返回首页
文学网 > 短文 > 教学教案 > 正文

《分数的基本性质》教学设计

2026/02/09教学教案

文学网整理的《分数的基本性质》教学设计(精选6篇),供大家参考,希望能给您提供帮助。

《分数的基本性质》教学设计 篇1

【教材依据】

《分数的基本性质》是九年义务教育北师大版五年级上册第三单元的内容。

【设计理念】

根据新课标的基本要求,我以培养学生的创新意识和实践能力为重点,在教学中创设情境让学生“自由大胆猜想——主动探究验证——合作交流得到结果”的开放式教学流程。让学生在问题情境中激活内在要求,大胆猜想,使实验成为内在需求。通过观察操作、经历知识的形成。让学生变被动的知识接受者为主动知识的探索者。

【学情与教材分析】

《分数的基本性质》是北师大版小学数学教材五年级上册第三单元《分数》的教学内容,它既与整数除法的商不变性质有着内在的联系,也是约分和通分的基础,而约分和通分又是分数四则运算的重要基础,因此,理解分数的基本性质显得尤为重要。学生之前已经掌握了商不变的性质,在教学之后将其与分数的基本性质进行联系,有意识地加强分数与除法的关系,以便把旧知识迁移到新的知识中来。

【教学目标】

1、经历探索分数基本性质的过程,理解分数的基本性质。

2、能运用分数基本性质,把一个数化成指定分母(或分子)大小不变的分数。

3、经历观察、操作和讨论等数学活动,体验数学学习的乐趣及数学与日常生活密切联系。

【教学重点】运用分数的基本性质,把一个数化成指定分母(或分子)而大小不变的分数。

【教学难点】联系分数与除法的关系,理解分数的基本性质,沟通知识间的联系。

【教学准备】多媒体课件长方形白纸、圆片,彩色笔等。

【教学过程】

一、创设情境,激趣导入

师:同学们,新的学期到来了,你们刚入校园时觉得我们学校都发生了哪些变化,(换了新课桌,有了新的洗手间,有了文化走廊,有了开心农场),说到开心农场,还有一个小故事,开学初,校长决定把这块地的三分之一分给四年级,六分之二分给五年级,九分之三分给六年级,四年级同学认为校长不公平,分给六年级的'同学多而分给他们的少,校长听了,笑了,谁能根据自己的预习告诉老师校长笑什么?

生1:四、五、六年级分的地一样多。

生2:……

师:到底校长分的公平不公平,我们来做个实验吧?

二、动手操作,探究新知

1,小组合作,实验探究。

师:请同学们拿出你们准备好的学具,按平时的分组习惯四人一组,用你们的学具来代替这块地,像校长一样来分地吧。

2,汇报结果

师生交流:你们是怎样做的?谁能说一说,请几个同学上台演示并口述演示过程。

生1:用三张同样的长方形的纸来代替这块地,分别涂出其中的三分之一,六分之二,九分之三。经过对比发现三块地一样多。

生2:用三个同样的圆片分别涂出其中的三分之一,六分之二,九分之三。经过对比发现三块地一样多。

生3:用三条线段分别画出其中的三分之一,六分之二,九分之三。经过对比发现三块地一样多。

生4:把分数化成小数,他们的商也一样,所以三块地的面积一样大。

生5:……

3、课件展示,得出结论。师:校长分的和你们一样吗?我们再来看看小电脑是如何拼的,(利用优质资源课件演示分地的过程,师生共同观察总结得到校长分的地一样多。)

(设计意图:这样设计的目的是为了更有利于学生主体个性的发挥,在探究活动中充分发挥学生的个体的潜能,给学生足够的时间和想象的空间,进行小组合作式的探究活动,让学生自由的猜想,使实验成为自己的需要,同时让学生思考用什么方法验证,使学生带着浓浓的兴趣进入探究新的学习活动之中。)

4、探索分数的基本性质。

师:三个年级分的地一样多,那么你们觉得、、这三个分数的大小怎么样?

生:相等。

师:同学们请看这组分数有什么特点?(板书=)

生:分数的分子分母发生了变化分数的大小不变。

师:请同学们从左往右仔细观察,第一个分数和第二个分数相比分子分母发生了什么变化?第一个和第二个,第二个和第三个呢?

生:分子分母同时乘2,……

师:谁能用一句换来描述一下这个规律?

生:给分数的分子分母同时乘相同的数。(师随着板书)

师:同学们在反过来从右往左观察,分数的分子、分母有什么变化规律?

生:分数的分子分母同时除以相同的数。

师:像这样给分数的分子分母同时乘或(除以)相同的数,分数的大小不变。就是我们这节课学习的新知识。(板书分数的基本性质)。

师:结合我们的预习,对于分数的基本性质同学们还有什么不同的意见?

生:0除外。

师:为什么0要除外?

生:因为分数的分母不能为0.

师:(补充板书0除外)在分数的基本性质中,那几个词比较重要?

生:同时相同0除外

师:(把这三个词用红笔加重)同学们有没有发现分数的基本性质和谁比较相似?

生:商不变的性质。

师:为什么?

生:我们学过分数与除法的关系,被除数相当于分子,除数相当于分母,所以他们是相通的。

师:数学知识中有许多知识如像商不变性质与分数的基本性质是一致的。因此平时学习中我们要触类旁通,灵活运用,才会举一反三。

三:应用新知,练习巩固。

(一)练一练

(二)摸球游戏。老师手中有一个箱子,里面装有许多水果,水果上面写着不同的分数,如果你摸到一个水果,说出一个与它大小相等,而分子分母不同的新分数,这个水果就奖励给你。

(二)判断(抢答)

1、分数的分子、分母都乘过或除以相同的数分数的大小不变。

2、把的分子缩小5倍,分母也缩小5倍分数的大小不变。

3、给分数的分子加上4,要是分数的大小,分母也要加上4。

(四)测一测

1、把和都化成分母是10而大小不变的分数。

2、把和都化成分子是4而大小不变的分数。

3、的分子增加2,要是分数大小不变,分母应增加几?

四:总结。

1、这节课大家表现的都很棒,谁能说说你这节课你都知道哪些知识?

2、把板书最后补充成一条鱼,希望大家拥有一双明亮的眼睛,肚子里装满知识,在知识的海洋里遨游。(完成板书)

五:作业练习册2、4题

【板书设计】

分数的基本性质

给分数的分子分母同时乘或除以相同的数(0除外)分数的大小不变。

【教学反思】

本节课教学,我让学生在故事中感悟,激发了他们的学习兴趣。在数学课上讲故事,对孩子来说,无疑是新鲜有趣的。不仅如此,还能从中发现数学问题,这是多么美好的事情!

这样的设计真是激发了学生的学习兴趣,学生带着愉快的心情展开学习。课堂的故事导入就是引导学生以数学的视角来分析问题、解决问题,从而让学生感受学习数学的价值。

本节课教学是让学生在感悟中自主探索。自主探索是学生学习活动的核心,它是让每个学生根据自己的已有经验、感受,用自己的思维方式,自由、开放地去探索、去发现、去创造。

在学生通过听故事、看图片,让学生猜想、、这三个分数是否真的相等,并联想学过的知识或借助学具,怎样证明你的联想是正确的。学生想出了多种方法证明这三个分数也是相等的,体现了学生思维的广度,这种设计克服了学生思维的惰性,有利于学生自主探索的学习习惯的养成。课堂给学生多设计这样的开放性的问题,多给学生开展一些探索性的活动,相信不同的学生在数学上都会有不同的发展。

《分数的基本性质》教学设计 篇2

教学内容:苏教版小学数学第十册第95页至97页。

教学目标:

知识目标:通过教学使学生理解和掌握分数的基本性质,能利用它改变分数的分子和分母,而使分数的大小不变。

能力目标:培养学生的观察能力、动手操作能力和分析概括能力等。

情感目标:让学生在学习过程当中养成互相帮助、团结协作的良好品德。

教学准备:圆形纸片、彩笔、各种卡片。

教学过程:

一、创设情境,激发兴趣

孙悟空有3根一模一样的甘蔗,小猴子贝贝、佳佳、丁丁看见了,一哄而上,叫嚷着要吃甘蔗。孙悟空说: “好,贝贝分第一根甘蔗的,佳佳分第二根甘蔗的,丁丁分第三根甘蔗的。”贝贝、佳佳听了,连忙说:“孙大圣,不公平,我们要分得和丁丁的同样多。”孙悟空真的分得不公平吗?(学生思考片刻)

【通过学生耳熟能详的人物对话,给学生设计一个悬念,抓住学生的好奇心理,由此激发学生的学习兴趣。】

二、动手操作 、导入新课

师:我们也来分分看。(学生拿出准备好的圆形纸片。)师:我们把三张纸片看成三块饼,大家比比看,每人的三块饼大小相等吗?请拿出第一块饼,我想要一块,而且大小要是第一块饼的一半,你能做到吗?你给我的为什么是这块饼的一半呢?用分数怎么表示呢?我现在想要两块,而且大小要跟刚才给我的饼一样大,你又能做到吗?用分数怎样表示呢?我如果想要四块,大小跟前两次给我的一样,你还能做到吗?这次用分数又该怎样表示呢?这三个分数大小相等吗?为什么呢?这节课,我们就来研究这个数学问题。

【通过学生的动手操作,初步感知三个分数的大小相等,为寻找原因设置悬念,再次激发学生的学习兴趣。】

三、观察对比, 由“数”变 “式”

你们三次给我的饼大小相等吗?那么这三个分数大小怎样?可以用怎样的式子表示?(==)(从这里你能看出,孙悟空分甘蔗,分得公平吗?)

四、概括分析,由“式”变 “语”

⒈观察一下这个式子,3个分数有什么不同?有什么地方相同?分数的大小为什么会不变呢?要弄清楚这个问题,我们必须先研究分数的分子、分母是怎样变化的。

⒉先从左往右看,是怎样变为与它相等的的?

(1)分母乘2,分子乘2。

根据分数的意义,""表示把单位"1"平均分成2份,取其中的1份,而现在把单位"1"平均分成4份,也就是把原两份中的每一份又平均分成2份, 所以现在平均分成了2×2=4(份),现在要得跟原来的同样多,必须取几份?[1×2=2(份)]==

即原来把单位"1"平均分成2份,取1份,现在把平均分的份数和取的份数都扩大2倍,就得到。与的'大小相等,分数值没变。

(2)由到,分子、分母又是怎样变化的?(把平均分的份数和取的份数都扩大了4倍。)==

(3)谁能用一句话说出这两个式子的变化规律?

⒊再从右往左看

(1) 是怎样变化成与之相等的的?

原来把单位"1"平均分成4份,取其中的2份,现在把同样的单位"1"平均分成2份,即把原来的每两份合并成 1份,现在要取得跟原来的同样多,只需取几份?[2÷2=1(份)]也就是现在把平均分的份数和取的份数都缩小了2倍,得到,分数的大小没有变。

==

(2) 又是怎样变成的?(把平均分的份数和取的份数都缩小了4倍。)

==

(3)谁能用一句话说出这两个式子的变化规律?

⒋综合以上两种变化情况,谁能用一句话概括出其中的规律?你觉得有什么要补充的吗?(不能同时乘或除以0)为什么?

⒌这就是今天我们所学的“分数的基本性质”(板书课题,出示“分数的基本性质”)。

(1)理解概念。

学生读一遍,你认为哪几个字特别重要?(相同的数、0除外)相同的数,指一些什么数?为什么零除外?

(2)瘃木鸟诊所。(请说出理由)

分数的分子和分母同时乘或者除以相同的数,分数的大小不变。( )

分数的分子和分母同时乘或者除以一个数(零除外),分数的大小不变。( )

分数的分子和分母同时乘或者除以相同的数(零除外),分数的大小不变。( )

⒍小结。

从判断题中我们可以看出,分数的基本性质要注意什么?学到这儿,大家想一想,我们以前学过的什么性质跟分数的基本性质类似?谁能用整数除法中商不变的性质来说明分数的基本性质?

【此过程主要由学生通过观察、比较,得出这三个分数大小相等的规律,由此牵引到其他的有同等规律的分数中,从而引出分数的基本性质:分子、分母是同时变化的,是同向变化的(是扩大都扩大,是缩小都缩小),是同倍变化的(扩大或缩小的倍数相同)。只有这样变化,分数的大小才不会变。】

五、巩固练习

⒈卡片练习:

⒉做P96“练一练”1、2。

⒊趣味游戏:

数学王国开音乐会,分数大家族的节目是女声大合唱,只有几分钟就要演出了,请大家赶紧帮合唱队的成员按要求排好队。

要求:第一排是分数值等于的,第二排是分数值等于的,还有一位同学是指挥,他是谁?你是怎样想的?

【通过练习,让学生加深对分数的基本性质的理解,为下节课分数的基本性质的应用打好坚实的基础。】

六、课堂总结

这节课你学到了什么?什么是分数的基本性质?你是怎样理解的?

七、布置作业

做P97练习十八2。

《分数的基本性质》教学设计 篇3

教学目标:

知识与技能:掌握分数的基本性质对于学生来说非常重要。分数的基本性质包括:分数的大小与分子、分母的关系,分数的化简和扩大,分数的比较大小等。通过学习分数的基本性质,可以帮助学生更好地理解和运用分数,提高他们的数学能力。同时,分数的基本性质与整数除法中商不变性质有着密切的关系,这也有助于学生对整数除法的理解和运用。在学习中,学生需要掌握如何将一个分数化简为分母相同而大小不变的分数。这需要学生观察比较分数的大小,抽象概括规律,并进行实际操作。通过这样的练习,可以培养学生的逻辑思维能力和数学解决问题的能力。因此,学生在学习分数的基本性质时,应注重理解概念,掌握方法,多进行练习,提高自己的数学素养。

过程与方法

在探索分数基本性质的过程中,我们体会到了数学思想方法中的“变与不变”以及“转化”的重要性。这个过程激发了我们的求知欲,也让我们体会到了数学思维的乐趣。通过互相交流和合作,我们不仅增进了对分数的理解,还培养了团队合作的意识。这种积极主动的学习态度将成为我们探索更多数学知识的动力,让我们更加享受数学带来的乐趣。

教学重点

理解和掌握分数的基本性质,会运用分数的基本性质。

教学难点

自主探究出分数的基本性质

教学准备:

PPT课件、每小组准备三个同样大小的圆形纸片、三张完全一样的长方形(正方形)纸、直尺、彩笔等。

教学流程:

一、故事导入激趣引思

引言:好的,我来修改一下:大家是否能猜出刚刚老师播放的是哪首经典动画片的主题曲呢?没错,我们今天的学习将从中国古典名著《西游记》的故事开始。

讲故事:唐僧师徒四人行至一村庄,路过一家饼铺,慈悲心化缘得到三块同样大小的饼。唐僧想着如何公平地分配这三块饼,便提出了一个方案:将第一块饼平均分成2份,让猪八戒吃其中的一半;将第二块饼平均分成4份,让沙和尚吃其中的一半;将第三块饼平均分成8份,悟空吃其中的一半。唐僧的提议引起了猪八戒的`不满,他认为这样分配偏心,为什么悟空可以吃到一半,而他只能吃到一半。唐僧听了猪八戒的意见后,考虑了一下,觉得确实不太公平。于是,他重新想了一个更公平的分饼方案,让每个人都能公平地分享这三块饼。

生发表见解。

二、自主合作探索规律

1、三个徒弟平均分得的饼一样多。我们来看一下这组分数等式:1/2=2/4=4/8。观察一下这些分数的分子和分母,它们是相同的吗?虽然分数的分子和分母不同,但它们的值却相等。再换个角度看,我们发现分数的分子和分母发生变化,但它们的比值保持不变。分数真是一种独特的数学形式呢!

2、

(1)每个小组找出一组大小相等的分数,并想办法证明这组分数大小相等。

(2)思考:在写分数的过程中你们发现了什么规律?

组内商量一下然后开始行动!

3、小组研究教师巡视

4、全班汇报

交流评价(教师相机板书)圆纸片汇报长方形纸汇报正方形纸汇报及联系一组人数说发现规律把每组数从左往右或者从右向左仔细观察你能发现分子分母的怎样的变化规律?(可以举例说演绎推理深入)随机更换贴图

板书课题:分数的基本性质打出幻灯

5、反思规律看书对照找出关键词要求重读共同读

6、当我们将3除以4得到的结果3/4,与12除以16得到的结果12/16进行比较时,我们发现它们是相等的。这说明了分数的一个基本性质:即分子和分母同时乘以(或除以)同一个非零数时,分数的值不变。这个性质也可以通过整数除法中商不变的性质来解释:在分数中,当分子和分母同时乘以(或除以)同一个非零数时,相当于整数除法中被除数和除数同时乘以(或除以)同一个非零数,商的值也不变。这再次强调了分数的基本性质,帮助我们更好地理解和运用分数的概念。

三、自学例题运用规律

过渡:同学们展现出了强大的学习能力,在接下来的学习中,老师希望你们能够自主学习课本96页的例2,并完成相应的练习。现在开始自主学习吧!祝你们学习顺利!

生自学

集体评议:例2练一练1和2,请说说你的根据和想法!重点让学生说说根据什么,分母、分子是如何变化的。

四、多层练习巩固深化

1、判断对错并说明理由

2/9=8/36,4/9=2/3,3/4=3a/4a,5/10=3/6,1/5=4/8

2、把6/20,70/100,45/50,1/2,4/5化成分母相同而大小不变的分数

思考:分数的分母相同,能有什么作用?

3、圈分数游戏圈出与1/2相等的分数

4、对对碰与1/2,2/3,3/4生生组组师生互动

五、课堂小结课堂作业

结语:你看,运用数学知识玩游戏,也是乐趣无穷。这节课我们就上到这儿,作业:余下来的时间请完成课本97页练习十八的1-3题,做在书上。

《分数的基本性质》教学设计 篇4

教学要求

①分数是数学中的一种特殊表示形式,用来表示一个整体被分成若干等份中的一部分。分数有一些基本性质,比如分数的大小与分子成正比,分母成反比,即分子越大,分数越大;分母越大,分数越小。另外,分数可以化简为最简形式,即分子与分母没有共同的因数。当我们需要比较或运算不同分母的分数时,可以通过找到它们的最小公倍数,将分数化为相同分母的形式,从而方便比较大小或进行运算。

②培养学生观察、分析和抽象概括能力。

③渗透“事物之间是相互联系”的辩证唯物主义观点。

教学重点理解分数的基本性质。

教学用具每位学生准备三张同样的长方形纸条;教师:纸条、投影片等。

教学过程

一、创设情境

1.120÷30的商是多少?被除数和除数都扩大3倍,商是多少?被除数和除数都缩小10倍呢?

2.说一说:

(1)商不变的性质是什么?

(2)分数与除法的关系是什么?

3.填空。

1÷2=(1×2)÷(2×2)==。

二、揭示课题

分数除法中是否存在商不变的性质,让我们一起来探索吧!你认为在分数中会不会存在类似的性质呢?这个性质会是什么呢?让我们一起大胆猜测吧!

随着学生的回答,教师板书课题:分数的基本性质。

三、探索研究

1.动手操作,验证性质。

(1)请拿出三张同样大小的长方形纸条,将它们分别平均分成2份、4份、6份,并分别用不同颜色涂抹其中的1份、2份、3份。请用分数形式表示每张纸条上被涂色的部分。

(2)观察比较后引导学生得出:==

(3)从左往右看:==

由变成,平均分的份数和表示的份数有什么变化?

把平均分的份数和表示的份数都乘以2,就得到,即==(板书)。

把平均分的份数和表示的份数都乘以3,就得到,即:==(板书)。

引导学生初步小结得出:分数的分子、分母同时乘以相同的数,分数的大小不变。

(4)从右往左看:==

引导学生观察明确:的分子、分母同时除以2,得到。同理,的分子、分母同时除以3,也可以得到。

让学生再次归纳:分数的分子、分母同时除以相同的数,分数的.大小不变。

(5)引导学生概括出分数的基本性质,并与前面的猜想相回应。

(6)提问:这里的“相同的数“,是不是任何数都可以呢?(补充板书:零除外)

2.分数的基本性质与商不变的性质的比较。

在除法里有商不变的性质,在分数里有分数的基本性质。

想一想:根据分数与除法的关系以及整数除法中商不变的性质,你能说明分数的基本性质吗?

3.学习把分数化成指定分母而大小不变的分数。

(1)出示例2,帮助学生理解题意。

(2)启发:要把和化成分母是12而大小不变的分数,分子应该怎样变化?变化的根据是什么?

(3)让学生在书上填空,请一名学生口答。

4.练习。教材第108页的做一做。

四、课堂实践。

练习二十三的1、3题。

五、课堂小结

1.这节课我们学习了什么内容?

2.什么是分数的基本性质?

六、课堂作业

练习二十三的第2题。

七、思考练习

练习二十三的第10题。

教学反思:

“分数的基本性质”是小学五年级下册数学教材的重要内容,它是约分、通分的基础,对于学习比的基本性质也具有重要意义。因此,分数的基本性质是本单元的重点课程。在这节课上,我将采用“猜想和验证”的教学方法,为学生留出充分的探索时间和广阔的思维空间,让他们在实践中掌握知识,培养数学思维。通过这样的教学方式,不仅使学生掌握了数学基本知识,更重要的是激发了他们学习的主动性,培养了他们解决实际问题的能力。这样的教学目的在于培养学生学会学习、学会思考、学会创造,从而使他们能够运用数学的思维方式解决未来生活中遇到的各种问题,这也是学生必备的基本素质。

这节课是在学生已经掌握了商的不变性质,并具有一定应用经验的基础上进行的。在这节课中,我设计了一些新的挑战和问题,帮助学生深入理解商的不变性质,并在实际问题中灵活运用所学知识。通过这种方式,学生可以提高对商的理解和运用能力,为他们进一步学习和应用商的相关知识打下坚实的基础。

1、商不变的性质与除法、分数的关系密切相关,商不变意味着在一定条件下商的值保持不变。在商不变的基础上,我们可以猜想分数的基本性质是什么?请同学们根据商不变的性质大胆猜想一下,分数的基本性质是什么?并且说出你们的想法。

2、让学生在折纸游戏中充分发挥主体作用,通过操作、观察、比较来验证自己的猜想。可以让他们尝试不同的折法,观察折叠后的形状和颜色变化,并用不同的颜色表示不同的分数,培养他们的动手能力和观察解决问题的能力。

3、设计练习时要考虑到知识的转化能力,因此练习的设计应该具有典型性、多样性、深度和灵活性。首先,通过基础练习深化对分数基本性质的理解,包括分子、分母、约分、通分等方面。然后,在学完整个知识点后,进行综合练习,巩固知识,提高能力。在练习中注重应用拓展,让学生能够将所学知识应用到实际问题中,培养他们解决问题的能力。

《分数的基本性质》教学设计 篇5

教学内容:人教版新课标教科书小学数学第十册75~77页例

1、例2.教学目标:1知识与技能目标:

(1)经历探索分数的基本性质的过程,理解分数的基本性质。

(2)能运用分数的基本性质,把一个分数化成指定分母(或分子)而大小不变的分数。

2、过程与方法目标:

(1)经历观察、操作和讨论等学习活动,并在探索过程中,能进行有条理的思考,能对分数的基本性质做出简要的、合理的说明。(2)培养学生的观察、比较、归纳、总结概括能力。

(3)能根据解决的需要,收集有用的信息进行归纳,发展学生归纳、推理能力。

3、情感态度与价值观目标:

(1)经历观察、操作和讨论等数学学习活动,使学生进一步体验数学学习的乐趣。(2)鼓励学生敢于发现问题,培养学生敢于解决问题的学习品质。

教学重点:探索、发现和掌握分数的基本性质,并能运用分数的基本性质解决问题。教学难点:自主探究、归纳概括分数的基本性质。教学准备:学生准备一张正方形的纸,课件教学过程:

一、故事导入。

师:同学们,你们喜欢看《喜羊羊与灰太狼》的动画片吗?生:喜欢。

师:老师这里有一个慢羊羊分饼的故事,羊村的小羊最喜欢吃村长做得饼。一天,村子做了三块大小一样的饼分给小羊们吃,他把第一块饼的1/2分给懒羊羊,再把二块饼的2/4分给喜羊羊,最后把第三块饼的4/8分给美羊羊,懒羊羊不高兴地说:"村长不公平,他们的多,我的少。”(师边说边板书分数)同学们,村长公平吗?他们那个多,那个少?

生:公平,其实他们分得一样多。

师:到底你们的猜想是否正确呢?让我们来验证一下!

二、探究新知,解决问题:1、小组合作,验证猜想:(1)玩一玩,比一比.(读要求)师:我们现在小组合作来玩一玩,比一比.(出示要求)

师:(读要求)现在开始.(学生汇报)师:你们发现了什么?

生1:老师,我们通过比较这三幅图的阴影部分完全重合,那这三个分数都相等。(师在分数上画符号)

生2:老师,我们通过比较这三幅图的阴影部分完全重合,那这三个分数都相等。(出示课件演示)

2、初步概括分数的基本性质.(2)算一算,找一找.师:(提问)同学们观察一下,这三个分母什么变了?什么没变?生1:它们的分子和分母变化了,但分数的大小没变。生2:它们的分子和分母变化了,但分数的`大小没变。

师:这三个分数的分子和分母都不相同,为什么分数的大小都相等呢?同学们思考一下。

生1:它们的分子和分母都乘相同的数。生2:它们的分子和分母都除以相同的数。

师:那同学们的猜想是否正确呢?它们的变化规律又是怎样呢?我们小组合作观察讨论。并把发现的规律写下来。

(出示课件)

小组汇报:(归纳规律)

师:哪一组把你们讨论的结果汇报一下,从左往右观察,你们发现了什么?生1:从左往右观察,我们发现1/2的分子和分母同时乘2,分数的大小不变。生2:从左往右观察,我们发现1/2的分子和分母同时除以4,分数的大小不变。师:你们是这样想的,既然这样,那么分子和分母同时乘5,分数的的大小改变,吗?生:不变。

师:同时乘

6.8呢?生:不变。

师:那你们能不能根据这个式子来总结一下规律呢?

生1:一个分数的分子和分母同时乘相同的数,分数的大小不变。生2:一个分数的分子和分母同时乘相同的数,分数的大小不变。师:(板书)谁来举这样一个例子?生:......

师:这样的例子,我们可以举很多,刚才我们是从左往右观察,从右往左观察,哪一组汇报一下。

生:从右往左观察,我们发现了,4/8的分子和分母同时除以2,得到了2/4,分数2/4的分子和分母同时除以2得到分数1/2,他们的分数的大小不变。

生:从右往左观察,我们发现了,4/8的分子和分母同时除以2,得到了2/4,分数2/4的分子和分母同时除以2得到分数1/2,他们的分数的大小不变。(师课件演示)

师:你们是这样想的,既然这样,那么分子和分母同时除以5,分数的的大小改变,吗?生:不变。

师:同时除以

6.8呢?生:不变。

师:那你们能不能根据这个式子来总结一下规律呢?

生1:一个分数的分子和分母同时除以相同的数,分数的大小不变。生2:一个分数的分子和分母同时除以相同的数,分数的大小不变。师:(板书)谁来举这样一个例子?生举例

3、强调规律

师:我把两句话合成了一句话,根据分数的这一变化规律,你认为下面的式子对吗?(课件出示)

生:回答,错的,因为分数的分子、分母没有乘相同的数。师:(在黑板上圈出)对必须乘相同的数。

生:错,因为分子乘2,分母没有乘2,分子和分母没有同时乘。师:(在黑板上圈出)对必须同时乘。

师:分数的分子、分母都乘或除以相同的数,分数的大小不变,这里“相同的数”是不是任何数都可以呢?我们看一看(课件出示)师:这个式子成立吗?

生:不成立,因为0不能做除数,4乘0得0是分母,分母相当于除数,所以这个式子是错误的。

师:我不乘0,我除以0可以么?生:不成立,因为0不能作除数。

师:同学们不错,这两个式子都不成立,我们刚才总结的分子、分母同时乘或除以相同的数,这相同的数必须(生:0除外)(师板书)

师:这一变化规律就是我们这节课学习的内容,分数的基本性质,(板书课题)在这一规律里,需要我们注意的是:(生:同时、相同的数、0除外)

师:我相信懒羊羊学习了分数的基本性质,那就不会生气了它知道(出示课件)一样多,咱们同学们千万不要犯它同样的错误了,我们把这一条规律读两遍,并记下它。(生读规律)

师:学习了分数的基本性质,我想利用你们的火眼金睛,当一当小法官(出示课件)

生:(读题,用手势表示对、错,并说出原因)

三、运用规律,自学例题1、学习例2师:这个分数的基本性质特别的有用,我们可以根据分数的基本性质把一个分数化成和它相等的另外一个分数,我们一起去看一看。(课件出示例题)学生读题

师:分子、分母应该怎样变化?变化的依据是什么?小组内讨论一下(学生讨论)师:谁来说一说?

生:2/3的分子分母同时乘4得到8/12,变化的依据是分数的基本性质。生:10/24的分子和分母同时除以2,得到5/12,变化的依据是分数的基本性质。师:回答得不错,自己独立完成这题。

师:(巡视)请一名学生说出答案,(生说,师出示答案)

四、分数的基本性质与商不变的性质

师:分数的基本性质作用可大了,那大家回想一下,这与我们以前学习的除法里面哪一个性质相似?生:商不变的性质。

师:除法里商不变的性质是怎么说的?

生:被除数和除数同时扩大或缩小相同的倍数(0除外),商不变。师:你们能否用商不变的性质来说明分数的基本性质?小组内讨论一下。

小组讨论

师:哪一组把讨论的结果汇报一下。

生:在分数里,被除数相当于分子,除数相当与分母,被除数与除数同时扩大或缩小相同的倍数,就相当于分子、分母同时乘或除以相同的数(0除外),因此,商不变就相当于分数的大小不变。(师板书)

师:既然能用商不变的性质来说一说分数的基本性质,那我们来小试牛刀。(出示课件)

生:5除以10等于1/2,当被除数5缩小5倍就相当于分子除以5,分子除以5,分母也除以5,所以10除以5得2.生:12除以24等于4/8,当除数24除以3得8就相当于分母除以3,分母除以3分子也除以3,12除以3得4.五、课堂运用。1、跨栏高手

师:同学们的回答简直太棒了,那你们有资格让老师把你们带到运动场去当跨栏高手了。(出示课件)

师:(学生回答三题)同学们这么大的数一下子就得出结果,有什么秘诀吗?生:用大数除以小数,就知道分母、分子扩大了几倍.2、拓展延伸:

师:当了跨栏高手,我们的成绩非常的好,那我们就到羊村去玩吧,来到羊村,慢羊羊让大家当村长,解决难题,你们敢接招吗?生:敢

师:(出示课件)那我们就要小组为单位,开始玩游戏。小组汇报结果

六、捡拾硕果

看到同学们这么自信的回答,老师知道今天大家的收获不少,说一说这节课你都收获了哪些?生说

师:同学们,表现得太好了,这节课,老师从你们的身上也学到了许多,谢谢你们,下课!

《分数的基本性质》教学设计 篇6

教学目标

1、学生能理解和掌握分数的基本性质,知道分数的基本性质与整数除法中商不变的性质之间的联系。

2、学生能运用分数的基本性质把一个分数化成分母不同而大小相等的分数。

3、培养学生观察、比较、抽象概括的逻辑思维能力,渗透“事物之间是相互联系的”辩证唯物主义观点。

教学重、难点:

理解分数基本性质的含义,掌握分数基本性质的推导过程。运用分数的基本性质解决实际问题。

教学过程:

一、复习旧知,了解学习起点

二、创设情境,激趣引入

课件动画显示:蓝猫、菲菲、霸王龙最喜欢吃淘气做的饼。有一天淘气做了3块大小一样的饼分给蓝猫、菲菲、霸王龙。蓝猫说:“我功劳最大,我要吃一大块。”菲菲说:“我要吃两块。”霸王龙抢着说:“我个头最大,我要吃3块。”淘气想了想便动手切饼满足了他们的.要求,并向他们提问:“刚才,我把3个同样大小的饼,平均分成2份、4份、6份,分别给了你们1块、2块、3块,你们知道谁吃的多吗?”淘气的问题,立刻引起了他们的争论。同学们,你们知道他们谁吃得多吗?

三、探究新知,揭示规律

1.动手操作,形象感知。

(1)折。请学生拿出3张同样大小的圆形纸,把每张圆形纸都看做单位“1”,用手分别平均折成2份、4份、6份。

(2)画。在折好的圆形纸上,分别把其中的1份、2份、3份画上阴影。

(3)剪。把圆中的阴影部分剪下来。

(4)比。把剪下的阴影部分重叠,比一比结果怎样。

2.观察比较,探究规律。

(1)通过动手操作,谁能说一说动画片中蓝猫、菲菲、霸王龙各吃了一个饼的几分之几?(板书。)

(2)你认为他们谁吃的多?请到讲台上一边演示一边讲一讲。

学生汇报后,教师用电脑演示。

把3块同样大小的饼分别平均分成2份、4份、6份,依次表示。把平移、重叠,明显地看出块饼、块饼、块饼大小相等。通过分饼、观察、验证得出结论:“蓝猫、菲菲、霸王龙分的饼一样多。”

(3)既然他们3个吃的同样多,那么、的大小怎样?我们可以用什么符号把他们连接起来?(板书。)

(4)聪明的淘气是用什么办法既满足蓝猫、菲菲、霸王龙的要求,又分得那么公平呢?这就是我们今天研究的内容“分数的基本性质”。(板书课题。)

(5)这3个分数的分子、分母都不同,为什么分数的大小却相等?你们能找出它们的变化规律吗?请同学们4人为一组,讨论这几个问题。(课件出示讨论题。)

讨论题:

①它们之间有什么关系?它们的什么变了?什么没有变?

②从左往右看,是按照什么规律变化的?从右往左看,又是按照什么规律变化的呢?

(6)学生汇报,师生讨论情况。

师:这3个分数是相等的关系。可以写成,它们的分子、分母变了,而分数的大小没有变。

师:从左往右看,由得到,是把的分子、分母都乘以2,也就是把分的份数和表示的份数都扩大2倍,就得到。同理的分子、分母都乘以3,就得到,而分数的大小不变。(板书:都乘以相同的数。)

从右往左看,分数的分子和分母又是按照什么规律变化的?通过分析,比较,,得出:分数的分子和分母都除以相同的数,分数的大小不变。

(7)抓住焦点,辨中求真。

的分子、分母能否同时乘以或者除以零呢?围绕这个问题展开讨论、辩论。通过讨论、争辩,使学生认识到“因为分数的分子、分母都乘以0,则分数成为”。