返回首页
文学网 > 短文 > 教学教案 > 正文

数学勾股定理教案

2025/09/02教学教案

文学网整理的数学勾股定理教案(精选8篇),供大家参考,希望能给您提供帮助。

数学勾股定理教案 篇1

一、教学目标

1.体会勾股定理的逆定理得出过程,掌握勾股定理的逆定理.

2.探究勾股定理的逆定理的证明方法.

3.理解原命题、逆命题、逆定理的概念及关系.

二、重点、难点

1.重点:掌握勾股定理的逆定理及证明.

2.难点:勾股定理的逆定理的证明.

3.难点的突破方法:

先让学生动手操作,画好图形后剪下放到一起观察能否重合,激发学生的兴趣和求知欲,再探究理论证明方法.充分利用这道题锻炼学生的动手操作能力,由实践到理论学生更容易接受.

为学生搭好台阶,扫清障碍.

⑴如何判断一个三角形是直角三角形,现在只知道若有一个角是直角的三角形是直角三角形,从而将问题转化为如何判断一个角是直角.

⑵利用已知条件作一个直角三角形,再证明和原三角形全等,使问题得以解决.

⑶先做直角,再截取两直角边相等,利用勾股定理计算斜边A1B1=c,则通过三边对应相等的两个三角形全等可证.

三、课堂引入

创设情境:⑴怎样判定一个三角形是等腰三角形?

⑵怎样判定一个三角形是直角三角形?和等腰三角形的判定进行对比,从勾股定理的逆命题进行猜想.

四、例习题分析

例1(补充)说出下列命题的逆命题,这些命题的逆命题成立吗?

⑴同旁内角互补,两条直线平行.

⑵如果两个实数的平方相等,那么两个实数平方相等.

⑶线段垂直平分线上的点到线段两端点的距离相等.

⑷直角三角形中30°角所对的直角边等于斜边的一半.

分析:⑴每个命题都有逆命题,说逆命题时注意将题设和结论调换即可,但要分清题设和结论,并注意语言的运用.

⑵理顺他们之间的关系,原命题有真有假,逆命题也有真有假,可能都真,也可能一真一假,还可能都假.

解略.

本题意图在于使学生了解命题,逆命题,逆定理的概念,及它们之间的关系.

例2(P82探究)证明:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形.

分析:⑴注意命题证明的格式,首先要根据题意画出图形,然后写已知求证.

⑵如何判断一个三角形是直角三角形,现在只知道若有一个角是直角的三角形是直角三角形,从而将问题转化为如何判断一个角是直角.

⑶利用已知条件作一个直角三角形,再证明和原三角形全等,使问题得以解决.

⑷先做直角,再截取两直角边相等,利用勾股定理计算斜边A1B1=c,则通过三边对应相等的两个三角形全等可证.

⑸先让学生动手操作,画好图形后剪下放到一起观察能否重合,激发学生的兴趣和求知欲,再探究理论证明方法.充分利用这道题锻炼学生的.动手操作能力,由实践到理论学生更容易接受.

证明略.

通过让学生动手操作,画好图形后剪下放到一起观察能否重合,激发学生的兴趣和求知欲,锻炼学生的动手操作能力,再通过探究理论证明方法,使实践上升到理论,提高学生的理性思维.

例3(补充)已知:在△ABC中,∠A、∠B、∠C的对边分别是a、b、c,a=n2-1,b=2n,c=n2+1(n>1)

求证:∠C=90°.

分析:⑴运用勾股定理的逆定理判定一个三角形是否是直角三角形的一般步骤:①先判断那条边最大.②分别用代数方法计算出a2+b2和c2的值.③判断a2+b2和c2是否相等,若相等,则是直角三角形;若不相等,则不是直角三角形.

⑵要证∠C=90°,只要证△ABC是直角三角形,并且c边最大.根据勾股定理的逆定理只要证明a2+b2=c2即可.

⑶由于a2+b2=(n2-1)2+(2n)2=n4+2n2+1,c2=(n2+1)2= n4+2n2+1,从而a2+b2=c2,故命题获证.

本题目的在于使学生明确运用勾股定理的逆定理判定一个三角形是否是直角三角形的一般步骤:①先判断那条边最大.②分别用代数方法计算出a2+b2和c2的值.③判断a2+b2和c2是否相等,若相等,则是直角三角形;若不相等,则不是直角三角形.

数学勾股定理教案 篇2

教学目标

知识与技能:

了解勾股定理的一些证明方法,会简单应用勾股定理解决问题

过程与方法:

在充分观察、归纳、猜想的基础上,探究勾股定理,在探究的过程中,发展合情推理,体会数形结合、从特殊到一般等数学思想。

情感态度价值观:

通过对我国古代研究勾股定理的成就介绍,培养学生的民族自豪感。

教学过程

1、创设情境

问题1国际数学家大会是最高水平的全球性数学学科学术会议,被誉为数学界的“奥运会”。2002年在北京召开了第24届国际数学家大会。下图就是大会会徽的图案。你见过这个图案吗?它由哪些我们学习过的基本图形组成?这个图案有什么特别的含义?

师生活动:教师引导学生寻找图形中的`直角三角形和正方形等,并引导学生发现直角三角形的全等关系,指出通过今天的学习,就能理解会徽图案的含义。

设计意图:本节课是本章的起始课,重视引言教学,从国际数学家大会的会徽说起,设置悬念,引入课题。

2、探究勾股定理

观看洋葱数学中关于勾股定理引入的视频,让我们一起走进神奇的数学世界

问题2相传2500多年前,毕达哥拉斯有一次在朋友家作客时,发现朋友家用转铺成的地面图案反应了直角三角形三边的某种数量关系,请你观察下图,你从中发现了什么数量关系?

师生活动:学生先独立观察思考一分钟后,小组交流合作分析图形中两个蓝色正方形与橙色正方形有哪些数量关系,教师参与学生的讨论

追问:由这三个正方形的边长构成的等腰直角三角形三条边长之间又有怎么样的关系?

师生活动:教师引导学生发现正方形的面积等于边长的平方,归纳出:等腰直角三角形两条直角边的平方和等于斜边的平方。

设计意图:从最特殊的等腰直角三角形入手,便于学生观察得到结论

问题3:数学研究遵循从特殊到一般的数学思想,既然我们得到了等腰直角三角形三边的这种特殊的数量关系,那我们不妨大胆猜测在一般的直角三角形(在下图的方格纸中,每个方格的面积是1)中,这种特殊的数量关系也同样成立。

师生活动:学生独立思考后小组讨论,难点是如何证明求以斜边为边长的正方形的面积,可由师生共同总结得出可以通过割、补两种方法,求出其面积。

数学勾股定理教案 篇3

教学目标

1、知识与技能目标

学会观察图形,勇于探索图形间的关系,培养学生的空间观念.

2、过程与方法

(1)经历一般规律的探索过程,发展学生的抽象思维能力.

(2)在将实际问题抽象成几何图形过程中,提高分析问题、解决问题的能力及渗透数学建模的思想.

3、情感态度与价值观

(1)通过有趣的问题提高学习数学的兴趣.

(2)在解决实际问题的过程中,体验数学学习的实用性.

教学重点:

探索、发现事物中隐含的勾股定理及其逆及理,并用它们解决生活实际问题.

教学难点:

利用数学中的建模思想构造直角三角形,利用勾股定理及逆定理,解决实际问题.

教学准备:

多媒体

教学过程:

第一环节:创设情境,引入新课(3分钟,学生观察、猜想)

情景:

如图:在一个圆柱石凳上,若小明在吃东西时留下了一点食物在B处,恰好一只在A处的蚂蚁捕捉到这一信息,于是它想从A处爬向B处,你们想一想,蚂蚁怎么走最近?

第二环节:合作探究(15分钟,学生分组合作探究)

学生分为4人活动小组,合作探究蚂蚁爬行的最短路线,充分讨论后,汇总各小组的方案,在全班范围内讨论每种方案的路线计算方法,通过具体计算,总结出最短路线。让学生发现:沿圆柱体母线剪开后展开得到矩形,研究“蚂蚁怎么走最近”就是研究两点连线最短问题,引导学生体会利用数学解决实际问题的`方法:建立数学模型,构图,计算.

学生汇总了四种方案:

(1) (2) (3)(4)

学生很容易算出:情形(1)中A→B的路线长为:AA’+d,情形(2)中A→B的路线长为:AA’+πd/2所以情形(1)的路线比情形(2)要短.

学生在情形(3)和(4)的比较中出现困难,但还是有学生提出用剪刀沿母线AA’剪开圆柱得到矩形,前三种情形A→B是折线,而情形(4)是线段,故根据两点之间线段最短可判断(4)最短.

如图:

(1)中A→B的路线长为:AA’+d;

(2)中A→B的路线长为:AA’+A’B>AB;

(3)中A→B的路线长为:AO+OB>AB;

(4)中A→B的路线长为:AB.

得出结论:利用展开图中两点之间,线段最短解决问题.在这个环节中,可让学生沿母线剪开圆柱体,具体观察.接下来后提问:怎样计算AB?

在Rt△AA′B中,利用勾股定理可得,若已知圆柱体高为12c,底面半径为3c,π取3,则.

第三环节:做一做(7分钟,学生合作探究)

教材23页

李叔叔想要检测雕塑底座正面的AD边和BC边是否分别垂直于底边AB,但他随身只带了卷尺,

(1)你能替他想办法完成任务吗?

(2)李叔叔量得AD长是30厘米,AB长是40厘米,BD长是50厘米,AD边垂直于AB边吗?为什么?

(3)小明随身只有一个长度为20厘米的刻度尺,他能有办法检验AD边是否垂直于AB边吗?BC边与AB边呢?

第四环节:巩固练习(10分钟,学生独立完成)

1.甲、乙两位探险者到沙漠进行探险,某日早晨8:00甲先出发,他以6/h的速度向正东行走,1小时后乙出发,他以5/h的速度向正北行走.上午10:00,甲、乙两人相距多远?

2.如图,台阶A处的蚂蚁要爬到B处搬运食物,它怎么走最近?并求出最近距离.

3.有一个高为1.5米,半径是1米的圆柱形油桶,在靠近边的地方有一小孔,从孔中插入一铁棒,已知铁棒在油桶外的部分为0.5米,问这根铁棒有多长?

第五环节 课堂小结(3分钟,师生问答)

内容:

1、如何利用勾股定理及逆定理解决最短路程问题?

第六 环节:布置作业(2分钟,学生分别记录)

内容:

作业:1.课本习题1.5第1,2,3题.

要求:A组(学优生):1、2、3

B组(中等生):1、2

C组(后三分之一生):1

板书设计:

教学反思:

数学勾股定理教案 篇4

一、教学目标

通过对几种常见的勾股定理验证方法,进行分析和欣赏。理解数

学知识之间的内在联系,体会数形结合的思想方法,进一步感悟勾股定理的文化价值。

通过拼图活动,尝试验证勾股定理,培养学生的动手实践和创新能力。

(3)让学生经历自主探究、合作交流、观察比较、计算推理、动手操作等过程,获得一些研究问题的方法,取得成功和克服困难的经验,培养学生良好的思维品质,增进他们数学学习的信心。

二、教学的重、难点

重点:探索和验证勾股定理的过程

难点:

(1)“数形结合”思想方法的理解和应用

通过拼图,探求验证勾股定理的新方法

三、学情分析

八年级的学生已具备一定的生活经验,对新事物容易产生兴趣,动手实践能力也比较强,在班级上已初步形成合作交流,勇于探索与实践的良好班风,估计本节课的学习中学生能够在教师的引导和点拨下自主探索归纳勾股定理。

四、教学程序分析

(一)导入新课

介绍勾股世界

两千多年前,古希腊有个毕达哥拉斯学派,他们首先发现了勾股定理,因此在国外人们通常称勾股定理为毕达哥拉斯定理。为了纪念毕达哥拉斯学派,1955年希腊曾经发行了一枚纪念邮票。

我国是最早了解勾股定理的国家之一。早在三千多年前,周朝数学家商高就提出,将一根直尺折成一个直角,如果勾等于三,股等于四,那么弦就等于五,即“勾三、股四、弦五”,它被记载于我国古代著名的数学著作《周髀算经》中。

(二)讲解新课

1、探索活动一:

观察下图,并回答问题:

(1)观察图1

正方形A中含有

个小方格,即A的面积是

个单位面积;

正方形B中含有

个小方格,即B的面积是

个单位面积;

正方形C中含有

个小方格,即C的面积是

个单位面积。

(2)在图2、图3中,正方形A、B、C中各含有多少个小方格?它们的面积各是多少?你是如何得到上述结果的?与同伴交流。

(3)请将上述结果填入下表,你能发现正方形A,B,C,的面积关系吗?

A的面积

(单位面积)

B的面积

(单位面积)

C的面积

(单位面积)

图1

9

9

18

图2

4

4

8

2、探索活动二:

(1)观察图3,图4

并填写下表:

A的面积

(单位面积)

B的面积

(单位面积)

C的面积

(单位面积)

图3

16

9

25

图4

4

9

13

你是怎样得到上面结果的?与同伴交流。

(2)三个正方形A,B,C的面积之间的关系?

3、议一议(合作交流,验证发现)

(1)你能发现直角三角形三边长度之间存在什么关系吗?

勾股定理:如果直角三角形两直角边分别为a、b,斜边为c

,那么a2+b2=c2。

即直角三角形两直角边的平方和等于斜边的平方。

(2)我们怎么证明这个定理呢?

教师指导第一种证明方法,学生合作探究第二种证明方法。

可得:

想一想:大正方形的面积该怎样表示?

想一想:这四个直角三角形还能怎样拼?

可得:

4、例题分析

如图,一根电线杆在离地面5米处断裂,电线杆顶部落在离电线杆底部12米处,电线杆折断之前有多高?

解:∵,

∴在中,

,根据勾股定理,

∴电线杆折断之前的高度=BC+AB=5米+13米=18米

(三)课堂小结

勾股定理从边的角度刻画了直角三角形的又一个特征.人类对勾股定理的研究已有近3000年的历史,在西方,勾股定理又被称为“毕达哥拉斯定理”、“百牛定理”、“驴桥定理”等等

(四)布置作业

收集有关勾股定理的证明方法,下节课展示、交流.

五、板书设计

勾股定理的探索与证明

做一做

勾股定理

议一议

(直角三角形的直角边分别为a、b,斜边为c,则a2+b2=c2)

六、课后反思

《新课程标准》指出:“数学教学是数学活动的教学。”数学实验在现阶段的数学教学中还没有普及与推广,实际上,通过学生的合作探究、动手实践、归纳证明等活动,让数学课堂生动起来,也让学生感觉数学是可以动手做实验的,提高了学生学习数学的兴趣与激情。本节课,我充分利用学生动手能力强、表现欲高的特点,在充裕的时间里,放手让学生动手操作,自己归纳与分析。最后得出结论。我认为本节课是成功的,一方面体现了学生的主体地位,另一方面让实验走进了数学课堂,真正体现了实验的巨大作用。

数学勾股定理教案 篇5

重点、难点分析

本节内容的重点是勾股定理的逆定理及其应用.它可用边的关系判断一个三角形是否为直角三角形.为判断三角形的形状提供了一个有力的依据.

本节内容的难点是勾股定理的逆定理的应用.在用勾股定理的逆定理时,分不清哪一条边作斜边,因此在用勾股定理的逆定理判断三角形的形状时而出错;另外,在解决有关综合问题时,要将给的边的数量关系经过代数变化,最后达到一个目标式,这种“转化”对学生来讲也是一个困难的地方.

教法建议:

本节课教学模式主要采用“互动式”教学模式及“类比”的教学方法.通过前面所学的垂直平分线定理及其逆定理,做类比对象,让学生自己提出问题并解决问题.在课堂教学中营造轻松、活泼的课堂气氛.通过师生互动、生生互动、学生与教材之间的互动,造成“情意共鸣,沟通信息,反馈流畅,思维活跃”,达到培养学生思维能力的目的.具体说明如下:

(1)让学生主动提出问题

利用类比的学习方法,由学生将上节课所学习的勾股定理的逆命题书写出来.这里分别找学生口述文字;用符号、图形的形式板书逆命题的内容.所有这些都由学生自己完成,估计学生不会感到困难.这样设计主要是培养学生善于提出问题的习惯及能力.

(2)让学生自己解决问题

判断上述逆命题是否为真命题?对这一问题的解决,学生会感到有些困难,这里教师可做适当的点拨,但要尽可能的让学生的发现和探索,找到解决问题的思路.

(3)通过实际问题的解决,培养学生的数学意识.

教学目标:

1、知识目标:

(1)理解并会证明勾股定理的逆定理;

(2)会应用勾股定理的逆定理判定一个三角形是否为直角三角形;

(3)知道什么叫勾股数,记住一些觉见的勾股数。

2、能力目标:

(1)通过勾股定理与其逆定理的比较,提高学生的辨析能力;

(2)通过勾股定理及以前的知识联合起来综合运用,提高综合运用知识的能力。

3、情感目标:

(1)通过自主学习的发展体验获取数学知识的感受;

(2)通过知识的纵横迁移感受数学的辩证特征.

教学重点:勾股定理的逆定理及其应用

教学难点:勾股定理的逆定理及其应用

教学用具:直尺,微机

教学方法:以学生为主体的讨论探索法

教学过程:

1、新课背景知识复习(投影)

勾股定理的内容

文字叙述(投影显示)

符号表述

图形(画在黑板上)

2、逆定理的获得

(1)让学生用文字语言将上述定理的逆命题表述出来

(2)学生自己证明

逆定理:如果三角形的三边长有下面关系:

那么这个三角形是直角三角形

强调说明:(1)勾股定理及其逆定理的区别

勾股定理是直角三角形的性质定理,逆定理是直角三角形的判定定理.

(2)判定直角三角形的方法:

①角为、②垂直、③勾股定理的逆定理

2、定理的应用(投影显示题目上)

例1如果一个三角形的三边长分别为

则这三角形是直角三角形

例2如图,已知:CD⊥AB于D,且有

求证:△ACB为直角三角形。

以上例题,分别由学生先思考,然后回答.师生共同补充完善.(教师做总结)

4、课堂小结:

(1)逆定理应用时易出现的错误:分不清哪一条边作斜边(最大边)

(2)判定是否为直角三角形的一种方法:结合勾股定理和代数式、方程综合运用。

5、布置作业:

a、书面作业P131#9

b、上交作业:已知:如图,△DEF中,DE=17,EF=30,EF边上的中线DG=8

求证:△DEF是等腰三角形

数学勾股定理教案 篇6

重点、难点分析

本节内容的重点是勾股定理的逆定理及其应用.它可用边的关系判断一个三角形是否为直角三角形.为判断三角形的形状提供了一个有力的依据.

本节内容的难点是勾股定理的逆定理的应用.在用勾股定理的逆定理时,分不清哪一条边作斜边,因此在用勾股定理的逆定理判断三角形的形状时而出错;另外,在解决有关综合问题时,要将给的边的数量关系经过代数变化,最后达到一个目标式,这种“转化”对学生来讲也是一个困难的地方.

教法建议:

本节课教学模式主要采用“互动式”教学模式及“类比”的教学方法.通过前面所学的垂直平分线定理及其逆定理,做类比对象,让学生自己提出问题并解决问题.在课堂教学中营造轻松、活泼的课堂气氛.通过师生互动、生生互动、学生与教材之间的互动,造成“情意共鸣,沟通信息,反馈流畅,思维活跃”,达到培养学生思维能力的目的.具体说明如下:

(1)让学生主动提出问题

利用类比的学习方法,由学生将上节课所学习的勾股定理的逆命题书写出来.这里分别找学生口述文字;用符号、图形的形式板书逆命题的内容.所有这些都由学生自己完成,估计学生不会感到困难.这样设计主要是培养学生善于提出问题的习惯及能力.

(2)让学生自己解决问题

判断上述逆命题是否为真命题?对这一问题的解决,学生会感到有些困难,这里教师可做适当的点拨,但要尽可能的让学生的发现和探索,找到解决问题的思路.

(3)通过实际问题的解决,培养学生的'数学意识.

教学目标:

1、知识目标:

(1)理解并会证明勾股定理的逆定理;

(2)会应用勾股定理的逆定理判定一个三角形是否为直角三角形;

(3)知道什么叫勾股数,记住一些觉见的勾股数.

2、能力目标:

(1)通过勾股定理与其逆定理的比较,提高学生的辨析能力;

(2)通过勾股定理及以前的知识联合起来综合运用,提高综合运用知识的能力.

3、情感目标:

(1)通过自主学习的发展体验获取数学知识的感受;

(2)通过知识的纵横迁移感受数学的辩证特征.

教学重点:勾股定理的逆定理及其应用

教学难点:勾股定理的逆定理及其应用

教学用具:直尺,微机

教学方法:以学生为主体的讨论探索法

教学过程:

1、新课背景知识复习(投影)

勾股定理的内容

文字叙述(投影显示)

符号表述

图形(画在黑板上)

2、逆定理的获得

(1)让学生用文字语言将上述定理的逆命题表述出来

(2)学生自己证明

逆定理:如果三角形的三边长 有下面关系:

那么这个三角形是直角三角形

强调说明:(1)勾股定理及其逆定理的区别

勾股定理是直角三角形的性质定理,逆定理是直角三角形的判定定理.

(2)判定直角三角形的方法:

①角为 、②垂直、③勾股定理的逆定理

2、 定理的应用(投影显示题目上)

例1 如果一个三角形的三边长分别为

则这三角形是直角三角形

例2 如图,已知:CD⊥AB于D,且有

求证:△ACB为直角三角形。

以上例题,分别由学生先思考,然后回答.师生共同补充完善.(教师做总结)

4、课堂小结:

(1)逆定理应用时易出现的错误:分不清哪一条边作斜边(最大边)

(2)判定是否为直角三角形的一种方法:结合勾股定理和代数式、方程综合运用。

5、布置作业:

a、书面作业P131#9

b、上交作业:已知:如图,△DEF中,DE=17,EF=30,EF边上的中线DG=8

求证:△DEF是等腰三角形

数学勾股定理教案 篇7

一、利用勾股定理进行计算

1.求面积

例1:如图1,在等腰△ABC中,腰长AB=10cm,底BC=16cm,试求这个三角形面积。

析解:若能求出这个等腰三角形底边上的高,就可以求出这个三角形面积。而由等腰三角形"三线合一"性质,可联想作底边上的高AD,此时D也为底边的中点,这样在Rt△ABD中,由勾股定理得AD2=AB2-BD2=102-82=36,所以AD=6cm,所以这个三角形面积为×BC×AD=×16×6=48cm2。

2.求边长

例2:如图2,在△ABC中,∠C=135?,BC=,AC=2,试求AB的长。

析解:题中没有直角三角形,不能直接用勾股定理,可考虑过点B作BD⊥AC,交AC的延长线于D点,构成Rt△CBD和Rt△ABD。在Rt△CBD中,因为∠ACB=135?,所以∠BCB=45?,所以BD=CD,由BC=,根据勾股定理得BD2+CD2=BC2,得BD=CD=1,所以AD=AC+CD=3。在Rt△ABD中,由勾股定理得AB2=AD2+BD2=32+12=10,所以AB=。

点评:这两道题有一个共同的特征,都没有现成的直角三角形,都是通过添加适当的辅助线,巧妙构造直角三角形,借助勾股定理来解决问题的,这种解决问题的方法里蕴含着数学中很重要的转化思想,请同学们要留心。

二、利用勾股定理的逆定理判断直角三角形

例3:已知a,b,c为△ABC的三边长,且满足a2+b2+c2+338=10a+24b+26c。试判断△ABC的形状。

析解:由于所给条件是关于a,b,c的一个等式,要判断△ABC的形状,设法求出式中的a,b,c的值或找出它们之间的关系(相等与否)等,因此考虑利用因式分解将所给式子进行变形。因为a2+b2+c2+338=10a+24b+26c,所以a2-10a+b2-24b+c2-26c+338=0,所以a2-10a+25+b2-24b+144+c2-26c+169=0,所以(a-5)2+(b-12)2+(c-13)2=0。因为(a-5)2≥0,(b-12)2≥0,(c-13)2≥0,所以a-5=0,b-12=0,c-13=0,即a=5,b=12,c=13。因为52+122=132,所以a2+b2=c2,即△ABC是直角三角形。

点评:用代数方法来研究几何问题是勾股定理的逆定理的"数形结合思想"的重要体现。

三、利用勾股定理说明线段平方和、差之间的关系

例4:如图3,在△ABC中,∠C=90?,D是AC的中点,DE⊥AB于E点,试说明:BC2=BE2-AE2。

析解:由于要说明的是线段平方差问题,故可考虑利用勾股定理,注意到∠C=∠BED=∠AED=90?及CD=AD,可连结BD来解决。因为∠C=90?,所以BD2=BC2+CD2。又DE⊥AB,所以∠BED=∠AED=90?,在Rt△BED中,有BD2=BE2+DE2。在Rt△AED中,有AD2=DE2+AE2。又D是AC的中点,所以AD=CD。故BC2+CD2=BC2+AD2=BC2+DE2+AE2=BE2+DE2,所以BE2=BC2+AE2,所以BC2=BE2-AE2。

点评:若所给题目的已知或结论中含有线段的平方和或平方差关系时,则可考虑构造直角三角形,利用勾股定理来解决问题。

数学勾股定理教案 篇8

[教学分析]

勾股定理是揭示三角形三条边数量关系的一条非常重要的性质,也是几何中最重要的定理之一。它是解直角三角形的主要依据之一,同时在实际生活中具有广泛的用途,“数学源于生活,又用于生活”正是这章书所体现的主要思想。教材在编写时注意培养学生的动手操作能力和分析问题的能力,通过实际操作,使学生获得较为直观的印象;通过联系比较、探索、归纳,帮助学生理解勾股定理,以利于进行正确的应用。

本节教科书从毕达哥拉斯观察地面发现勾股定理的传说谈起,让学生通过观察计算一些以直角三角形两条直角边为边长的小正方形的面积与以斜边为边长的正方形的面积的关系,发现两直角边为边长的小正方形的面积的和,等于以斜边为边长的正方形的面积,从而发现勾股定理,这时教科书以命题的形式呈现了勾股定理。关于勾股定理的证明方法有很多,教科书正文中介绍了我国古人赵爽的证法。之后,通过三个探究栏目,研究了勾股定理在解决实际问题和解决数学问题中的应用,使学生对勾股定理的作用有一定的认识。

[教学目标]

一、知识与技能

1、探索直角三角形三边关系,掌握勾股定理,发展几何思维。

2、应用勾股定理解决简单的实际问题

3学会简单的合情推理与数学说理

二、过程与方法

引入两段中西关于勾股定理的史料,激发同学们的兴趣,引发同学们的思考。通过动手操作探索与发现直角三角形三边关系,经历小组协作与讨论,进一步发展合作交流能力和数学表达能力,并感受勾股定理的应用知识。

三、情感与态度目标

通过对勾股定理历史的了解,感受数学文化,激发学习兴趣;在探究活动中,学生亲自动手对勾股定理进行探索与验证,培养学生的合作交流意识和探索精神,以及自主学习的能力。

四、重点与难点

1、探索和证明勾股定理

2熟练运用勾股定理

[教学过程]

一、创设情景,揭示课题

1、教师展示图片并介绍第一情景

以中国最早的一部数学著作——《周髀算经》的开头为引,介绍周公向商高请教数学知识时的对话,为勾股定理的出现埋下伏笔。

周公问:“窃闻乎大夫善数也,请问古者包牺立周天历度。夫天不可阶而升,地不可得尺寸而度,请问数安从出?”商高答:“数之法出于圆方,圆出于方,方出于矩,矩出九九八十一,故折矩以为勾广三,股修四,径隅五。既方其外,半之一矩,环而共盘。得成三、四、五,两矩共长二十有五,是谓积矩。故禹之所以治天下者,此数之所由生也。”

2、教师展示图片并介绍第二情景

毕达哥拉斯是古希腊著名的数学家。相传在2500年以前,他在朋友家做客时,发现朋友家用地砖铺成的地面反映了直角三角形的某种特性。

二、师生协作,探究问题

1、现在请你也动手数一下格子,你能有什么发现吗?

2、等腰直角三角形是特殊的直角三角形,一般的直角三角形是否也有这样的特点呢?

3、你能得到什么结论吗?

三、得出命题

勾股定理:如果直角三角形的两直角边长分别为a、b,斜边长为c,那么,即直角三角形两直角边的平方和等于斜边的平方。解释:由于我国古代把直角三角形中较短的直角边称为勾,较长的边称为股,斜边称为弦,所以,把它叫做勾股定理。

四、勾股定理的证明

赵爽弦图的证法(图2)

第一种方法:边长为的正方形可以看作是由4个直角边分别为、,斜边为的直角三角形围在外面形成的。因为边长为的正方形面积加上4个直角三角形的面积等于外围正方形的面积,所以可以列出等式,化简得。

第二种方法:边长为的正方形可以看作是由4个直角边分别为、,斜边为的

角三角形拼接形成的(虚线表示),不过中间缺出一个边长为的正方形“小洞”。

因为边长为的正方形面积等于4个直角三角形的面积加上正方形“小洞”的面积,所以可以列出等式,化简得。

这种证明方法很简明,很直观,它表现了我国古代数学家赵爽高超的证题思想和对数学的钻研精神,是我们中华民族的骄傲。

五、应用举例,拓展训练,巩固反馈。

勾股定理的灵活运用勾股定理在实际的生产生活当中有着广泛的应用。勾股定理的发现和使用解决了许多生活中的问题,今天我们就来运用勾股定理解决一些问题,你可以吗?试一试。

例题:小明妈妈买了一部29英寸(74厘米)的电视机,小明量了电视机的屏幕后,发现屏幕只有58厘长和46厘米宽,他觉得一定是售货员搞错了,你同意他的想法吗?你能解释这是为什么吗?

六、归纳总结

1、内容总结:探索直角三角形两直角边的平方和等于斜边的平方,利于勾股定理,解决实际问题

2、方法归纳:数方格看图找关系,利用面积不变的方法。用直角三角形三边表示正方形的面积观察归纳注意画一个直角三角形表示正方形面积,再次验证自己的发现。

七、讨论交流

让学生发表自己的意见,提出他们模糊不清的概念,给他们一个梳理知识的机会,通过提示性的引导,让学生对勾股定理的概念豁然开朗,为后面勾股定理的应用打下基础。

我们班的同学很聪明。大家很快就通过数格子发现了勾股定理的规律。还有什么地方不懂的吗?跟大家一起来交流一下。请同学们课后在反思天地中都发表一下自己的学习心得。