返回首页
文学网 > 短文 > 教学教案 > 正文

高一数学教学设计

2025/09/02教学教案

文学网整理的高一数学教学设计(精选11篇),供大家参考,希望能给您提供帮助。

高一数学教学设计 篇1

1.课题

填写课题名称(高中代数类课题)

2.教学目标

(1)知识与技能:

通过本节课的学习,掌握......知识,提高学生解决实际问题的能力;

(2)过程与方法:

通过......(讨论、发现、探究),提高......(分析、归纳、比较和概括)的能力;

(3)情感态度与价值观:

通过本节课的学习,增强学生的`学习兴趣,将数学应用到实际生活中,增加学生数学学习的乐趣。

3.教学重难点

(1)教学重点:本节课的知识重点

(2)教学难点:易错点、难以理解的知识点

4.教学方法(一般从中选择3个就可以了)

(1)讨论法

(2)情景教学法

(3)问答法

(4)发现法

(5)讲授法

5.教学过程

(1)导入

简单叙述导入课题的方式和方法(例:复习、类比、情境导出本节课的课题)

(2)新授课程(一般分为三个小步骤)

①简单讲解本节课基础知识点(例:奇函数的定义)。

②归纳总结该课题中的重点知识内容,尤其对该注意的一些情况设置易错点,进行强调。可以设计分组讨论环节(分组判断几组函数图像是否为奇函数,并归纳奇函数图像的特点。设置定义域不关于原点对称的函数是否为奇函数的易错点)。

③拓展延伸,将所学知识拓展延伸到实际题目中,去解决实际生活中的问题。

(在新授课里面一定要表下出讲课的大体流程,但是不必太过详细。)

(3)课堂小结

教师提问,学生回答本节课的收获。

(4)作业提高

布置作业(尽量与实际生活相联系,有所创新)。

6.教学板书

高一数学教学设计 篇2

一、教学目标:

1、知识与技能目标

①理解循环结构,能识别和理解简单的框图的功能。

②能运用循环结构设计程序框图解决简单的问题。

2、过程与方法目标

通过模仿、操作、探索,学习设计程序框图表达,解决问题的过程,发展有条理的思考与表达的能力,提高逻辑思维能力。

3、情感、态度与价值观目标

通过本节的自主性学习,让学生感受和体会算法思想在解决具体问题中的意义,增强学生的创新能力和应用数学的意识。三、教法分析

二、教学重点、难点

重点:理解循环结构,能识别和画出简单的循环结构框图,

难点:循环结构中循环条件和循环体的确定。

三、教法、学法

本节课我遵循引导发现,循序渐进的思路,采用问题探究式教学。运用多媒体,投影仪辅助。倡导“自主、合作、探究”的学习方式。

四、 教学过程:

(一)创设情境,温故求新

引例:写出求 的值的一个算法,并用框图表示你的算法。

此例由学生动手完成,投影展示学生的做法,师生共同点评。鼓励学生一题多解——求创。

设计引例的目的是复习顺序结构,提出递推求和的方法,导入新课。此环节旨在提升学生的求知欲、探索欲,使学生保持良好、积极的情感体验。

(二)讲授新课

1、循序渐进,理解知识

【1】选择“累加器”作为载体,借助“累加器”使学生经历把“递推求和”转化为“循环求和”的过程,同时经历初始化变量,确定循环体,设置循环终止条件3个构造循环结构的关键步骤。

(1)将“递推求和”转化为“循环求和”的缘由及转化的方法和途径

引例“求 的值”这个问题的自然求和过程可以表示为:

用递推公式表示为:

直接利用这个递推公式构造算法在步骤 中使用了 共100个变量,计算机执行这样的算法时需要占用较大的内存。为了节省变量,充分体现计算机能以极快的速度进行重复计算的优势,需要从上述递推求和的步骤 中提取出共同的结构,即第n步的结果=第(n-1)步的结果+n。若引进一个变量 来表示每一步的计算结果,则第n步可以表示为赋值过程 。

(2)“ ”的含义

利用多媒体动画展示计算机中累加器的工作原理,借助形象直观对知识点进行强调说明① 的作用是将赋值号右边表达式 的值赋给赋值号左边的变量 。

②赋值号“=”右边的变量“ ”表示前一步累加所得的和,赋值号“=”左边的“ ”表示该步累加所得的'和,含义不同。

③赋值号“=”与数学中的等号意义不同。 在数学中是不成立的。

借助“累加器”既突破了难点,同时也使学生理解了 中 的变化和 的含义。

(3)初始化变量,设置循环终止条件

由 的初始值为0, 的值由1增加到100,可以初始化循环变量和设置循环终止条件。

【2】循环结构的概念

根据指定条件决定是否重复执行一条或多条指令的控制结构称为循环结构。

教师学生一起共同完成引例的框图表示,并由此引出本节课的重点知识循环结构的概念。这样讲解既突出了重点又突破了难点,同时使学生体会了问题的抽象过程和算法的构建过程。还体现了我们研究问题常用的“由特殊到一般”的思维方式。

2、类比探究,掌握知识

例1:改造引例的程序框图表示①求 的值

②求 的值

③求 的值

④求 的值

此例可由学生独立思考、回答,师生共同点评完成。

通过对引例框图的反复改造逐步帮助学生深入理解循环结构,体会用循环结构表达算法,关键要做好三点:①确定循环变量和初始值②确定循环体③确定循环终止条件。

高一数学教学设计 篇3

一、本节内容在教材中的地位与作用:

《函数的单调性》系人教版高中数学必修一的内容,该内容包括函数的单调性的定义与判断及其证明。在初中学习函数时,借助图像的直观性研究了一些函数的增减性.这节内容是初中有关内容的深化、延伸和提高.这节通过对具体函数图像的归纳和抽象,概括出函数在某个区间上是增函数或减函数的准确含义,明确指出函数的增减性是相对于某个区间来说的.教材中判断函数的增减性,既有从图像上进行观察的直观方法,又有根据其定义进行逻辑推理的严格方法,最后将两种方法统一起来,形成根据观察图像得出猜想结论,进而用推理证明猜想的体系.函数的单调性是函数众多性质中的重要性质之一,函数的单调性一节中的知识是前一节内容函数的概念和图像知识的延续,它和后面的函数奇偶性,合称为函数的简单性质,是今后研究指数函数、对数函数、幂函数及其他函数单调性的理论基础;在解决函数值域、定义域、不等式、比较两数大小等具体问题中均需用到函数的单调性;同时在这一节中利用函数图象来研究函数性质的数形结合思想将贯穿于我们整个高中数学教学。

二、学情、教法分析:

按现行新教材结构体系,学生只学过一次函数、二次函数、反比例函数,所以对函数的单调性研究也只能限于这几种函数。依据现有认知结构,学生只能根据函数的图象观察出“随着自变量的增大,函数值增大”的变化趋势,而不能用符号语言进行严密的代数证明,只能依据形的直观性进行感性判断而不能进行“思辩”的理性认识。所以在教学中要找准学生学习思维的“最近发展区”进行有意义的建构教学。在教学过程中,要注意学生第一次接触代数形式的证明,为使学生能迅速掌握代数证明的格式,要注意让学生在内容上紧扣定义贯穿整个学习过程,在形式上要从有意识的模仿逐渐过渡到独立的证明。

三、教学目标与教学重、难点的制定:

依据课程标准的具体要求以及基于教材内容的具体分析,制定本节课的教学目标为:

1.通过函数单调性的学习,让学生通过自主探究活动,体会数学概念的形成过程的真谛,学会运用函数图像理解和研究函数的性质。

2.理解并掌握函数的单调性及其几何意义,掌握用定义证明函数的单调性的步骤,会求函数的单调区间,提高应用知识解决问题的能力。

3.能够用函数的性质解决生活中简单的实际问题,使学生感受到学习单调性的必要性与重要性,增强学生学习函数的紧迫感,激发其积极性。

在本节课的教学中以函数的单调性的概念为线,它始终贯穿于教师的整个课堂教学过程和学生的.学习过程;利用函数的单调性的定义证明简单函数的单调性是对函数单调性概念的深层理解,且“取值、作差与变形、判断、结论”过程学生不易掌握。所以对教学的重点、难点确定如下:

教学重点:函数的单调性的判断与证明;

教学难点:增、减函数形式化定义的形成及利用函数单调性的定义证明简单函数的单调性。

四、教材内容简析:

本节主要内容如下:

(1)单调性的相关定义:一般地,设函数的定义域为I,区间AI:如果对于区间A内的任意两个值,当时都有,那么就说在区间A上是增加(减少)的。此时,A是单调递增(递减)区间。

注:关键词:“区间AI:”、“任意”、“都”。区间AI表明判断函数单调性首先判断函数的定义域,“任意”表明不可以用两个特定的值来确定函数是增函数还是减函数,但是可以用来否定函数是增函数或者否定函数是减函数,“都”表示单调区间中的每一个值无一例外。

如果函数在定义域的某个子集上是增加或减少的,那么就称这个函数在这个子集上具有单调性。如果函数在定义域是增加或减少的,那么就分别称这个函数为增函数或减函数,统称为单调函数。

(2)单调性的判断与证明:

①单调性的判断:图像法、定义法;(注:两个单调区间的“并”不一定是单调区间。)

②单调性的证明步骤归结为五个步骤:取值、作差与变形、判断、结论。

高一数学教学设计 篇4

学习目标

1.结合二次函数的图象,判断一元二次方程根的存在性及根的个数,从而了解函数的零点与方程根的联系;

2.掌握零点存在的判定定理.

学习过程

一、课前准备

(预习教材P86~P88,找出疑惑之处)

复习1:一元二次方程+bx+c=0(a0)的解法.

判别式=.

当0,方程有两根,为;

当0,方程有一根,为;

当0,方程无实根.

复习2:方程+bx+c=0(a0)的根与二次函数y=ax+bx+c(a0)的图象之间有什么关系?

判别式一元二次方程二次函数图象

二、新课导学

※学习探究

探究任务一:函数零点与方程的根的关系

问题:

①方程的解为,函数的图象与x轴有个交点,坐标为.

②方程的解为,函数的图象与x轴有个交点,坐标为.

③方程的解为,函数的图象与x轴有个交点,坐标为.

根据以上结论,可以得到:

一元二次方程的根就是相应二次函数的`图象与x轴交点的

你能将结论进一步推广到吗?

新知:对于函数,我们把使的实数x叫做函数的零点(zeropoint).

反思:

函数的零点、方程的实数根、函数的图象与x轴交点的横坐标,三者有什么关系?

试试:

(1)函数的零点为;(2)函数的零点为.

小结:方程有实数根函数的图象与x轴有交点函数有零点.

探究任务二:零点存在性定理

问题:

①作出的图象,求的值,观察和的符号

②观察下面函数的图象,

在区间上零点;0;

在区间上零点;0;

在区间上零点;0.

新知:如果函数在区间上的图象是连续不断的一条曲线,并且有<0,那么,函数在区间内有零点,即存在,使得,这个c也就是方程的根.

讨论:零点个数一定是一个吗?逆定理成立吗?试结合图形来分析.

※典型例题

例1求函数的零点的个数.

变式:求函数的零点所在区间.

小结:函数零点的求法.

①代数法:求方程的实数根;

②几何法:对于不能用求根公式的方程,可以将它与函数的图象联系起来,并利用函数的性质找出零点.

※动手试试

练1.求下列函数的零点:

(1);

(2).

练2.求函数的零点所在的大致区间.

三、总结提升

※学习小结

①零点概念;②零点、与x轴交点、方程的根的关系;③零点存在性定理

※知识拓展

图象连续的函数的零点的性质:

(1)函数的图象是连续的,当它通过零点时(非偶次零点),函数值变号.

推论:函数在区间上的图象是连续的,且,那么函数在区间上至少有一个零点.

(2)相邻两个零点之间的函数值保持同号.

学习评价

※自我评价你完成本节导学案的情况为().

A.很好B.较好C.一般D.较差

※当堂检测(时量:5分钟满分:10分)计分:

1.函数的零点个数为().

A.1B.2C.3D.4

2.若函数在上连续,且有.则函数在上().

A.一定没有零点B.至少有一个零点

C.只有一个零点D.零点情况不确定

3.函数的零点所在区间为().

A.B.C.D.

4.函数的零点为.

5.若函数为定义域是R的奇函数,且在上有一个零点.则的零点个数为.

课后作业

1.求函数的零点所在的大致区间,并画出它的大致图象.

2.已知函数.

(1)为何值时,函数的图象与轴有两个零点;

(2)若函数至少有一个零点在原点右侧,求值.

高一数学教学设计 篇5

一、教学目标

2、 过程与方法目标:通过让学生探 究点、线、面之间的相互关系,掌握文字语言、符号语言、图示语 言之间的相互转化。

3、 情感、态度与价值目标:通过用集合论 的观点和运动的观点讨论点、线、面、体之间的相互关系培养学生会从多角度,多方面观察和分析问题,体会将理论知识和现实生活建立联系的快乐,从而提高学生学习数学的兴趣。

二、教学重点和难点

重点:点、线、面之间的相互关系,以及文字语言、符号语言、图示语言之间的相互转化。

难点:从集合的角度理解点、线、面之间的相互关系。

三、教学方法和教学手段

在上课前将问题用学案的形式发给各组学生,让学生先在课下研究探讨,在课上以小组为单位就学案中的问题展开讨论并发表自己组的研究结果,并引导同学展开争论,同时利用课件给 同学一个直观的展示,然后得出结论。下附学生的学案

四、教学过程

教学环节 教学内容 师生互动 设计意图

课题引入 让同学们观察几个几何体,从感性上对几何体有个初步的认识,并总结出空间立体几何研究的几个基本元素。 学生观察、讨论、总结,教师引导。 提高学生的学习兴趣

新课讲解

基础知识

能力拓展

探索研究 一、构成几何体的基本元素。

点、线、面

二、从集合的角度解释点、线、面、体之间的相互关系。

点是元素,直线是点的集合,平面是点的集合,直线是平面的子集。

三、从运动学的角度解释点、线、面、体之间的相互关系。

1、 点运动成直线和曲线。

2、 直线有两种运动方式:平行移动和绕点转动。

3、 平行移动形成平面和曲面。

4、 绕点转动形成平面和曲面。

5、 注意直线的两种运动方式形成的曲面的区别。

6、 面运动成体。

四、点、线、面、之间的相互位置关系。

1、 点和线的位置关系。

点A

2、 点和面的位置关系。

3、 直线和直线的位置关系。

4 、 直线和平面的位置关系。

5、 平面和平面的位置关系。 通过对几何体的观察、讨论由学生自己总结。

引领学生回忆元素、集合的相互关系,讨论、归纳点、线、面之间的相互关系。

通过课件演示及学生的讨论,得出从 运动学的角度发现点、线、面之间的相互关系。

引导学生由生活中的实际例子总结出点、线、面之间的相互位置关系,让学生有个感性认识。 培养学生的观察能力。

培养学生将所学知识建立相互联系的能力。

让学生在观察中发现点、线、面之间的相互运动规律,为以后学习几何体奠定基础。

培养学生将学习联系实际的习惯,锻炼学生由感性认识上升为理性知识的能力。

课堂小结 1、 学习了构成几何体的基本元素。

2、 掌握了点、线、面之间的相互关系。

3、 了解了点、线、面之间的相互的位置关系。 由学生总结归纳。 培养学生总结、归纳、反思的学习习惯。

课后作业 试着画出点、线、面之间的几种位置关系。 学生课后研究完成。 检验学生上课的听课效果及观察能力。

附:1.1.1构成空间几何体的基本元素学案

(一)、基础知识

1、 几何体:________________________________________________________________

2、 长方体:________________________________ ___________________________ _____

3、 长方体的面:____________________________________________________________

4、 长方体的'棱: ____________________________________________________________

5、 长方体的顶点:__________________________________________________________

6、 构成几何体的基本元素:__________________________________________________

7、 你能说出构成几何体的 几个基本元素之间的关系吗?

(二)、能力拓展

1、 如果点做连续运动,运动出来的轨迹可能是______________________ 因此点是立体几何中的最基本的元素,如果点运动的方向不变,则运动的轨迹是_____________ 如果点运动的轨迹改变,则运动的轨迹是________ ____ 试举几个日常生活中点运动成线的例子___ ________________________________

2、 在空间中你认为直线有几种运动方式_______________________________________分别形成_______________________________________________________你能举几个日常生活中的例子吗?

3、 你知道直线和线段的区别吗?_______________________________________如果是线段做上述运动,结果如何?_______________________________________.现在你能总结出平面和面的区别吗?______________________________________________

(三)、探索与研究

1、 构成几何体的基本元素是_________,__________,____________.

2、 点和线能有几种位置关系_________________________你能画图说明吗?

3、 点和平面能有几种位置关系_______________________你能画图说明吗?

4、 直线和直线能有几种位置关系________________________你能画图说明吗?

高一数学教学设计 篇6

一、教学目标

知识与技能:

理解任意角的概念(包括正角、负角、零角)与区间角的概念。

过程与方法:

会建立直角坐标系讨论任意角,能判断象限角,会书写终边相同角的集合;掌握区间角的集合的书写。

情感态度与价值观:

1、提高学生的推理能力;

2、培养学生应用意识。

二、教学重点、难点:

教学重点:

任意角概念的理解;区间角的集合的书写。

教学难点:

终边相同角的集合的表示;区间角的集合的书写。

三、教学过程

(一)导入新课

1、回顾角的定义

①角的第一种定义是有公共端点的两条射线组成的图形叫做角。

②角的第二种定义是角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形。

(二)教学新课

1、角的有关概念:

①角的定义:

角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形。

②角的名称:

注意:

⑴在不引起混淆的情况下,“角α ”或“∠α ”可以简化成“α ”;

⑵零角的'终边与始边重合,如果α是零角α =0°;

⑶角的概念经过推广后,已包括正角、负角和零角。

⑤练习:请说出角α、β、γ各是多少度?

2、象限角的概念:

①定义:若将角顶点与原点重合,角的始边与x轴的非负半轴重合,那么角的终边(端点除外)在第几象限,我们就说这个角是第几象限角。

例1、如图⑴⑵中的角分别属于第几象限角?

高一数学教学设计 篇7

教学目标:

通过生动有趣的“数学乐园”活动,使学生加深对10以内数的认识,进一步巩固10以内的加减法,充分感受数学与日常生活的密切联系。使学生在理解和掌握知识的同时,感受到学习数学的.乐趣,提高学习数学的兴趣。教学准备:

1.数字迷宫图十幅,信箱四个,口算卡片40张

2.自制教学课件,教室场景布置,学生坐成4行。

教学过程:

一、导入:小朋友们,今天老师带大家到“数学乐园”去玩(老师指“数学乐园”场景布置)。大家想不想去呀可是在“数学乐园”的门口有四个信箱,需要每个小朋友当一回“小小邮递员”,把“数字娃娃”藏在你们抽屉里的“信”送到正确的信箱里,就能进人数学乐园,大家有没有信心

二、活动送信游戏

1.分组送信。教室讲台上放四个标有数字的信箱,老师问:怎样才能把“信”送到正确的信箱里呢只要把“信”(即口算卡片)上的题目得数算出来,得数是几,就把“信”送到标有这个数的信箱里。每个学生从抽屉里拿出一封“信”(即口算卡片),在音乐声中分组走上讲台送“信”。注意:有的卡片上面的得数不是信箱的标号,是没法送出的信。对于没有送出的信,让学生说说为什么送不出去。

2.检查送信游戏的正确性。学生投完信后,老师把四个信箱分发到四个小组(课前学生坐成四行),由小组长主持检查每个信箱里的口算卡片是否送对了,学生做手势表示对错进行检查,看有没有送错的信。对于送错的信,让学生说说为什么送错了。各组检查完后,小组长向老师汇报检查结果。

三、活动二起立游戏

好啊,我们进人数学乐园啦!看,数学乐园里有很多小动物在等着我们呢!老师出示包括乖乖虎、皮卡丘、机器猫的画面(课件),你们喜欢它们吗让学生分组选择喜欢的小动物。全班坐成四行,每行10人,各行报数(同时进行)。

老师根据学生的选择点击小动物图案,出示下列四题:

1.请这一组的前面四个小朋友站起来。请第四个小朋友拍四下手。从前往后数你是第几个从后往前数你是第几个

2.请从前往后数第五个小朋友站起来,:你前面有几个小朋友后面有几个小朋友你这一组有几个小朋友你是怎么知道的

3.请从前往后数第六个小朋友站起来。不许往后看,你知道你后面有几个小朋友吗你是怎么知道的

4.请从后往前数第二个小朋友站起来。你这一组有几个男孩有几个女孩合起来一共有几个小朋友你是怎么知道的

高一数学教学设计 篇8

1.教学目标

(1)知识目标: 1.在平面直角坐标系中,探索并掌握圆的标准方程;

2.会由圆的方程写出圆的半径和圆心,能根据条件写出圆的方程.

(2)能力目标: 1.进一步培养学生用解析法研究几何问题的能力;

2.使学生加深对数形结合思想和待定系数法的理解;

3.增强学生用数学的意识.

(3)情感目标:培养学生主动探究知识、合作交流的意识,在体验数学美的过程中激发学生的学习兴趣.

2.教学重点.难点

(1)教学重点:圆的标准方程的求法及其应用.

(2)教学难点:会根据不同的已知条件,利用待定系数法求圆的标准方程以及选择恰

当的坐标系解决与圆有关的实际问题.

3.教学过程

(一)创设情境(启迪思维)

问题一:已知隧道的截面是半径为4m的半圆,车辆只能在道路中心线一侧行驶,一辆宽为2.7m,高为3m的货车能不能驶入这个隧道?

[引导] 画图建系

[学生活动]:尝试写出曲线的`方程(对求曲线的方程的步骤及圆的定义进行提示性复习)

解:以某一截面半圆的圆心为坐标原点,半圆的直径ab所在直线为x轴,建立直角坐标系,则半圆的方程为x2 y2=16(y≥0)

将x=2.7代入,得 .

即在离隧道中心线2.7m处,隧道的高度低于货车的高度,因此货车不能驶入这个隧道。

(二)深入探究(获得新知)

问题二:1.根据问题一的探究能不能得到圆心在原点,半径为 的圆的方程?

答:x2 y2=r2

2.如果圆心在 ,半径为 时又如何呢?

[学生活动] 探究圆的方程。

[教师预设] 方法一:坐标法

如图,设m(x,y)是圆上任意一点,根据定义点m到圆心c的'距离等于r,所以圆c就是集合p={m||mc|=r}

由两点间的距离公式,点m适合的条件可表示为 ①

把①式两边平方,得(x―a)2 (y―b)2=r2

方法二:图形变换法

方法三:向量平移法

(三)应用举例(巩固提高)

i.直接应用(内化新知)

问题三:1.写出下列各圆的方程(课本p77练习1)

(1)圆心在原点,半径为3;

(2)圆心在 ,半径为 ;

(3)经过点 ,圆心在点 .

2.根据圆的方程写出圆心和半径

(1) ; (2) .

ii.灵活应用(提升能力)

问题四:1.求以 为圆心,并且和直线 相切的圆的方程.

[教师引导]由问题三知:圆心与半径可以确定圆.

2.已知圆的方程为 ,求过圆上一点 的切线方程.

[学生活动]探究方法

[教师预设]

方法一:待定系数法(利用几何关系求斜率-垂直)

方法二:待定系数法(利用代数关系求斜率-联立方程)

方法三:轨迹法(利用勾股定理列关系式) [多媒体课件演示]

方法四:轨迹法(利用向量垂直列关系式)

3.你能归纳出具有一般性的结论吗?

已知圆的方程是 ,经过圆上一点 的切线的方程是: .

iii.实际应用(回归自然)

问题五:如图是某圆拱桥的一孔圆拱的示意图,该圆拱跨度ab=20m,拱高op=4m,在建造时每隔4m需用一个支柱支撑,求支柱 的长度(精确到0.01m).

[多媒体课件演示创设实际问题情境]

(四)反馈训练(形成方法)

问题六:1.求以c(-1,-5)为圆心,并且和y轴相切的圆的方程.

2.已知点a(-4,-5),b(6,-1),求以ab为直径的圆的方程.

3.求圆x2 y2=13过点(-2,3)的切线方程.

4.已知圆的方程为 ,求过点 的切线方程.

高一数学教学设计 篇9

(一)教学目标

1、知识与技能

(1)理解两个集合的并集与交集的含义,会求两个简单集合的并集和交集、

(2)能使用Venn图表示集合的并集和交集运算结果,体会直观图对理解抽象概念的'作用。

(3)掌握的关的术语和符号,并会用它们正确进行集合的并集与交集运算。

2、过程与方法

通过对实例的分析、思考,获得并集与交集运算的法则,感知并集和交集运算的实质与内涵,增强学生发现问题,研究问题的创新意识和能力、

3、情感、态度与价值观

通过集合的并集与交集运算法则的发现、完善,增强学生运用数学知识和数学思想认识客观事物,发现客观规律的兴趣与能力,从而体会数学的应用价值、

(二)教学重点与难点

重点:交集、并集运算的含义,识记与运用、

难点:弄清交集、并集的含义,认识符号之间的区别与联系

(三)教学方法

在思考中感知知识,在合作交流中形成知识,在独立钻研和探究中提升思维能力,尝试实践与交流相结合、

(四)教学过程

教学环节,教学内容,师生互动,设计意图

提出问题引入新知,思考:观察下列各组集合,联想实数加法运算,探究集合能否进行类似“加法”运算、

(1)A = {1,3,5},B = {2,4,6},C = {1,2,3,4,5,6}

(2)A = {x | x是有理数},

B = {x | x是无理数},

C = {x | x是实数}、

师:两数存在大小关系,两集合存在包含、相等关系;实数能进行加减运算,探究集合是否有相应运算、

生:集合A与B的元素合并构成C、

师:由集合A、B元素组合为C,这种形式的组合就是为集合的并集运算、生疑析疑,

高一数学教学设计 篇10

(一)教学目标

1.知识与技能

(1)理解两个集合的并集与交集的含义,会求两个简单集合的并集和交集.

(2)能使用Venn图表示集合的并集和交集运算结果,体会直观图对理解抽象概念的作用。

(3)掌握的关的术语和符号,并会用它们正确进行集合的并集与交集运算。

2.过程与方法

通过对实例的分析、思考,获得并集与交集运算的法则,感知并集和交集运算的实质与内涵,增强学生发现问题,研究问题的创新意识和能力.

3.情感、态度与价值观

通过集合的并集与交集运算法则的发现、完善,增强学生运用数学知识和数学思想认识客观事物,发现客观规律的兴趣与能力,从而体会数学的应用价值.

(二)教学重点与难点

重点:交集、并集运算的含义,识记与运用.

难点:弄清交集、并集的含义,认识符号之间的区别与联系

(三)教学方法

在思考中感知知识,在合作交流中形成知识,在独立钻研和探究中提升思维能力,尝试实践与交流相结合.

(四)教学过程

教学环节 教学内容 师生互动 设计意图

提出问题引入新知 思考:观察下列各组集合,联想实数加法运算,探究集合能否进行类似“加法”运算.

(1)A = {1,3,5},B = {2,4,6},C = {1,2,3,4,5,6}

(2)A = {x | x是有理数},

B = {x | x是无理数},

C = {x | x是实数}.

师:两数存在大小关系,两集合存在包含、相等关系;实数能进行加减运算,探究集合是否有相应运算.

生:集合A与B的元素合并构成C.

师:由集合A、B元素组合为C,这种形式的组合就是为集合的并集运算. 生疑析疑,

导入新知

形成

概念

思考:并集运算.

集合C是由所有属于集合A或属于集合B的元素组成的,称C为A和B的并集.

定义:由所有属于集合A或集合B的元素组成的集合. 称为集合A与B的并集;记作:A∪B;读作A并B,即A∪B = {x | x∈A,或x∈B},Venn图表示为:

师:请同学们将上述两组实例的共同规律用数学语言表达出来.

学生合作交流:归纳→回答→补充或修正→完善→得出并集的定义. 在老师指导下,学生通过合作交流,探究问题共性,感知并集概念,从而初步理解并集的含义.

应用举例 例1 设A = {4,5,6,8},B = {3,5,7,8},求A∪B.

例2 设集合A = {x | –1

例1解:A∪B = {4, 5, 6, 8}∪{3, 5, 7, 8} = {3, 4, 5, 6, 7, 8}.

例2解:A∪B = {x |–1

师:求并集时,两集合的相同元素如何在并集中表示.

生:遵循集合元素的互异性.

师:涉及不等式型集合问题.

注意利用数轴,运用数形结合思想求解.

生:在数轴上画出两集合,然后合并所有区间. 同时注意集合元素的互异性. 学生尝试求解,老师适时适当指导,评析.

固化概念

提升能力

探究性质 ①A∪A = A, ②A∪ = A,

③A∪B = B∪A,

④ ∪B, ∪B.

老师要求学生对性质进行合理解释. 培养学生数学思维能力.

形成概念 自学提要:

①由两集合的所有元素合并可得两集合的并集,而由两集合的公共元素组成的集合又会是两集合的'一种怎样的运算?

②交集运算具有的运算性质呢?

交集的定义.

由属于集合A且属于集合B的所有元素组成的集合,称为A与B的交集;记作A∩B,读作A交B.

即A∩B = {x | x∈A且x∈B}

Venn图表示

老师给出自学提要,学生在老师的引导下自我学习交集知识,自我体会交集运算的含义. 并总结交集的性质.

生:①A∩A = A;

②A∩ = ;

③A∩B = B∩A;

④A∩ ,A∩ .

师:适当阐述上述性质.

自学辅导,合作交流,探究交集运算. 培养学生的自学能力,为终身发展培养基本素质.

应用举例 例1 (1)A = {2,4,6,8,10},

B = {3,5,8,12},C = {8}.

(2)新华中学开运动会,设

A = {x | x是新华中学高一年级参加百米赛跑的同学},

B = {x | x是新华中学高一年级参加跳高比赛的同学},求A∩B.

例2 设平面内直线l1上点的集合为L1,直线l2上点的集合为L2,试用集合的运算表示l1,l2的位置关系. 学生上台板演,老师点评、总结.

例1 解:(1)∵A∩B = {8},

∴A∩B = C.

(2)A∩B就是新华中学高一年级中那些既参加百米赛跑又参加跳高比赛的同学组成的集合. 所以,A∩B = {x | x是新华中学高一年级既参加百米赛跑又参加跳高比赛的同学}.

例2 解:平面内直线l1,l2可能有三种位置关系,即相交于一点,平行或重合.

(1)直线l1,l2相交于一点P可表示为 L1∩L2 = {点P};

(2)直线l1,l2平行可表示为

L1∩L2 = ;

(3)直线l1,l2重合可表示为

L1∩L2 = L1 = L2. 提升学生的动手实践能力.

归纳总结 并集:A∪B = {x | x∈A或x∈B}

交集:A∩B = {x | x∈A且x∈B}

性质:①A∩A = A,A∪A = A,

②A∩ = ,A∪ = A,

③A∩B = B∩A,A∪B = B∪A. 学生合作交流:回顾→反思→总理→小结

老师点评、阐述 归纳知识、构建知识网络

课后作业 1.1第三课时 习案 学生独立完成 巩固知识,提升能力,反思升华

备选例题

例1 已知集合A = {–1,a2 + 1,a2 – 3},B = {– 4,a – 1,a + 1},且A∩B = {–2},求a的值.

【解析】法一:∵A∩B = {–2},∴–2∈B,

∴a – 1 = –2或a + 1 = –2,

解得a = –1或a = –3,

当a = –1时,A = {–1,2,–2},B = {– 4,–2,0},A∩B = {–2}.

当a = –3时,A = {–1,10,6},A不合要求,a = –3舍去

∴a = –1.

法二:∵A∩B = {–2},∴–2∈A,

又∵a2 + 1≥1,∴a2 – 3 = –2,

解得a =±1,

当a = 1时,A = {–1,2,–2},B = {– 4,0,2},A∩B≠{–2}.

当a = –1时,A = {–1,2,–2},B = {– 4,–2,0},A∩B ={–2},∴a = –1.

例2 集合A = {x | –1

(1)若A∩B = ,求a的取值范围;

(2)若A∪B = {x | x<1},求a的取值范围.

【解析】(1)如下图所示:A = {x | –1

∴数轴上点x = a在x = – 1左侧.

∴a≤–1.

(2)如右图所示:A = {x | –1

∴数轴上点x = a在x = –1和x = 1之间.

∴–1

例3 已知集合A = {x | x2 – ax + a2 – 19 = 0},B = {x | x2 – 5x + 6 = 0},C = {x | x2 + 2x – 8 = 0},求a取何实数时,A∩B 与A∩C = 同时成立?

【解析】B = {x | x2 – 5x + 6 = 0} = {2,3},C = {x | x2 + 2x – 8 = 0} = {2,– 4}.

由A∩B 和A∩C = 同时成立可知,3是方程x2 – ax + a2 – 19 = 0的解. 将3代入方程得a2 – 3a – 10 = 0,解得a = 5或a = –2.

当a = 5时,A = {x | x2 – 5x + 6 = 0} = {2,3},此时A∩C = {2},与题设A∩C = 相矛盾,故不适合.

当a = –2时,A = {x | x2 + 2x – 15 = 0} = {3,5},此时A∩B 与A∩C = ,同时成立,∴满足条件的实数a = –2.

例4 设集合A = {x2,2x – 1,– 4},B = {x – 5,1 – x,9},若A∩B = {9},求A∪B.

【解析】由9∈A,可得x2 = 9或2x – 1 = 9,解得x =±3或x = 5.

当x = 3时,A = {9,5,– 4},B = {–2,–2,9},B中元素违背了互异性,舍去.

当x = –3时,A = {9,–7,– 4},B = {–8,4,9},A∩B = {9}满足题意,故A∪B = {–7,– 4,–8,4,9}.

当x = 5时,A = {25,9,– 4},B = {0,– 4,9},此时A∩B = {– 4,9}与A∩B = {9}矛盾,故舍去.

综上所述,x = –3且A∪B = {–8,– 4,4,–7,9}.

高一数学教学设计 篇11

一、教学目标

【知识与技能】

能正确概述“二面角”、“二面角的平面角”的概念,会做二面角的平面角。

【过程与方法】

利用类比的方法推理二面角的有关概念,提升知识迁移的能力。

【情感态度与价值观】

营造和谐、轻松的学习氛围,通过学生之间,师生之间的交流、合作和评价达成共识、共享、共进,实现教学相长和共同发展。

二、教学重、难点

【重点】

“二面角”和“二面角的平面角”的概念。

【难点】

“二面角的平面角”概念的`形成过程。

三、教学过程

(一)创设情境,导入新课

请学生观察生活中的一些模型,多媒体展示以下一系列动画如:

1.打开书本的过程;

2.发射人造地球卫星,要根据需要使卫星的轨道平面与地球的赤道平面成一定的角度;

3.修筑水坝时,为了使水坝坚固耐久,须使水坝坡面与水平面成适当的角度;

引导学生说出书本的两个面、水坝面与底面,卫星轨道面与地球赤道面均是呈一定的.角度关系,引出课题。

(二)师生互动,探索新知

学生阅读教材,同桌互相讨论,教师引导学生对比平面角得出二面角的概念

平面角:平面角是从平面内一点出发的两条射线(半直线)所组成的图形。

二面角定义:从一条直线出发的两个半面所组成的图形,叫作二面角。这条直线叫作二面角的棱,这两个半平面叫作二面角的面。(动画演示)

(2)二面角的表示

(3)二面角的画法

(PPT演示)

教师提问:一般地说,量角器只能测量“平面角”(指两条相交直线所成的角.相应地,我们把异面直线所成的角,直线与平面所成的角和二面角,均称为空间角)那么,如何去度量二面角的大小呢?我们以往是如何度量某些角的?教师引导学生将空间角化为平面角.

教师总结:

(1)二面角的平面角的定义

定义:以二面角的棱上任意一点为端点,在两个面内分别作垂直于棱的两条射线,这两条射线所成的角叫做二面角的平面角.

“二面角的平面角”的定义三个主要特征:点在棱上、线在面内、与棱垂直(动画演示)

大小:二面角的大小可以用它的平面角的大小来表示。

平面角是直角的二面角叫做直二面角。

(2)二面角的平面角的作法

①点P在棱上—定义法

②点P在一个半平面上—三垂线定理法

③点P在二面角内—垂面法

(三)生生互动,巩固提高

(四)生生互动,巩固提高

1.判断下列命题的真假:

(1)两个相交平面组成的图形叫做二面角。( )

(2)角的两边分别在二面角的两个面内,则这个角是二面角的平面角。( )

(3)二面角的平面角所在平面垂直于二面角的棱。( )

2.作出一下面PAC和面ABC的平面角。

(五)课堂小结,布置作业

小结:通过本节课的学习,你学到了什么?

作业:以正方体为模型请找出一个所成角度为四十五度的二面角,并证明。