返回首页
文学网 > 短文 > 教学教案 > 正文

数学教学设计

2026/02/22教学教案

文学网整理的数学教学设计(精选6篇),供大家参考,希望能给您提供帮助。

数学教学设计 篇1

函数的奇偶性

函数的奇偶性是函数的重要性质,是对函数概念的深化.它把自变量取相反数时函数值间的关系定量地联系在一起,反映在图像上为:偶函数的图像关于y轴对称,奇函数的图像关于坐标原点成中心对称.这样,就从数、形两个角度对函数的奇偶性进行了定量和定性的分析.教材首先通过对具体函数的图像及函数值对应表归纳和抽象,概括出了函数奇偶性的准确定义.然后,为深化对概念的理解,举出了奇函数、偶函数、既是奇函数又是偶函数的函数和非奇非偶函数的实例.最后,为加强前后联系,从各个角度研究函数的性质,讲清了奇偶性和单调性的.联系.这节课的重点是函数奇偶性的定义,难点是根据定义判断函数的奇偶性.

教学目标:

1.通过具体函数,让学生经历奇函数、偶函数定义的讨论,体验数学概念的建立过程,培养其抽象的概括能力.

2.理解、掌握函数奇偶性的定义,奇函数和偶函数图像的特征,并能初步应用定义判断一些简单函数的奇偶性.

3.在经历概念形成的过程中,培养学生归纳、抽象概括能力,体验数学既是抽象的又是具体的任务分析

这节内容学生在初中虽没学过,但已经学习过具有奇偶性的具体的函数:正比例函数y=kx,反比例函数,(k≠0),二次函数y=ax,(a≠0),故可在此基础上,引入奇、偶函数的概念,以便于学生理解.在引入概念时始终结合具体函数的图像,以增加直观性,这样更符合学生的认知规律,同时为阐述奇、偶函数的几何特征埋下了伏笔.对于概念可从代数特征与几何特征两个角度去分析,让学生理解:奇函数、偶函数的定义域是关于原点对称的非空数集;对于在有定义的奇函数y=f(x),一定有f(0)=0;既是奇函数,又是偶函数的函数有f(x)=0,x∈R.在此基础上,让学生了解:奇函数、偶函数的矛盾概念———非奇非偶函数.关于单调性与奇偶性关系,引导学生拓展延伸,可以取得理想效果.

一、问题情景

1.观察如下两图,思考并讨论以下问题:

(1)这两个函数图像有什么共同特征?

(2)相应的两个函数值对应表是如何体现这些特征的?可以看到两个函数的图像都关于y轴对称.从函数值对应表可以看到,当自变量x取一对相反数时,相应的两个函数值相同.

对于函数f(x)=x,有f(-3)=9=f(3),f(-2)=4=f(2),f(-1)=1=f(1).事实上,对于R内任意的一个x,都有f(-x)=(-x)2=x2=f(x).此时,称函数y=x2为偶函数.

2.观察函数f(x)=x和f(x)=的图像,并完成下面的两个函数值对应表,然后说出这两个函数有什么共同特征.

22可以看到两个函数的图像都关于原点对称.函数图像的这个特征,反映在解析式上就是:当自变量x取一对相反数时,相应的函数值f(x)也是一对相反数,即对任一x∈R都有f(-x)=-f(x).此时,称函数y=f(x)为奇函数.

二、建立模型

由上面的分析讨论引导学生建立奇函数、偶函数的定义

1.奇、偶函数的定义

如果对于函数f(x)的定义域内任意一个x,都有f(-x)=-f(x),那么函数f(x)就叫作奇函数.如果对于函数f(x)的定义域内任意一个x,都有f(-x)=f(x),那么函数f(x)就叫作偶函数.

2.提出问题,组织学生讨论

(1)如果定义在R上的函数f(x)满足f(-2)=f(2),那么f(x)是偶函数吗? (f(x)不一定是偶函数)

(2)奇、偶函数的图像有什么特征?

(奇、偶函数的图像分别关于原点、y轴对称) (3)奇、偶函数的定义域有什么特征? (奇、偶函数的定义域关于原点对称)

三、解释应用[例题]

1.判断下列函数的奇偶性.

注:①规范解题格式;②对于(5)要注意定义域x∈(-1,1].

2.已知:定义在R上的函数f(x)是奇函数,当x>0时,f(x)=x(1+x),求f(x)的表达式.

解:(1)任取x0,∴f(-x)=-x(1-x),

而f(x)是奇函数,∴f(-x)=-f(x).∴f(x)=x(1-x).

(2)当x=0时,f(-0)=-f(0),∴f(0)=-f(0),故f(0)=0.

3.已知:函数f(x)是偶函数,且在(-∞,0)上是减函数,判断f(x)在(0,+∞)上是增函数,还是减函数,并证明你的结论.

解:先结合图像特征:偶函数的图像关于y轴对称,猜想f(x)在(0,+∞)上是增函数,证明如下:

任取x1>x2>0,则-x1<-x2<0.

∵f(x)在(-∞,0)上是减函数,∴f(-x1)>f(-x2).又f(x)是偶函数,∴f(x1)>f(x2).

∴f(x)在(0,+∞)上是增函数.

思考:奇函数或偶函数在关于原点对称的两个区间上的单调性有何关系?

[练习]

1.已知:函数f(x)是奇函数,在[a,b]上是增函数(b>a>0),问f(x)在[-b,-a]上的单调性如何.

2. f(x)=-x3|x|的大致图像可能是()

3.函数f(x)=ax2+bx+c,(a,b,c∈R),当a,b,c满足什么条件时,(1)函数f(x)是偶函数.(2)函数f(x)是奇函数. 4.设f(x),g(x)分别是R上的奇函数和偶函数,并且f(x)+g(x)=x(x+1),求f(x),g(x)的解析式.

四、拓展延伸

1.有既是奇函数,又是偶函数的函数吗?若有,有多少个? 2.设f(x),g(x)分别是R上的奇函数,偶函数,试研究:(1)F(x)=f(x)·g(x)的奇偶性. (2)G(x)=|f(x)|+g(x)的奇偶性.

3.已知a∈R,f(x)=a-,试确定a的值,使f(x)是奇函数.

4.一个定义在R上的函数,是否都可以表示为一个奇函数与一个偶函数的和的形式?

数学教学设计 篇2

【教学内容】

找规律。

【教学目标】

1。使学生通过画图,由简到繁,发现规律,总结规律,进一步巩固、发展学生找规律的能力,体会找规律对解决问题的

重要性。

2。体会一些数学思想、方法在解决问题中的作用,掌握一些数学思想和数学方法,会用一些数学思想方法解决生活中的

问题。

3。进一步体验充满着探索与创造的数学活动,激发学生学习数学、探索规律的兴趣。

【重点难点】

学生通过画图,由简到繁,发现规律,总结规律。

【教学准备】

多媒体课件,投影仪。

【复习导入】

1。课件出示一组题,比一比,谁最能干。

(1)根据数的变化规律填数。

13、11、9、()、()、()。

(2)根据下面图形的排列规律,接着画出4个。

○□□○○□□○○○□□○○○○

(3)2、4、8、16、()、()(课件说明:先出现16、()、(),让学生找不到或者不容易找到

答案。体会必须要找到规律。再出现2、4、8、16,再次让学生体会要从给出的条件出发找到规律)。

2。揭示课题:

教师:这就是我们的一种数学思考方法,难的问题解决不了或不容易解决,我们就从简单问题入手。通过比较、分析,

找到规律,然后再解决问题。下面我们就利用这一策略来解决问题。

【探索规律】

1。游戏引入:表扬刚才发言比较好的同学,与他们握手,然后让学生思考,刚才老师和学生一共握了几次?再选一位同

学与其余同学握手,再问一共握了几次,依次……让学生体会到有规律但不容易一下子说出答案,那么全班呢?(临时

收集人数)

这需要我们从人数最少的时候开始找规律,如果我们把每个人看成一个点,握手看成连线。那么我们就可以将握手问题

看成是连线问题。

2。教学例1。

6个点可以连成多少条线段?8个点呢?

(1)独立思考,发现规律。

①给时间让学生动手操作,老师边巡视,观察学生在做什么,怎么操作的.,边询问学生是怎么想的。

(预设:有的同学会很快找到规律并得到结果;有的同学能找到答案,但说不清楚规律;有的同学不能找到规律,或不

能很快找到,但是可以一直画到6个点甚至8个点;还有可能能连但有遗漏;学生可能很容易发现,用一个点先和其他所

有点连接的方法,而其他的方法不一定能想到。)

②针对学生的情况,抽一两个人说说自己的发现。其他同学听,培养学生的倾听习惯。

数学教学设计 篇3

教学目标:

1、认识扇形统汁图的特点和作用,能从扇形统汁图读出必要的信息,为决策服务。

2、结合教学渗透理想主义教育,引导学生养成良好的生活、学习习惯,使学生感受统计的意义和作用。

3、通过对数据的科学分析,培养学生逻辑推理、抽象概括的能力。

教学重点:

认识扇形统汁图,能从扇形统汁图读出必要的信息。

教学难点:

结合统汁图正确进行数据分析,为决策服务。

教学过程:

一、提出学习目标

1、创设情境,导入新课

师:同学们,在校运会中我们班好多学生都报名参加了自己喜欢的体育项目,有的同学也取得了很好的成绩,大家都来说一说自己最喜欢什么体育项目呢?班长来统计一下

生1:我喜欢跳绳。

生2:我喜欢足球。

生3:我喜欢打乒乓球。

生4:我喜欢短跑。

……

师:刚才班长已经把你们喜欢的体育项目都记下来了,那我们可以对这些原始数据做何处理呢?

生1:制成统计表

生2:制成条形统计图

……

师:大家说得非常好,我们今天再来学习一种新的统计图——扇形统汁图,大家想从中学会些什么呢?

2、提出学习目标

(1)认识扇形统汁图的特点和作用。

(2)从扇形统汁图能读出什么样的信息。

二、展示学习成果

1、小组内个人展示

学生独立自学教科书第106~107页上的.内容和做一做(教师相机进行指导,收集学生的学习信息,特别是引导小组内学生之间的交流与探讨)

完成后在小组内按学困生——中等生——优生的顺序进行展示,小组内互相交流、帮助、质疑问难

2.全班展示(以小组为单位)

(1)汇报扇形统汁图的特点和作用。

(2)从扇形统汁图能读出什么样的信息?

(生自由说)

(3)牛奶中的数学问题。

看图,并计算出,每天喝一袋250克的牛奶,能补充营养成分各多少克?

(4)错例展示。

(每一小组在展示过程中,其它小组均能进行质疑。)

三、激发知识冲突

边展示边引发知识的冲突,让学生更深层次的进行思考:

1.针对同学的展示,学生自由质疑问难。

2.教师引导学困生提出问题:同学们,你在学习中碰到困难了吗?能把你遇到的困难说给大家听吗?那你对同学的展示有什么想法与建议吗?

四、拓展知识外延

1、生活中的数学。

(1)、 练习二十五第1题:自主看图,说一说李明同学一天的作息安排是否合理,从中你能提出哪些合理化建议。(引导学生说说怎样安排时间才合理,才能做到劳逸结合)

(2)、 练习二十五第2题:自主看图,说一说从图中得到哪些信息,在小组内交流。(使学生体会到父母的辛苦和对自己的爱,激发学生对父母、对家庭的爱)

2、小小统计员

(1)统计自己家中每月的生活费支出情况,根据所学知识试着制作成扇形统汁图。

(2)进行数据分析,为家庭开支的使用提出合理化建议。

数学教学设计 篇4

数学教学设计【精】

作为一名辛苦耕耘的教育工作者,时常要开展教学设计的准备工作,编写教学设计有利于我们科学、合理地支配课堂时间。优秀的教学设计都具备一些什么特点呢?下面是小编帮大家整理的数学教学设计,仅供参考,欢迎大家阅读。

数学教学设计 篇5

第一单元 负数

第一课时 负数的认识

教学目标:

1.引导学生在熟悉的生活情境中初步认识负数,能正确地读、写正数和负数;知道0不是正数也不是负数。

2.使学生初步学会用负数表示一些日常生活中的实际问题,体验数学与生活的联系。

3.结合负数的历史,对学生进行爱国主义教育;培养学生良好的数学情感和数学态度。

教学重点:负数的意义。

教学难点:负数的意义。

课前准备:

学生搜集生活情境中负数有关资料,如气温、收支,股票涨跌等。 教学课时:1课时

教学过程:

一、谈话交流

谈话:同学们,刚才一上课大家就做了一组相反的动作,是什么?(起立、坐下。)今天的数学课我们就从这个话题聊起。(板书:相反。)我们周围有很多的自然和社会现象中都存在着相反的情况,请看屏幕:(课件播放图片。)太阳每天从东方升起,西方落下;公交车的站点有人上车和下车;繁华的街市上有买也有卖;银行有存钱和取钱……你能举出一些这样的现象吗?(课件2、3、4、5、6)

二、教学新知

1.表示相反意义的量。

(1)引入实例。

谈话:如果沿着刚才的话题继续“聊”下去的话,就很自然地走进数学,我们一起来看几个例子。(课件7)

① 六年级上学期转来6人,本学期转走6人。

② 张阿姨做生意,二月份盈利1500元,三月份亏损200元。 ③ 与标准体重比,小明重了2.5千克,小华轻了 1.8千克。

④ 一个蓄水池夏季水位上升米,冬季水位下降米。

指出:这些相反的词语和具体的数量结合起来,就成了一组组“相反意义的量”。

(2)尝试:怎样用数学方式来表示这些相反意义的量呢?(课件8)

请同学们选择一例,试着写出表示方法。

2.认识正、负数。

(1)引入正、负数。(课件9)

谈话:刚才,有同学在6的前面写上“+”表示转来6人,添上“-”表示转走6人(板书:+6 -6),这种表示方法和数学上是完全一致的。

介绍:像“-6”这样的数叫负数(板书:负数);这个数读作:负六。“-”,在这里有了新的意义和作用,叫“负号”。“+”是正号。

像“+6”是一个正数,读作:正六。我们可以在6的前面加上“+”,也可以省略不写(板书:6)。其实,过去我们认识的很多数都是正数。

(2)说一说。(课件10)

生活中还有能用正负数表示的例子吗?

4.进一步认识“0。” (课件11)

以温度计为例,观察“0”的作用?

结论:0既不是正数,也不是负数。(板书)

5、联系生活中的气温;进一步感受正负数的应用。

(1)介绍温度计相关知识。(课件12、13)

(2)一次读出4个城市的温度。(课件14、15、16、17、18)

三、练习应用

(1)辩一辩:

“16℃”和“-16℃”的意义相同吗?(课件19、20、21、22)

(2)做一做:指出下面数中的正负数。(课件23)

(3)填一填:珠穆朗玛峰和吐鲁番盆地海拔高度。(课件24)

四、课堂小结:(课件25)

五、课外拓展:

负数的历史。(课件26、27、28、29、30)

六、板书:

负数的初步认识

像“-6”这样的数叫负数,读作:负六。“-”,叫“负号”。

像“+6”这样的数叫正数,读作:正六。“+”,叫“正号”。也可省略不写。 0既不是正数,也不是负数。

课后反思:

第二课时 比较正数和负数的大小

教学目的:

1.借助数轴初步学会比较正数、0和负数之间的大小。

2.初步体会数轴上数的顺序,完成对数的结构的初步构建。

教学重、难点:负数与负数的比较。

教学过程:

一、复习:

1.读数,指出哪些是正数,哪些是负数?

43-85.6 +0.9 -+ 0-82

2.如果+20%表示增加20%,那么-6%表示 。

3.某日傍晚,黄山的气温由上午的零上2摄氏度下降了7摄氏度,这天傍晚黄山的气温是 摄氏度。

二、新授:

(一)教学例3:

1.怎样在数轴上表示数?(1.2.3.4.5.6.7)

2.出示例3:

(1)提问你能在一条直线上表示他们运动后的情况吗?

(2)让学生确定好起点(原点)、方向和单位长度。学生画完交流。

(3)教师在黑板上话好直线,在相应的点上用小图片代表大树和学生,在问怎样用数表示这些学生和大树的相对位置关系?(让学生把直线上的点和正负数对应起来。

(4)学生回答,教师在相应点的下方标出对应的.数,再让学生说说直线上其他几个点代表的数,让学生对数轴上的点表示的正负数形成相对完整的认识。

(5)总结:我们可以像这样在直线上表示出正数、0和负数,像这样的直线我们叫数轴。

(6)引导学生观察:

A、从0起往右依次是?从0起往左依次是?你发现什么规律?

B、在数轴上分别找到1.5和-1.5对应的点。如果从起点分别到.5和-1.5处,应如何运动?

(7)练习:做一做的第1.2题。

(二)教学例4:

1.出示未来一周的天气情况,让学生把未来一周每天的最低气温在数轴上表示出来,并比较他们的大小。

2.学生交流比较的方法。

3.通过小精灵的话,引出利用数轴比较数的大小规定:在数轴上,从左到右的顺序就是数从小到大的顺序。

4.再让学生进行比较,利用学生的具体比较来说明“-8在-6的左边,所以-8〈-6”

5.再通过让另一学生比较“8〉6,但是-8〈-6”,使学生初步体会两负数比较大小时,绝对值大的负数反而小。

6.总结:负数比0小,正数比0大,负数比正数小。

7.练习:做一做第3题。

三、巩固练习

1.练习一第4.5题。 2.练习一第6题。

3.实践题记录小组同学的身高和体重,以平均身高体重为标准记为0m或(0kg)。超过的记为正数,不足的记为负数,然后按从大到小的顺序排列。

四、全课总结

(1)在数轴上,从左到右的顺序就是数从小到大的顺序。

(2)负数比0小,正数比0大,负数比正数小。

课后反思:

数学教学设计 篇6

一、教学目标:

1、通过创设一定的生活情境,体验数学与生活实际的密切联系。

2、在实际操作中,感受排列与组合规律在生活中的应用,并初步感知它们间的不同,且能初步表达解决问题的大致过程和结果。

3、通过相关的操作活动,能够找出简单的事物的排列数和组合数。

4、培养观察、分析、推理及比较(类比和对比)等能力以及有顺序地、全面地思考问题的意识。

二、教学重点、难点

经历探索简单事物组合、排列规律的过程,能用不同的方法有顺序地来计算组合、排列数,初步了解简单事物组合和排列的不同。

三、教具、学具的准备:

课件、衣服卡片、学生练习纸

四、教学过程:

(一)揭示课题

今天,我们要和贝贝一起进入有趣的教学广角,解决生活中的数学问题。(事先板书:数学广角)

(二)探究新知,创设情境

1、衣服搭配中的组合问题

星期天,爸爸、妈妈要带贝贝去游乐园玩,既然是去游玩,就要穿得漂亮一些,贝贝遇到的第一个问题就是穿什么衣服(点击出示图片例1图(两件上衣和三件下装,电脑音问:这些衣服一共有多少种不同的穿法?)。

①生猜

师:谁猜的对呢?(你们是不是猜对呢?)我们不妨一起来验证以下,同桌合作动手摆一摆,同时思考这样一个问题:怎样搭配才能做到不重复不遗漏。摆完后,用你喜欢的方法在练习纸表示出来。

展示成果并交流:

师:为了便于同学们表述,我们给这些衣服编上号。

反馈:让学生先反馈摆法,再反馈记录法。

评议。

师:他们的搭配方法中,有重复的吗,有遗漏的吗?他们再摆的时候,是怎样做到不遗漏也不重复的呢?

师:简单的说,他们是先确定一件上装,然后和不同的下装进行搭配,再确定一件上装,和不同的下装进行搭配,很快就摆出了6种不同的搭配方法。这样的思考方法,非常的——生:有顺序。

师:是啊,只要做到有序的思考,就能做到不遗漏也不重复。

师:然后他们按照摆法的顺序,用连线法进行了表示。你们也是用连线法表示的吗?有没有不是的?其实,我们还可以编号组合来表示,如①A……你们为什么都选择用连线法呢?

师:理解了摆法,学会了连线法,你能用算式来表示吗?(3+3=6可以改写为2×3=6)算式中的2和3分别表示什么意思呢?(2表示有2件上装,3表示每件下装有3种搭配方法。)

师:刚才我们讨论的是先确定一件上装的情况,有没有,思考的角度和他们不一样的同学?

(有,就让学生上来用连线法边说,边记录。)

(没有)谁能换个角度思考问题呢?

师:谁能一边说,一边用连线法表示出来?

师:看懂了,举手,好,他是先确定,……虽然思考角度不同,但因为思考有序,也完整地得出了6种不同的搭配方法。

2、早餐中的组合问题

等贝贝穿好衣服,妈妈也为她准备好了丰富的早餐,(看练习纸),有哪几种饮料?哪几种点心?如果饮料和点心各选一种,一共有多少种选法呢?你能刚学会的知识解决这个问题吗?

(1)生尝试独立完成

(2)反馈谁想上来说给同学们听?

(3)评议

师:他按照这样的方法选一选,连一连,你们赞同吗?大家都赞同的方法,肯定都是好方法,这种方法好在哪里呢?

(他是先确定一杯饮料,与3种不同的饮料进行搭配,再确定一杯饮料,与不同的点心进行,这样,以此类推)

师小结:因为思考有序,所以做到了不遗漏,不重复,而且速度很快。

(4)会列式计算吗?每个数又表示什么意思呢

(5)他是从饮料的角度出发进行思考,有思考角度和他不同的吗?(能换个角度思考吗?)

(4)取一张饮料图放在练习纸上

师:如果再添1杯饮料,那有几种选法呢?

师:这么快,你们是怎样想的?

(师引导学生说清楚每种饮料都有3种搭配方法,所以4种饮料就有4×3=12种配方法。)

师:啊,原来,用饮料的数量和点心的数量——生:相乘,就可以得到总的搭配数量。同学们学出点门道来了,那我来考考你们,再增加1种点心呢?如果有5种饮料,6种点心呢?

3、3个数的排列问题

吃好了早餐,就让我们和贝贝一起出发吧?他们先来到游乐园做个数字游戏,(课件出示)

用手势告诉我,你认为可以组成几个不同的3位数?

谁想的是正确的呢?(都认为是6个,有哪6个呢?)仍旧以同桌为单位,按一定的顺序摆一摆,然后把你摆的数记下来。

(1)同桌合作完成(2)交流(3)评议

师:有重复的吗,有遗漏的吗?有顺序吗?他是按怎样的'顺序摆出来的呢?

师小结:他是先确定百位上的数,然后剩下的2个数摆在十位和个位,然后交换十位和个位两个数的位置,就又得到了一个新的数,以此类推,得到了6个不同的三位数。

师:当他在确定百位上的数的时候,他又是按怎样的顺序来确定的?还可以按怎样的顺序来确定呢?

师:他是先确定百位上的数,换个角度思考,也可以——生(略)师:看着这6个数,你能列一个算式吗?说说想法。

师小结:每个数摆在百位,都可以有两个不同的3位数,3个数,就有3×2=6个不同的三位数。

4、拍照中的排列问题

做了这么长时间的数字游戏,可真有点累了,到开心屋去开心一下吧,这不,贝贝一家三口经过装扮,变成了这三兄弟(孙悟空、猪八戒、沙和尚),开心时刻,当然要拍照留念,他们有多少种不同的站法呢?为了方便记录,你们可以先给他们编编号。

(1)生尝试独立完成(2)反馈

5、比较例1和例2的异同,感受区别

学到这里,我们已经和贝贝一起解决了生活当中的4个问题,这第1个问题和第3个问题在解决过程中有什么不一样的地方呢?

(衣服的搭配问题和顺序无关,数字的排列和顺序有关。)

(三)课堂总结:

这节课,你开心吗?为什么开心?

(四)完成课堂作业

五、课后反思:

二年级上册教材中,学生已经接触了一点排列与组合知识,学生已经可以通过观察猜测以及实验的方法可以找出最简单的事物的排列数和组合数。《标准》中指出:“重要的数学概念与数学思想宜逐步深入。”本套教材注重体现这一要求,所以在三年级上册教材中继续学习排列与组合的内容。因为本课是建立在学生已有知识和经验的基础上,所以我将本课的重点放在向学生渗透相应的数学思想,并初步培养学生有顺序地、全面地思考问题的意识上。

本次教学内容安排的都是学生身边的事例和一些生动有趣的活动。如在例1中安排的是有关衣服的搭配问题,让学生找出不同的穿法,在“做一做”中安排了用活动数字卡片找出不同的两位数的活动;在例2中安排了学生用数字卡片摆三位数的情景,在“做一做”中安排了照相时的不同站位的活动。

由于这部分内容的活动性和操作性比较强,所以我采取了让学生动手实践、同桌或小组合作学习的方式教学。从而让学生能根据实际问题采用罗列、连线等方式,找出简单事物的排列数和组合数,并能感受到有的与顺序有关,有的与顺序无关。

如教学例1时,让学生利用学具自己动手摆一摆(教师也可以让学生在课前制作好衣服的小卡片),看看一共有几种穿法。接着让学生用喜欢的方法把各种穿法记录下来,学生都用了连线的方法,所以我又简单地介绍了罗列法。之后把练习二十五中的早餐搭配问题做为了巩固练习,并且做了修改,增添了1种饮料,将横向摆放改为纵向摆放,以此打破学生的思维定势。在学生顺利完成后,又了进行了加深,将饮料逐渐增加至5种,饮料逐渐增加至6种,让学生从形象思维逐渐抽象为抽象思维,从连线法抽象为计算法。又如教学例2时,也是让学生先动手摆一摆,看看用三个数字卡片一共能摆出多少个不同的三位数,并把它们记录下来,然后让学生在小组中进行讨论。接下来让每个小组进行汇报交流:你一共摆了几个三位数?你是怎样摆的?用什么方法记录既清楚明了又不重不漏?最后对学生的汇报进行小结:不管是怎样的摆放、排列,只要做到有顺序的记录,就可以保证不重不漏。

课程结束后,杨老师予以了细心的指点,在她的指点下,原本自己觉得混沌不开的地方,就豁然清晰了。

1、课堂中没有完成课堂作业本,显然在教学时间的安排上存在问题,经杨老师点拨后顿悟:教学内容主次不分名,如新授要引导到位,但练习在放手让孩子完成后,略微指导就过,而我花了几乎与新授等同的时间,细究原因,还是老师的本位思想在作怪,没能充分相信学生的接受能力。

2、教参要求,让学生初步理解例1与例2的区别,即有的与顺序有关,有的与顺序无关,但由于教学时间安排的不合理,以致于没能让学生经过讨论而匆匆指名说说就收场了,所以很多学生其实是不理解的。