返回首页
文学网 > 短文 > 教学教案 > 正文

烙饼问题教学设计

2026/02/10教学教案

文学网整理的烙饼问题教学设计(精选6篇),供大家参考,希望能给您提供帮助。

烙饼问题教学设计 篇1

一、创设生活情境,激趣引新

师:日常生活中,大家可能吃过各种各样的饼。

拿出一个烙饼问:吃过这样的饼吗?

学生有的人说吃过,有的人说没有吃过。

师:它叫烙饼,知道是怎么做的吗?

拿出平底锅一边演示烙饼的过程,一边讲解:先把一面烙几分钟,再把另一面烙几分钟,熟了。

师:想试试吗?拿出准备的圆片,用大圆片代替锅,小圆片代替饼,烙一个试试。

学生动手操作烙饼。

师:假如饼的正反面都烙3分钟,请问烙熟一个饼要多长时间?

学生回答。

师:看似很简单吧,其实不然,烙饼中也有学问哦,今天咱们就来探讨烙饼问题中的学问。(板书课题)

二、探究新知

1、动手操作

刚才我说烙饼中有学问的时候,有人不以为然,耳听为虚眼见为实,接下来咱们就来进行一次烙饼比赛,看谁是最聪明的烙饼师!请看比赛规则:大屏幕出示:

(1)每人烙3个饼。

(2)锅里每次最多只能放两个饼。

(3)饼的两面都要烙,每面3分钟。

(4)算出烙完3个饼所用的时间。

请一个学生读一读。

师:规则明白了吗?那就开始烙饼吧!

学生动手操作。

2、探讨优化方法

师:大家的饼都烙熟了,你们用了多长时间?

有的用了12分钟,有的.用了18分钟,有的用了9分钟。

师:真奇怪,都是烙3个饼,为什么你们用的时间有长短呢?奥妙在哪里?请三个代表上台给我们演示一下烙饼的过程,请大家认真观察、倾听和思考!

三个学生上台边演示边讲解。

师:现在知道奥妙在哪里了吗?谁来说一说?

学生自由发言。

师:听了大家的发言,我知道了导致时间不同的主要原因是他们烙饼时的方法不同,这三种方法,你们认为哪种方法最好?它好在哪里?

学生回答。

师归纳:我也认为某某的方法最好,因为安排合理,所以用时最少,在数学上我们把这样的方法称为最优化的方法!现在我们就用最优化的方法再烙烙这三个饼吧!

学生用最优方法烙饼。

3、深化提高

师:知道了烙3个饼的最优化方法,那么烙4个、5个、6个......10个饼的最优化方法又是怎样的呢?出示表格:

饼数(个) 最优方法

4

5

6

7

8

9

10

有信心找出来吗?咱们就以小组为单位展开讨论吧!

汇报、反馈:有结论了吧?哪个小组先来汇报?

一个小组的代表先发言,其余小组补充。

依据学生的讲解填写表格。

引导观察:仔细观察这个表,想一想能得出什么结论?

生:饼的个数是双数时,就2个2个地烙;是单数时,先2个2个地烙,最后剩下3个时,就用烙3个的最优方法烙。

三、巩固运用

1、烙饼优化的方法,其实小到我们生活中的点点滴滴,大到经济建设、交通运输等行业都会面临合理安排的问题,不信咱们到餐厅去看一看:出示书上做一做的第一题。

学生了解题意后思考安排。

2、由于你们的合理安排,三位客人满意地走出了餐厅,临走时给大家留下了2道题,因为他们深信你们一定能解决的。请看:大屏幕出示:

(1)烙熟一张饼需要6分钟(正反面各3分钟),一个锅一次最多能放10张饼,要烙15张饼,应该怎样安排才能用时最少?

(2)妈妈用平底锅煎鸡蛋,一次最多能煎3个。煎熟一个鸡蛋需要3分钟(正面2分钟,反面1分钟)。妈妈煎5个鸡蛋,最少要用多少分钟?

四、小结

这节课我们研究了什么,从中大家感悟到什么?

说的真好,合理的安排事情可以提高效率,节省时间,这就是优化问题,我国的大数学家华罗庚在这方面可是做出了巨大的贡献,他提出的优选法已经广泛地应用于我们的生产和生活中了,下节课我们将继续研究!

烙饼问题教学设计 篇2

烙饼问题教学设计

作为一位杰出的老师,就难以避免地要准备教学设计,编写教学设计有利于我们科学、合理地支配课堂时间。优秀的教学设计都具备一些什么特点呢?以下是小编整理的烙饼问题教学设计,供大家参考借鉴,希望可以帮助到有需要的朋友。

烙饼问题教学设计 篇3

教学内容:

人教版四年级上册第七单元“数学广角——烙饼问题”。

教学目标:

1、在经历烙饼的具体过程中学会怎样合理安排最省时间,从而体会做事情要进行合理的安排。

2、尝试从优化的角度在解决问题的多种方案中寻找最合理的方案,培养学生分析问题的能力。

3、感受运筹思想在日常生活中的广泛应用,逐渐养成合理安排时间的良好习惯。

教学重点:

初步培养学生形成从多种方案中寻找最优方案的意识。

教学难点:

寻找合理、快捷的烙饼方案。

教材简析:

《烙饼问题》是人教版教材四年级上册《数学广角》中的内容,主要通过讨论烙饼时如何合理安排操作最节省时间,让学生体会在解决问题中优化思想的运用。这部分知识对学生来说,比较抽象,难以理解。但由于学生在日常生活中都有过看饼如何烙的经历,所以,在这节课的教学中,我想就用这个学生熟悉的情境为切入口,通过例举、观察、合作讨论、优化,形象地帮助学生理解“三张饼如何烙才能尽快让大家吃上饼”,以及归纳出按怎样的顺序安排才会使所用时间的总和最少。

教学过程:

课前活动:

师:同学们,喜欢猜脑筋急转弯吗?(喜欢!)

谁来出一个给大家猜一猜?

师:看来我们班同学个个思维敏捷,真了不起!一会老师也出一个给大家猜,有没有信心接受挑战?好,那我们准备上课了,上课!

一、预设情景,走进生活。

师:同学们,吃过鸡蛋吗?煮熟一个鸡蛋大约用5分钟,煮熟5个鸡蛋大约用多长时间?(25分钟)师:你是怎么煮的?请你说一说。(煮1个需要5分钟,煮5个需要25分钟。)

师:你是一个一个煮的,这是一种方法。还有没有跟他不同的煮法?

生:只需要5分钟。

师:请你说说怎样煮只需要5分钟?

生:煮1个需要5分钟,5个一起煮也只需要5分钟。

师:这样煮行吗?(征求全班同学的意见——生齐:行!)?

师:当能5个一起煮时,只需要5分钟,这是一种好方法,不但节省了时间,还节省了能源。看来连煮鸡蛋这件小事都要讲究“策略”。——板书:策略

师:孩子们,人们在日常生活和实际工作中,为了节省时间和能源,经常要用到最优策略。今天这节课我们要研究的是烙饼的策略。

板书课题——烙饼策略

(设计意图:利用学生熟悉的生活情景引入课题,既引起了学生的兴趣,又紧扣主题,教学情境简洁有效。)

二、围绕主题,探索新知。

1、课件出示烙饼情境(先出示112页主题图的条件部分):

师:你瞧,妈妈已经开始烙饼了,你从图中得到了哪些数学信息?

生:每次只能烙2张饼;两面都要烙;每面3分钟。

师:每次只能烙2张饼是什么意思?(生:锅里最多只能放两张饼)

生2:两面都要烙.

师:每一个饼都有两个面,为了便于研究,我们就把它称为"a面"和"b面".

2、烙一张、两张饼,进一步说明烙饼规则。

师:根据图中信息,如果妈妈只烙一张饼,需要多少时间?

生:烙1张饼需要6分钟。

师:谁来说一说你是怎么烙的?

生:先烙熟一面需要3分钟,再翻过来烙另一面也要3分钟,3+3=6,所以烙熟1张饼最少需要6

分钟。

师:你们都这样烙吗?

师:如果要烙2张饼,需要几分钟?(6分、12分)

师:我们用1号、2号饼亲自烙一烙.

汇报:说一说你用了几分钟?

生1:烙2张饼需要12分钟。(师:为什么?说一说你的方法)

师:还有不一样的吗?

生2:烙2张饼只需要6分钟?(为什么用的时间不同,请你说说你的理由)

师:那种方法更节省时间?它为什么能节省时间?(指两名学生说)

生:2张饼同时烙。

师――板书:2张:1a2a,1b2b

讨论:为什么烙1张饼需要6分钟,烙2张饼也只需要6分钟?(2张饼同时烙)

师小结:也就是保证每次锅里都有两张饼,这样才能不浪费时间和能源,所用的时间也最少.(课件

出示)

3、烙三张饼,体验模型思想,自主设计方案。

出示主题图的下部分,理解题意

师:小红说,爸爸、妈妈和我每人一张,要烙几张饼?(生:要烙3张饼)

师:怎样才能尽快吃上饼是什么意思?(生:就是怎样烙饼需要时间最少)

师;烙3张饼,怎样烙所需时间最少?

师:请你想一想、猜一猜.

师:看来,你们都有自己的想法了.(然后指名说)

师:刚才是同学们的猜测,下面同桌合作,动手烙一烙,验证你的猜想是不是正确的。

(1)学生尝试烙饼。(教师巡视并做个别指导)

(2)汇报交流。(预计有18分钟、12分钟、9分钟)

师:我们用实验证明了自己的猜测,烙完3张饼要用几分钟?

预设:

小组展示出三种方法:

①一张一张烙:烙一张要:3+3=6(分钟)烙三张要:6×3=18(分钟)(这种方法一般不会出

现)师:请你说说这种烙法怎样?(同学互评:这样烙太麻烦了!)有没有不一样的?

②先同时烙两张,再单独烙第三张:同时烙两张6分钟,烙一张也要6分钟,6+6=12(分钟)师:它的实验证明了自己的猜测烙3张饼需要12分钟,比起一张一张烙,的确节省了时间,为

什么?(第1次2张同时烙)

师:还有哪些同学是跟他一样的?动脑筋想,有没有更短的时间?

③饼1,饼2先烙正面,再烙饼1的反面和饼3的正面,最后烙饼2、饼3的反面,共烙了3次

即3+3+3=9(分钟)

师:你真棒,非常善于思考!

师:看明白了吗?谁再来演示一下?

④6分钟,我是用2个平底锅同时烙.

师:听清楚他的意思了吗?他说要怎么样?你的想法是挺好的,想提高效率,但现在只有一个平

底锅,6分钟能烙完吗?

(3)比较、讨论、总结。

师:你们认为要想尽快吃上饼,哪种安排最合理?

师:只用9分钟的烙法有特点?为什么它能节省时间?

生:这种烙法锅里始终有2张饼,不是9分钟的其他小组烙饼时有时候锅里只有1张饼。

再次实验:锅里始终有2张饼这是节省时间的秘决,因此老师建议,能同时烙尽量同时烙,这样就不

会浪费时间。我们再一次用实验证明这种烙法到底是几分钟,开始吧.

实验结果:第二次实验,你发现烙完3个饼最短的时间是几分钟?(9分)都会烙了吗?

指前一次12分钟的同学再次板演.

师:分几次烙完的?(3次)(完整板书)

一:1a2a

二:1b3a

三:2b 3b

交替烙法

师:在我们的合理安排下,使锅里始终有2张饼在烙,只用了9分钟。这对于3张饼来说就是最合理

的方法,我们把这种方法称为交替烙法.板书:交替烙法。

小结:3张饼的最佳烙法只用了9分钟.它的秘诀在于每一次锅里始终有2张饼在烙,没让它闲着.(设计意图:烙3张饼的最佳方法是解决烙饼问题的关键。我让学生演示烙饼过程,学生通过动手操作,探索尝试,再进行比较,既可以有效地帮助学生理清思路,为后面的学习打下基础,又培养了学生的创新能力。)

4、对比2张饼和3张饼的烙法,体验优选法。

师:请同学们仔细观察,想一想,2张饼和3张饼最佳烙法,它们有什么共同的特点?(如果学生回答不出来,问:为什么这样烙可以省时间?)

生:保证每一次锅里都有2张饼。

5、烙4张饼.

师:如果要烙4张饼,你能很快地说出它的最佳烙法和所用的最少时间吗?

师:下面同桌俩人合作,先想一想怎样烙?然后把烙的过程像老师一样记录在科作业纸上,不会记录的同学也可以一个人烙一个人记录。(这点很重要)

师:4张饼烙完了,怎样烙?哪一小组来演示一下,一人烙一人记录在黑板上。

师:你们的烙法跟他们一样吗?(一样)

预设:如果有不一样的,要懂得如何引导。

师:这种方法也就是2张2张地烙,最短时间是几分钟?

小结:每一次锅里都有2张饼,没让它闲着,所以这是4张饼的最佳方法.(课件出示)我们可以把这

种方法简单地记为:2+2.也就是怎样烙?(也就是2张2张地烙)

6、烙5

师:5张饼怎样烙最节省时间呢?大家不摆学具,你能不能直接说出它的最佳烙法。

生1:

生2:

生:先烙2个,再烙3个。

师:烙2个需要几分(6)烙3个需要几分(9),一共需要几分钟?(15)

小结:烙5张饼先2张2张地烙,再烙剩下的3张,这样最节省时间:2+3.

7、烙6-10张饼,探讨烙饼的次数与饼的分组方案间的.规律。

师:烙6张饼、7张饼、8张饼呢,最快需要多少时间?请在小组里合作探究,并把你们的结果填在表里。

交流6张饼的烙法:

预设:

生1:2个2个烙.

师:用了几分钟?

生2:3个3个烙

师:用了几分?

结论:2种烙法都用了18分,你更喜欢哪一种烙法,为什么?(方便)

师:2个2个烙比较方便,是吗?(出示课件)

师:烙6、7、8张饼最佳烙法是?最少需要多少时间?(学生回答,教师补充课件)

烙9、10张饼最少需要多少时间?(学生回答,教师补充课件)

6.发现规律.

师:通过前面的烙饼活动,你有什么发现?(引导学生从烙饼的方法和表中的数据两方面寻找规律)预设:

师:烙饼的张数是双数时,怎样烙最方便又最节省时间?烙饼的张数是单数呢?

烙饼所用的最少时间与饼的张数有什么关系?

生1:我发现当烙饼的张数是双数时,2张2张烙最省时间;当烙饼的张数是单数时(除1张饼外),

先2张2张烙,剩下的3张按烙3张饼的最佳方案烙,这样所用的时间最少。(全班集体评价)生2:我从表中发现,除1张饼外,烙饼的张数乘3等于烙饼所需的最少时间。(全班集体评价)师:“3”是什么?(生:“3”是烙一面需要3分钟)

师:就是烙饼的张数乘烙每面所需的时间等于烙饼所用的最少时间!

板书——烙饼的张数×烙每面饼的时间=烙饼所用的最少时间。

(设计意图:通过拓展性的设问,既对前面所学知识进行了巩固,也为学生思维能力的培养提供了时间和空间。通过以上活动,可以使学生找到最优方法,体会优化思想在解决实际问题中的应用。)

四、结合生活、实践应用。

1、基础练习

我们班一共有几个人?(60人),每人吃一张饼,最少要烙用多少时间?

五、全课总结

今天我们研究出烙饼的最优方案,它被数学家华罗庚称作“优选法”。它已经广泛运用于人们的生产和生活中了。比如我们常见的复印资料.

3、拓展练习:

煎鱼:一只锅每次最多煎两条鱼,煎第一面要2分钟,煎第二面要1分钟,煎三条鱼最少要几分钟?(5分钟)

五、全课总结。

老师希望大家能够运用我们今天所学的知识,合理地安排好自己的学习和生活,提高效率,做一个珍惜时间的人。(下课)

烙饼问题教学设计 篇4

教学目标:

1、在经历烙饼的具体过程中学会怎样合理安排最省时间,从而体会做事情要进行合理的安排。

2、尝试从优化的角度在解决问题的多种方案中寻找最合理的方案,培养学生分析问题的能力。

3、感受运筹思想在日常生活中的广泛应用,逐渐养成合理安排时间的良好习惯。

教学重点:初步培养学生形成从多种方案中寻找最优方案的意识。

教学难点:寻找合理、快捷的烙饼方案。

教材简析:《烙饼问题》是人教版教材四年级上册《数学广角》中的内容,主要通过讨论烙饼时如何合理安排操作最节省时间,让学生体会在解决问题中优化思想的运用。这部分知识对学生来说,比较抽象,难以理解。但由于学生在日常生活中都有过看饼如何烙的经历,所以,在这节课的教学中,我想就用这个学生熟悉的情境为切入口,通过例举、观察、合作讨论、优化,形象地帮助学生理解“三张饼如何烙才能尽快让大家吃上饼”,以及归纳出按怎样的顺序安排才会使所用时间的总和最少。

教学过程:

一、预设情景,走进生活。

师: 同学们,你们喜欢猜脑经急转弯吗?老师出一个题考考大家:煮熟一个鸡蛋要用5分钟,煮熟5个鸡蛋要用多长时间?

生1:25分钟。一个一个地煮,煮1个需要5分钟,煮5个需要25分钟。

生2:只需要5分钟,把5个鸡蛋一起放进锅里。

师:你为什么会想到5个一起煮呢?5个鸡蛋一起煮既可以节约时间,又可以节约能源,看来只要我们肯动脑筋,连煮鸡蛋这件小事都能找到一个最优的方法。生活中类似的问题还有很多,今天我们就来看看在烙饼问题中,你能不能找到最优方法?

——板书:烙饼问题

(设计意图:利用学生熟悉的生活情景引入课题,既引起了学生的兴趣,又紧扣主题,教学情境简洁有效。)

二、围绕主题,探索新知。

1、解读信息,理解烙饼规则。

师:你瞧,妈妈已经开始烙饼了,你从图中得到了哪些数学信息?

生:每次只能烙2张饼;两面都要烙;每面3分钟。

师:每次只能烙2张饼是什么意思?(生:锅里最多只能同时放两张饼。)那如果我只放1张饼行吗? 师:两面都要烙呢?(一张饼的正面也要烙,反面也要烙。)

2、观察法,探究烙2张饼的最优方法。

师:根据图中信息,如果妈妈只烙一张饼,最少需要多少时间?

生:6分钟。先烙熟一面需要3分钟,再翻过来烙另一面也要3分钟,3+3=6,所以烙熟1张饼最少需要6分钟。

师:如果要烙2张饼呢,最少需要几分钟?

生1:1张饼要6分钟,烙2张饼就要12分钟。

生2:烙2张饼只要6分钟。可以两张饼一起烙,先烙正面,再烙反面。

师:大家认为哪种方法更好?为什么?(节省时间)它为什么能节省时间?

生:2张饼同时烙。

师小结:看来这就是烙两张饼的最优方法,就是2张饼同时烙。

3、动手操作,探究烙3张饼的最优方法。

师:烙3张饼,最少需要几分钟?看来大家有有不同的想法,请你用学具摆一摆,试一试怎样烙最节 省时间。

(1)学生尝试烙饼。(教师巡视并做个别指导)

(2)汇报交流。(预计有18分钟、12分钟、9分钟)

预设: ① 一张一张烙:烙一张要:3+3=6(分钟) 烙三张要:6×3=18(分钟)

② 先同时烙两张,再单独烙第三张:同时烙两张6分钟,烙一张也要6分钟,6+6=12(分钟) 师:它的实验证明了自己的猜测:烙3张饼需要12分钟,比起一张一张烙,的确节省了时间,为什么?(第1次2张同时烙)

师:还有哪些同学是跟他一样的?动脑筋想,有没有更短的时间?

③ 饼1和饼2先烙正面,再烙饼1的反面和饼3的正面,最后烙饼2和饼3的反面,共烙了3次即3+3+3=9(分钟)(请学生上来演示,你说烙饼过程,我们全班帮你记着时间。再请一名学生演示,边演示教师边板书)

(3)同桌合作,再次摆一摆,体验“9分钟的烙法”。

(4)集体交流,对比择优。

师:都是烙3张饼,为什么第二种方法比第一种能节省3分钟时间?

生:这种烙法锅里始终有2张饼,而其他方法有时候锅里只有1张饼。

小结:看来和烙2张饼的最优方法一样,也是保证每次锅里都有两张饼,所用的时间就最少,这就是烙3张饼的最优方法。

你想给这种烙饼方法取个名字吗?我们通过改变烙饼的顺序,保证每次锅里都有2张饼,所用的时间最少,这就是烙3张饼的最优方法,我们把它叫做“交替烙法”。 板书:交替烙法。

(设计意图:烙3张饼的`最佳方法是解决烙饼问题的关键。我让学生演示烙饼过程,学生通过动手操作,探索尝试,再进行比较,既可以有效地帮助学生理清思路,为后面的学习打下基础,又培养了学生的创新能力。)

4、总结方法,探究规律

(1)脱离学具,思考烙4张饼的最优方法

师:如果要烙4张饼,怎样烙才能最节省时间?

师:这种方法也就是2张2张地烙,每次都保证锅里有2张饼,没让它闲着,所以最节省时间。看来烙4张饼的问题可以转化成烙2张饼的问题,这样就把新的问题转化成我们已经解决了的问题。

(2)烙5张饼(师引导:想想怎样把新问题转化成我们已经解决的问题)

生:先烙2个,再烙3个。

师:烙2个需要几分钟(6分钟)烙3个需要几分钟(9分钟),一共需要几分钟?(15分钟)

(3)烙6-10张饼,探讨烙饼的次数与饼的分组方案间的规律。

师:烙6张饼、7张饼、8张饼呢,最快需要多少时间?请与同桌合作探究,并把你们的结果填在表里。

(4)发现规律。

师:通过前面的烙饼活动,你有什么发现?(引导学生从烙饼的方法和表中的数据两方面寻找规律) 师:烙饼的张数是双数时,怎样烙最节省时间?烙饼的张数是单数呢?

烙饼所用的最少时间与饼的张数有什么关系?

生1:我发现当烙饼的张数是双数时,2张2张烙最省时间;当烙饼的张数是单数时(除1张饼外),

先2张2张烙,剩下的3张按烙3张饼的最佳方案烙,这样所用的时间最少。(全班集体评价) 生2:我从表中发现,除1张饼外,烙饼的张数×3=最短时间。(板书:时间=饼数×3)

师:“3”是什么?

生:“3”是烙一面需要3分钟

师:如果烙100张饼需要多长时间?如果烙一面的时间不是3分钟,而是4分钟呢?5分钟呢?这个算式哪里要改一改?这里的3、4、5代表的是什么?

生:烙一面的时间。(板书:时间=饼数×烙一面的时间)

(设计意图:通过拓展性的设问,既对前面所学知识进行了巩固,也为学生思维能力的培养提供了时间和空间。通过以上活动,可以使学生找到最优方法,体会优化思想在解决实际问题中的应用。)

三、全课总结

今天我们研究出烙饼的最优方法,它源自我国的大数学家华罗庚爷爷提出的“优选法”,它教会我们要合理地安排好自己的学习和生活,节约资源,提高效率,做一个珍惜时间的人。

烙饼问题教学设计 篇5

一、教学内容

人教版义务教育课标实验教材(四上)112的例1

二、教学目标

1、通过对生活中简单事例的分析研究,初步体会运筹思想在解决实际问题的应 用,初步认识到解决问题策略的.多样性,培养寻找解决问题的最优方案的意识。

2、感受到数学在日常生活中的广泛应用,尝试用数学的方法来解决生活中的简单问题,培养合理安排时间的意识和习惯。

3、能积极地参与数学学习活动,体会到学习数学的乐趣。

三、教学准备:

多媒体课件;教师准备3个圆片代饼;每组3个圆片;

四、教学过程

(一)、谈话导入

同学们,大家喜欢吃饼吗?你知道怎么烙饼才能最节约时间吗?今天我们研究烙饼问题。板书课题:烙饼问题。

(二)新课

1、自主学习

(1)出示本节课的学习目标,请同学们朗读。

(2)在预习的过程中,同学们阅读了教材主题图,说一说烙饼的前提是什么?

(3)请同学们汇报:烙一张饼和烙两张饼分别用来多长时间?

(4)在小组内交流:烙三张饼最短用多少时间?

(5)小组汇报:如何烙三张饼用时最短?

第一张第二张第三张所花时间

第一次

第二次

第三次

2、探究烙饼最佳方法

(1)烙4张饼最快要分钟,烙5张要分钟,烙6张要分钟,烙7张要分钟,烙8张要分钟,烙9张要分钟,10张要分钟。

(2)你发现了什么?

(3)学生思考、观察、发现、汇报

烙的方法所花时间

3张饼

4张饼

5张饼

6张饼

7张饼

8张饼

9张饼

(三)过关检测

出示三道小题,请同学们解决,说一说解决的方法。

(四)、小节

师:这节课我们一块儿研究了烙饼问题,大家有什么收获?

小结:老师也希望大家能用我们今天所学的知识,合理的安排自己的时间,在以后的生活和学习中提高效率。

烙饼问题教学设计 篇6

教学内容:人教版四年级上册第七单元“数学广角——烙饼问题”。

教学目标:

1、在经历烙饼的具体过程中学会怎样合理安排最省时间,从而体会做事情要进行合理的安排。

2、尝试从优化的角度在解决问题的多种方案中寻找最合理的方案,培养学生分析问题的能力。

3、感受运筹思想在日常生活中的广泛应用,逐渐养成合理安排时间的良好习惯。

教学重点:初步培养学生形成从多种方案中寻找最优方案的意识。

教学难点:寻找合理、快捷的烙饼方案。

教材简析:《烙饼问题》是人教版教材四年级上册《数学广角》中的内容,主要通过讨论烙饼时如何合理安排操作最节省时间,让学生体会在解决问题中优化思想的运用。这部分知识对学生来说,比较抽象,难以理解。但由于学生在日常生活中都有过看饼如何烙的经历,所以,在这节课的教学中,我想就用这个学生熟悉的情境为切入口,通过例举、观察、合作讨论、优化,形象地帮助学生理解“三张饼如何烙才能尽快让大家吃上饼”,以及归纳出按怎样的顺序安排才会使所用时间的总和最少。

教学过程:

一、预设情景,走进生活。

师:同学们,你们喜欢猜脑经急转弯吗?老师出一个题考考大家:煮熟一个鸡蛋要用5分钟,煮熟5个鸡蛋要用多长时间?

生1:25分钟。一个一个地煮,煮1个需要5分钟,煮5个需要25分钟。

生2:只需要5分钟,把5个鸡蛋一起放进锅里。

师:你为什么会想到5个一起煮呢?5个鸡蛋一起煮既可以节约时间,又可以节约能源,看来只要我们肯动脑筋,连煮鸡蛋这件小事都能找到一个最优的方法。生活中类似的问题还有很多,今天我们就来看看在烙饼问题中,你能不能找到最优方法?——板书:烙饼问题

(设计意图:利用学生熟悉的生活情景引入课题,既引起了学生的兴趣,又紧扣主题,教学情境简洁有效。)

二、围绕主题,探索新知。

1、解读信息,理解烙饼规则。

师:你瞧,妈妈已经开始烙饼了,你从图中得到了哪些数学信息?生:每次只能烙2张饼;两面都要烙;每面3分钟。

师:每次只能烙2张饼是什么意思?(生:锅里最多只能同时放两张饼。)那如果我只放1张饼行吗?师:两面都要烙呢?(一张饼的正面也要烙,反面也要烙。)

2、观察法,探究烙2张饼的最优方法。

师:根据图中信息,如果妈妈只烙一张饼,最少需要多少时间?

生:6分钟。先烙熟一面需要3分钟,再翻过来烙另一面也要3分钟,3+3=6,所以烙熟1张饼最少需要6分钟。

师:如果要烙2张饼呢,最少需要几分钟?

生1:1张饼要6分钟,烙2张饼就要12分钟。

生2:烙2张饼只要6分钟。可以两张饼一起烙,先烙正面,再烙反面。师:大家认为哪种方法更好?为什么?(节省时间)它为什么能节省时间?生:2张饼同时烙。

师小结:看来这就是烙两张饼的最优方法,就是2张饼同时烙。

3、动手操作,探究烙3张饼的最优方法。

师:烙3张饼,最少需要几分钟?看来大家有有不同的想法,请你用学具摆一摆,试一试怎样烙最节省时间。

(1)学生尝试烙饼。(教师巡视并做个别指导)

(2)汇报交流。(预计有18分钟、12分钟、9分钟)预设:

①一张一张烙:烙一张要:3+3=6(分钟)烙三张要:6×3=18(分钟)

②先同时烙两张,再单独烙第三张:同时烙两张6分钟,烙一张也要6分钟,6+6=12(分钟)师:它的实验证明了自己的猜测:烙3张饼需要12分钟,比起一张一张烙,的确节省了时间,

为什么?(第1次2张同时烙)

师:还有哪些同学是跟他一样的?动脑筋想,有没有更短的时间?

③饼1和饼2先烙正面,再烙饼1的反面和饼3的正面,最后烙饼2和饼3的反面,共烙了3次

即3+3+3=9(分钟)(请学生上来演示,你说烙饼过程,我们全班帮你记着时间。再请一名学生演示,边演示教师边板书)

(3)同桌合作,再次摆一摆,体验“9分钟的烙法”。(4)集体交流,对比择优。

师:都是烙3张饼,为什么第二种方法比第一种能节省3分钟时间?生:这种烙法锅里始终有2张饼,而其他方法有时候锅里只有1张饼。

小结:看来和烙2张饼的最优方法一样,也是保证每次锅里都有两张饼,所用的时间就最少,这就是烙3张饼的最优方法。

你想给这种烙饼方法取个名字吗?我们通过改变烙饼的顺序,保证每次锅里都有2张饼,所用的时间最少,这就是烙3张饼的最优方法,我们把它叫做“交替烙法”。板书:交替烙法。(设计意图:烙3张饼的最佳方法是解决烙饼问题的关键。我让学生演示烙饼过程,学生通过动手操作,探索尝试,再进行比较,既可以有效地帮助学生理清思路,为后面的学习打下基础,又培养了学生的创新能力。)

4、总结方法,探究规律

(1)脱离学具,思考烙4张饼的最优方法师:如果要烙4张饼,怎样烙才能最节省时间?

师:这种方法也就是2张2张地烙,每次都保证锅里有2张饼,没让它闲着,所以最节省时间。看来烙4张饼的问题可以转化成烙2张饼的问题,这样就把新的问题转化成我们已经解决了的问题。

(2)烙5张饼(师引导:想想怎样把新问题转化成我们已经解决的问题)

生:先烙2个,再烙3个。

师:烙2个需要几分钟(6分钟)烙3个需要几分钟(9分钟),一共需要几分钟?(15分钟)

(3)烙6-10张饼,探讨烙饼的次数与饼的分组方案间的规律。

师:烙6张饼、7张饼、8张饼呢,最快需要多少时间?请与同桌合作探究,并把你们的结果填在表里。

(4)发现规律。

师:通过前面的烙饼活动,你有什么发现?(引导学生从烙饼的方法和表中的数据两方面寻找规律)师:烙饼的张数是双数时,怎样烙最节省时间?烙饼的张数是单数呢?

烙饼所用的最少时间与饼的'张数有什么关系?

生1:我发现当烙饼的张数是双数时,2张2张烙最省时间;当烙饼的张数是单数时(除1张饼外),先2张2张烙,剩下的3张按烙3张饼的最佳方案烙,这样所用的时间最少。(全班集体评价)

生2:我从表中发现,除1张饼外,烙饼的张数×3=最短时间。(板书:时间=饼数×3)师:“3”是什么?

生:“3”是烙一面需要3分钟

师:如果烙100张饼需要多长时间?如果烙一面的时间不是3分钟,而是4分钟呢?5分钟呢?这个算式哪里要改一改?这里的3、4、5代表的是什么?

生:烙一面的时间。(板书:时间=饼数×烙一面的时间)

(设计意图:通过拓展性的设问,既对前面所学知识进行了巩固,也为学生思维能力的培养提供了时间和空间。通过以上活动,可以使学生找到最优方法,体会优化思想在解决实际问题中的应用。)

三、全课总结

今天我们研究出烙饼的最优方法,它源自我国的大数学家华罗庚爷爷提出的“优选法”,它教会我们要合理地安排好自己的学习和生活,节约资源,提高效率,做一个珍惜时间的人。