、第4个同学站,第2、第3个同学蹲,并保持这个姿势,然后再大声喊:-1,-2,+3,+4,如果第2、第4个同学中有改变姿势的,则表示输了,作小小的“惩罚”;

(2)增加游戏难度,把4个同学顺序调整一下,但每个人记作自己原来的编号,再重复(1)中的游戏.

(五)课堂跟踪反馈

夯实基础

1.填空题:

(1)如果节约用水30吨记为+30吨,那么浪费20吨记为吨.

(2)如果4年后记作+4年,那么8年前记作年.

(3)如果运出货物7吨记作-7吨,那么+100吨表示.

(4)一年内,小亮体重增加了3kg,记作+3kg;小阳体重减少了2kg,则小阳增加了.

2.中午12时,水位低于标准水位0.5米,记作-0.5米,下午1时,水位上涨了1米,下午5时,水位又上涨了0.5米.

(1)用正数或负数记录下午1时和下午5时的水位;

(2)下午5时的水位比中午12时水位高多少?

提升能力

3.粮食每袋标准重量是50公斤,现测得甲、乙、丙三袋粮食重量如下:52公斤,49公斤,49.8公斤.如果超重部分用正数表示,请用正数和负数记录甲、乙、丙三袋粮食的超重数和不足数.

(六)课时小结

1.与以前相比,0的意义又多了哪些内容?

2.怎样用正数和负数表示具有相反意义的量?(用正数表示其中具有一种意义的量,另一种量用负数表示)

七年级数学教案 篇5

1.教学重点、难点

重点:列代数式。

难点:弄清楚语句中各数量的意义及相互关系。

2.本节知识结构:

本小节是在前面代数式概念引出之后,具体讲述如何把实际问题中的数量关系用代数式表示出来。课文先进一步说明代数式的概念,然后通过由易到难的三组例子介绍列代数式的方法。

3.重点、难点分析:

列代数式实质是实现从基本数量关系的语言表述到代数式的一种转化。列代数式首先要弄清语句中各种数量的意义及其相互关系,然后把各种数量用适当的字母来表示,最后再把数及字母用适当的运算符号连接起来,从而列出代数式。

如:用代数式表示:比 的2倍大2的数。

分析 本题属于“…比…多(大)…或…比…少(小)”的.类型,首先要抓住这几个关键词。然后从中找出谁是大数,谁是小数,谁是差。比的2倍大2的数换个方式叙述为所求的数比的2倍大2。大和比前边的量,即所求的数为大数,那么比和大之间量,即 的2倍则为小数,大后边的量2即为差。所以本小题是已知小数和差求大数。因为大数=小数+差,所以所求的数为:2 +2.

4.列代数式应注意的问题:

(1)要分清语言叙述中关键词语的意义,理清它们之间的数量关系。如要注意题中的“大”,“小”,“增加”,“减少”,“倍”,“倒数”,“几分之几”等词语与代数式中的加,减,乘,除的运算间的关系。

(2)弄清运算顺序和括号的使用。一般按“先读先写”的原则列代数式。

(3)数字与字母相乘时数字写在前面,乘号省略不写,字母与字母相乘时乘号省略不写。

(4)在代数式中出现除法时,用分数线表示。

5.教法建议:

列代数式是本章教学的一个难点,学生不容易掌握,这样老师在上课时,首先要让学生理解代数式的本质,弄清语句中各种数量的意义及其相互关系,然后设计一定数量的练习题,由易到难,螺旋式上升,使学生能够正确列出代数式。

七年级数学教案 篇6

学习目标:

1、学会用计算器进行有理数的除法运算.

2、掌握有理数的混合运算顺序.

3、通过探究、练习,养成良好的学习习惯

学习重点:有理数的混合运算

学习难点:运算顺序的确定与性质符号的处理

教学方法:观察、类比、对比、归纳

教学过程

一、学前准备

1、计算

1)(—0.0318)÷(—1.4)2)2+(—8)÷2

二、探究新知

1、由上面的问题1,计算方便吗?想过别的方法吗?

2、由上面的问题2,你的计算方法是先算法,再算法。

3、结合问题1,阅读课本P36—P37页内容(带计算器的同学跟着操作、练习)

4、结合问题2,你先猜想,有理数的混合运算顺序应该是?

5、阅读P36,并动手做做

三、新知应用

1、计算

1)、18—6÷(—2)×2)11+(—22)—3×(—11)

3)(—0.1)÷×(—100)

2、师生小结

四、回顾与反思

请你回顾本节课所学习的主要内容

3页

五、自我检测

1、选择题

1)若两个有理数的和与它们的积都是正数,则这两个数()

A.都是正数B.是符号相同的非零数C.都是负数D.都是非负数

2)下列说法正确的`是()

A.负数没有倒数B.正数的倒数比自身小

C.任何有理数都有倒数D.-1的倒数是-1

3)关于0,下列说法不正确的是()

A.0有相反数B.0有绝对值

C.0有倒数D.0是绝对值和相反数都相等的数

4)下列运算结果不一定为负数的是()

A.异号两数相乘B.异号两数相除

C.异号两数相加D.奇数个负因数的乘积

5)下列运算有错误的是()

A.÷(-3)=3×(-3)B.

C.8-(-2)=8+2D.2-7=(+2)+(-7)

6)下列运算正确的是()

A.;B.0-2=-2;C.;D.(-2)÷(-4)=2

2、计算

1)6—(—12)÷(—3)2)3×(—4)+(—28)÷7

3)(—48)÷8—(—25)×(—6)4)

六、作业

1、P39第7题(4、5、7、8)、第8题

2、选做题:P39第10、11、12、1314、15题