返回首页
文学网 > 短文 > 教学教案 > 正文

四边形教学设计

2025/10/14教学教案

文学网整理的四边形教学设计(精选8篇),供大家参考,希望能给您提供帮助。

四边形教学设计 篇1

教学目标:

1、理解并掌握平行四边形面积的计算公式,会利用公式正确计算平行四边形的面积。

2、通过操作、观察、比较等实践活动,经历主动探索面积计算公式的过程,培养分析问题、解决问题的能力,进一步发展空间想象力和动手操作能力。

3、渗透转化的数学思想,激发探索的兴趣,增强数学应用意识,提高解决实际问题的能力。

教学重点:理解并掌握平行四边形面积的计算公式,会利用公式正确计算平行四边形的面积。

教学难点:理解平行四边形面积公式的推倒过程,会利用公式正确计算平行四边形的面积。

教学准备:平行四边形卡片 剪刀 方格子

教学过程:

一、 创设情境,激趣导入

师:前些日子,我们学校租车组织了一部分同学去清源山脚下的假日农庄拔萝卜,我们班也有三个同学去了,现在我们现场采访一下,这几位同学拔完萝卜后有什么感受?

学生汇报

师:这次拔萝卜让我们体会到了劳动的快乐,也让我们感受到了丰收的喜悦。可是我们还要租车大老远跑到那边去很不方便,偶然的机会,我们知道了农庄有一位老伯有块地在承天寺,我们就商量:能不能把地换一下?老伯说:“好啊!”于是我们到两块地里去看了一下,感到为难了。同学们,你们愿意帮我们解决问题吗?(愿意)原来,这两块地的形状不一样,一块是长方形,一块是平行四边形,怎样知道他们的大小呢?这样换公平吗?

(多媒体出示一块长方形的地,一块平行四边形的地)

学生汇报

师:你们准备怎样解决呢?

生:分别算出长方形和平行四边形的面积就行了。

师:怎样才能知道这块长方形地的面积呢? (引导学生得出两种方法:数格子和用公式计算:测量出它的长和宽,用长乘宽就等于长方形的面积。)

多媒体出示方格和长方形的长与宽,学生求出长方形的面积。

师:那这块平行四边形面积怎样求呢?

学生小组交流

师:今天我们就来研究怎样求平行四边形的面积。(板书:平行四边形的面积)

二、动手实践,探索新知

学生汇报,教师引导:

1、 数格子求平行四边形的面积

(多媒体出示格子,并说明一个方格表示1平方厘米)

师:现在就请同学们用这个方法算出平行四边形的面积(说明要求:不满一格的都按半格计算)。

学生汇报,得出平行四边形的面积。

师:通过数格子,我们发现我们的平行四边形萝卜地和老伯的长方形地的面积一样大,这样一来,我们换地公平了吗?(公平)

引导:我们用数方格的方法算出了这个平行四边形的面积,但是方法比较麻烦,也不是处处适用。我们已经知道长方形的面积可以用长乘宽计算,平行四边形的面积是不是也有其他计算方法呢?

2、 割补法求平行四边形的面积

学生猜测

师:这还只是我们的一个猜想,大胆合理的猜想是我们迈向成功的第一步,那么接下来就请同学们利用手中的平行四边形卡片、剪刀等学具,想办法来验证验证。

学生动手实践,合作交流。

学生演示剪拼的过程及结果。(师:为什么要转化成长方形呢?学生汇报,师生总结:因为长方形是特殊的平行四边形,它的面积等于长乘宽)

教师用课件演示剪——平移——拼的过程。

师:我们已经把一个平行四边形变成了一个长方形,请同学们观察拼出的长方形和原来的平行四边形,你发现了什么?引导学生讨论:

1、拼出的长方形和原来的平行四边形比,面积变了没有?什么变了?

2、拼出的长方形的长和宽与原来的平行四边形的底和高有什么关系?

3、你能根据长方形的面积计算公式推导出平行四边形的面积计算公式吗?

学生汇报,教师归纳:

经过同学们的努力,我们发现把一个平行四边形转化为一个长方形,它的面积与原来的平行四边形面积相等,平行四边形的底等于长方形的`长,平行四边形的高等于长方形的宽。

师:现在谁能用一句话概括出平行四边形的面积?

学生汇报,教师板书:

此主题相关图片如下:

如果用s表示平行四边形的面积,a表示平行四边形的底,h表示平行四边形的高,那么,平行四边形的面积公式可以怎么写呢?

s=a×h

师:刚才我们已经推导出了平行四边形的面积公式,知道了要求平行四边形的面积,必须要知道哪几个条件?(底和高,强调高是底边上的高)

三、 练习深化,巩固新知

1、计算下列图形的面积。(单位:cm)

此主题相关图片如下:

2、先估一估,再算一算下面哪个平行四边形的面积与给出的平行四边形的面积一样大?

此主题相关图片如下:

3、先根据信息猜测是哪个省市的地形图,山西南北大约590千米,东西大约310千米,估计它的土地面积。

此主题相关图片如下:

四、知识应用,总结评价

师:生活中还有哪些地方应用到我们今天所学的知识呢?

学生交流

师:我发现同学们通过今天的学习,收获还是很大的,谁愿意来跟我们分享一下你通过今天的学习,有什么收获呢?你认为你今天的表现怎么样?

学生交流。

四边形教学设计 篇2

教材分析

学生已经学习过有关四边形的知识,对平行四边形也有了初步的认识。这一节课要着重探讨平行四边形的特点以及它与正方形、长方形的关系,梯形在这里是第一次认识,除了教学梯形的特征外,还要说明它与平行四边形的联系和区别,能将四边形分类,概括平行四边形和梯形的定义。学好这一部分内容,有利于提高学生动手能力,增强创新意识,而且进一步发展了学生对空间图形的兴趣,对学生理解、掌握、描述现实空间,获得解决实际问题的方法有着重要价值。

学情分析

学生已经学习过有关四边形的知识,对平行四边形也有了初步的认识。这一节课要着重探讨平行四边形的特点以及它与正方形、长方形的关系,梯形在这里是第一次认识,除了教学梯形的特征外,还要说明它与平行四边形的联系和区别,能将四边形分类,概括平行四边形和梯形的定义。理解各种四边形之间的关系是本节课学生学习的难点之一。

教学目标

1.通过动手操作和观察思考,建构平行四边形和梯形的概念,理解各种四边形之间的关系。

2.经历摆一摆、画一画、拼一拼等过程,培养学生的空间观念,动手操作能力,以及分析、比较、概括的能力。

3.在自主探究的过程中,树立学习的信心,在合作交流的过程中,感受数学的价值。

教学重点和难点

教学重点:建构平行四边形和梯形的概念。

教学难点:理解各种四边形之间的关系。

教学过程

一、激趣引入,复习旧知。

我们先来看一组多边形,请找出这组多边形中不同的一个。(课件出现)

1.学生找出三角形。其余的都是四边形。

2.谁来说说正方形与长方形的特点。再请谁来用我们刚学的`垂直与平行来说说长方形和正方形。

3.引出课题

这节课我们就一起来探究平行四边形和梯形的有关知识。(板书课题)

二、自主探究,构建新知

1、认识平行四边形

我们先来研究平行四边形。为了便于研究,现在我们来挑选几根小棒,拼成一个平行四边形。想一想准备怎么选,怎么拼;拼完以后帮助身边需要帮助的同学,然后仔细观察平行四边形,发现有什么特征?

学生操作。汇报交流

(1)请你说说你是怎么做的?做的时候要注意些什么呢?

(2)说一说,通过摆和观察,你发现了这些形状不同的平行四边形有什么共同的特点?

(3)学生汇报:

(4)平行四边形的名称是根据它的哪个特点来命名的?(板书:两组对边分别平行)。

(5)在生活中,你见过哪个物体的表面上有平行四边形的图案吗?是什么样,能比划一下吗?

(6)小结

生活中的平行四边形还真多,他应用了平行四边的特点,既美观,又给我们的生活带来了方便。

2、认识梯形

我们通过观察、验证,认识了平行四边形的特点,那什么样的四边形叫做梯形?平行四边形和梯形有什么不同?在板书的定义中,圈出重点词语?

3、应用概念判断。

4、明确各种四边形之间的关系。

(1)四边形里包含了平行四边形、梯形、长方形和正方形。

(2)电脑呈现集合图。

三、动手操作,巩固拓展。

我们研究了平行四边形和梯形的特点,下面我们两人小组合作用七巧板中的几块拼一个梯形或平行四边形。看谁的手儿巧,看哪组动作快。

1、学生操作

2、展示学生创作作品。

3、教师小结

同学真棒!设计了这么多不同的平行四边形和梯形,同学们,用七巧板中的两块、三块、四块、五块、六块、七块都可以拼出平行四边形或梯形。有兴趣的同学下课后,可以继续去拼。图形之间确实可以千变万化,它们中还藏着很多知识等待我们去继续研究。

四、总结收获

这节课你有什么收获?(学生小结技能学法)

我希望大家能够收获探索过程中的快乐,更希望大家能够感受数学之美!

四边形教学设计 篇3

【教学目标】

1、通过学生自主探索、动手实践推导出平行四边形面积计算公式,理解和掌握平行四边形的面积计算公式,能正确求平行四边形的面积。

2、让学生经历平行四边形面积公式的推导过程,通过操作、观察、比较活动,初步认识和使用转化的方法,发展学生的空间观念。

3、培养学生的分析、综合、抽象、概括和解决实际问题的能力;使学生感受数学与生活的联系,培养学生的数学应用意识,体验数学的价值。

【教学重点、难点】

教学重点:探究并推导平行四边形面积的计算公式,并能正确运用。

教学难点:通过学生动手操作,用割补的方法把一个平行四边形转化为一个长方形,找出两个图形之间的联系,推导出平行四边形面积的计算公式。

关键点:通过引导学生提出假设——动手操作——推导——概括的步骤开展探究活动,利用知识迁移及剪、移、拼的实际操作来分解教学难点即平行四边形面积公式的推导。关键是通过“剪、移、拼”将平行四边形转化成长方形后,找出平行四边形底和高与长方形长和宽的关系,及面积不变的特点,从而理解平行四边形面积的推导过程。

【教具、学具准备】

多媒体课件,平行四边形纸片三个、直尺(三角尺)、剪刀、平行四边形图片一个。

【教学过程】

一、创设情境,抽取方法、导入新课

1、师: 同学们,从今天开始,我们来研究有关图形面积的知识。我们已经学过了哪些图形面积的计算方法?怎么计算?(学生回忆、回答)

师:老师今天带来了两个图形,但是并不是规则图形,谁能帮老师看看哪个图形的面积大?看谁能最快解决。

学生思考、回答:

(1)数格子的方法。

(2)把第一个图右边的小正方形剪下移到左边空格处,第二个图上面凸出的小正方形剪下移到下面的空格处,拼成长方形,两个长方形完全相同,所以面积一样大。

动画演示割补的过程。

师:这个方法巧妙吗?通过割补,把两个不规则的图形转化成了我们学过的长方形,从而可以快捷顺利地计算它们的面积——这种方法在数学上叫做“割补——转化”法。 “转化”是数学上的一种非常重要的.思想,是解决图形问题的一个法宝,它能帮助我们解决好多的数学问题呢,你们喜欢这种方法吗?

既然大家都喜欢这种方法,那么我们今天就利用这个方法来研究一个新图形的面积,看哪个小组最快研究出来。

二、应用方法,动手操作,探究新知

1、预设问题:

师:我们来看下面的问题:

实验小学有一个花坛,想要计算出它的面积,怎么计算呢?

师:首先来看一看,花坛是个什么图形?(平行四边形),抽取图形:

怎么就能计算出它的面积呢?为了研究这个问题,我们准备了一些学具,每个小组的组长先清点一下够不够。有三个平行四边形纸片、直尺(三角尺)、剪刀。

2、探究公式:

(1) 出示问题:

师:为了研究顺利进行,老师给大家几个提示,看看哪个小组能最快研究出结果(师读提示)。

友情提示:充分运用我们准备的学具,通过剪一剪、拼一拼、补一补的方法,试一试:

① 平行四边形可以转化成学过的哪种图形?

② 平行四边形的底和高分别与转化后的图形有什么关系?

③ 怎样通过转化后的图形推导出平行四边形的面积计算方法呢?

(学生在独立思考的基础上进行合作探究)

(2) 现在利用我们的学具,小组合作,看看能不能想办法把平行四边形转化成我们学过的图形来计算面积?

(3) 小组探究。

(4) 组间展示交流:

师:哪个小组上来展示一下你们的研究成果?(小组演示、说明。演示过程中提示:你们是沿哪一条线箭的?)

师:谁还有不同的剪法?

动画展示割补——转化的过程:

怎么就能计算出它的面积呢?为了研究这个问题,我们准备了一些学具,每个小组的组长先清点一下够不够。有三个平行四边形纸片、直尺(三角尺)、剪刀。

2、探究公式:

(1) 出示问题:

师:为了研究顺利进行,老师给大家几个提示,看看哪个小组能最快研究出结果(师读提示)。

友情提示:充分运用我们准备的学具,通过剪一剪、拼一拼、补一补的方法,试一试:

① 平行四边形可以转化成学过的哪种图形?

② 平行四边形的底和高分别与转化后的图形有什么关系?

③ 怎样通过转化后的图形推导出平行四边形的面积计算方法呢?

(学生在独立思考的基础上进行合作探究)

(2) 现在利用我们的学具,小组合作,看看能不能想办法把平行四边形转化成我们学过的图形来计算面积?

(3) 小组探究。

(4) 组间展示交流:

师:哪个小组上来展示一下你们的研究成果?(小组演示、说明。演示过程中提示:你们是沿哪一条线箭的?)

师:谁还有不同的剪法?

动画展示割补——转化的过程:

(其中第三种方法学生一般想不到,教师可以展示提出,简单说明,以开阔学生的思路。)

(4)师生交流提炼,形成板书:

师生总结:不管利用哪种割补方法,我们都能把平行四边形转化为什么图形?(长方形),并且同学们都已经看出:这个长方形的长就等于平行四边形的底,长方形的宽就等于平行四边形的高。根据长方形面积的计算方法,我们就可以得出平行四边形面积的计算方法:

师:计算平行四边形面积,必须知道什么?(底和高,缺一不可。)

3、教学例1:

师:有了这个成果,我们会解决前面的问题了吗?

出示例1:下图平行四边形花坛的面积是多少?

学生回答,教师板书:S=ah=6×4=24(cm2)

3、巩固小结:

通过这节课的研究,我们发现平行四边形可以用割补的方法转化为长方形,并且我们通过长方形面积公式推导出了平行四边形面积公式:平行四边形的面积=底×高(S=ah)。大家都学会了吗?下面我们就来比一比,看谁学的最熟练。

三、分层训练,巩固内化

1、求下面的平行四边形的面积,只列式不计算:

(第三个图形计算中提问:用12×9.6行不行?强调底与高的对应)

2、慧眼识对错:

(1) 一个平行四边形的底是20厘米,高是1分米,它的面积是20平方厘米。( )

(2) 平行四边形的底越长,面积就越大。( )

(3) 下面平行四边形的面积是:8×5=40(平方厘米)( )

,人教新课标五上《平行四边形的面积》教案2

(4) 一个平行四边形的面积是36cm2,底是9cm,那么它的高是4cm。( )

3、老师最近买了一辆新车,想买一个停车位,选中了一个平行四边形的,如图:

师:我为了预算需要准备多少钱,需要先知道它的面积有多大,同学们能不能帮助老师解决这个问题?先说说你会怎样做?(先测量底和高,再利用公式计算)(提示:测量结果保留整数)

我把这个图形按比例缩小了,画在了我们面前的纸片上(出示纸片),你们亲自测量一下,帮我把面积算出来好吗?(底6cm,高3cm)

学生测量、计算、展示。

师:谢谢你们帮我算出了停车位的面积,只要把单位改成平方米,就是我的停车位的实际面积了。

4、为了方便行人,某小区需要在一片绿化带中修一条平行四边形小路,路宽1.5m,同学们为小区提供了如图所示三种方案,哪种方案破坏草坪最少?你想到了什么?

四、课堂小结:

师:这节课你有什么有收获?

师:今天,我们研究出了一种非常巧妙的求图形面积的方法:割补——转化法,就是把不规则的图形通过割补的方法转化为我们熟悉的规则图形来求面积,同学们都研究得非常认真,对这种方法运用的也很好,在以后的学习中我们会常用到这种方法,希望同学在以后的学习中也多动脑筋。

四边形教学设计 篇4

【学习目标】

1、平行四边形性质(对角线互相平分)

2、平行线之间的距离定义及性质

【新课探究】

活动一:

如图,□ABCD的两条对角线AC、BD相交于点O.

(1)图中有哪些三角形是全等的?有哪些线段是相等的?

(2)想办法验证你的猜想?

(3)平行四边形的性质:平行四边形的对角线

几何语言:∵四边形ABCD是平行四边形(已知)

∴AO==AC,BO==BD()

活动二:如图,直线∥,过直线上任意两点A,B分别向直线做垂线,交直线与点C,点D.

(1)线段AC,BD有怎样的位置关系?

(2)比较线段AC,BD的长短.

(3)若两条直线互相平行,,则其中一条直线上任意一点到另一条直线的距离,这个距离称为平行线之间的距离。平行线之间的垂线段处处.

【知识应用】

1.已知□ABCD的两条对角线相交于点O,OA=5,OB=6,则AC=,BD=

2.如图,四边形ABCD是平行四边形,DB⊥AD,求BC,CD及OB,OA的'长.

3.已知□ABCD中,AB=12,BC=6,对边AD和BC的距离是4,则对边AB和CD间的距离是

【当堂反馈(小测)】:

1、平行四边形ABCD的两条对角线相交于O,OA,OB,AB的长度分别为3cm、4cm、5cm,求其它各边以及两条对角线的长度。

2、如图,在□ABCD中,,已知∠ODA=90°,OA=6cm,OB=3cm,求AD、AC的长

3、如图,在□ABCD中,已知AB、BC、CD三条边的长度分别为(x+3)cm,(x-4)cm,16cm,这个平行四边形的周长是多少?

【巩固提升】

1.平行四边形的两条对角线

2、已知□ABCD的两条对角线相交于点O,OA=5,OB=6,则AC=,BD=

3、已知□ABCD中,AB=8,BC=6,对边AD和BC的距离是2,则对边AB和CD间的距离是

4、下列性质中,平行四边形不一定具备的是()

A、对角互补B、邻角互补C、对角相等D、内角和是360°

5、下列说法中,不正确的是()

A、平行四边形的对角线相等B、平行四边形的对边相等

C、平行四边形的对角线互相平分D、平行四边形的对角相等

6、如图,在□ABCD中,,已知∠BAC=90°,OB=8cm,OA=4cm,求AB、BC的长

7、如图,已知□ABCD中,对角线AC与BD相交于点O,△AOD的周长是80cm,已知AD的长是35cm,求AC+BD的长。

8、如图,平行四边形ABCD中,AE⊥BD,CF⊥BD,垂足分别为E、F。

(1)写出图中每一对你认为全等的三角形;

(2)选择(1)中的任意一对进行证明。

9.对角线可以将平行四边形分成全等的两部分,这样的直线还有很多。

(1)多做几条这样的直线,看看它们有什么共同的特征

(2)试着用旋转的有关知识解释你的发现。

四边形教学设计 篇5

【教学目标】

1、通过学生自主探索、动手实践推导出平行四边形面积计算公式,理解和掌握平行四边形的面积计算公式,能正确求平行四边形的面积。

2、让学生经历平行四边形面积公式的推导过程,通过操作、观察、比较活动,初步认识和使用转化的方法,发展学生的空间观念。

3、培养学生的分析、综合、抽象、概括和解决实际问题的能力;使学生感受数学与生活的联系,培养学生的数学应用意识,体验数学的价值。

【教学重点、难点】

教学重点:探究并推导平行四边形面积的计算公式,并能正确运用。

教学难点:通过学生动手操作,用割补的方法把一个平行四边形转化为一个长方形,找出两个图形之间的联系,推导出平行四边形面积的计算公式。

关键点:通过引导学生提出假设——动手操作——推导——概括的步骤开展探究活动,利用知识迁移及剪、移、拼的实际操作来分解教学难点即平行四边形面积公式的推导。关键是通过“剪、移、拼”将平行四边形转化成长方形后,找出平行四边形底和高与长方形长和宽的关系,及面积不变的特点,从而理解平行四边形面积的推导过程。

【教具、学具准备】

多媒体课件,平行四边形纸片三个、直尺(三角尺)、剪刀、平行四边形图片一个。

【教学过程】

一、创设情境,抽取方法、导入新课

1、师: 同学们,从今天开始,我们来研究有关图形面积的知识。我们已经学过了哪些图形面积的计算方法?怎么计算?(学生回忆、回答)

师:老师今天带来了两个图形,但是并不是规则图形,谁能帮老师看看哪个图形的面积大?看谁能最快解决。

学生思考、回答:

(1)数格子的方法。

(2)把第一个图右边的小正方形剪下移到左边空格处,第二个图上面凸出的小正方形剪下移到下面的空格处,拼成长方形,两个长方形完全相同,所以面积一样大。

动画演示割补的过程。

师:这个方法巧妙吗?通过割补,把两个不规则的图形转化成了我们学过的长方形,从而可以快捷顺利地计算它们的面积——这种方法在数学上叫做“割补——转化”法。 “转化”是数学上的一种非常重要的思想,是解决图形问题的一个法宝,它能帮助我们解决好多的数学问题呢,你们喜欢这种方法吗?

既然大家都喜欢这种方法,那么我们今天就利用这个方法来研究一个新图形的面积,看哪个小组最快研究出来。

二、应用方法,动手操作,探究新知

1、预设问题:

师:我们来看下面的问题:

实验小学有一个花坛,想要计算出它的面积,怎么计算呢?

师:首先来看一看,花坛是个什么图形?(平行四边形),抽取图形:

怎么就能计算出它的面积呢?为了研究这个问题,我们准备了一些学具,每个小组的组长先清点一下够不够。有三个平行四边形纸片、直尺(三角尺)、剪刀。

2、探究公式:

(1) 出示问题:

师:为了研究顺利进行,老师给大家几个提示,看看哪个小组能最快研究出结果(师读提示)。

友情提示:充分运用我们准备的学具,通过剪一剪、拼一拼、补一补的方法,试一试:

① 平行四边形可以转化成学过的哪种图形?

② 平行四边形的底和高分别与转化后的图形有什么关系?

③ 怎样通过转化后的图形推导出平行四边形的面积计算方法呢?

(学生在独立思考的基础上进行合作探究)

(2) 现在利用我们的学具,小组合作,看看能不能想办法把平行四边形转化成我们学过的图形来计算面积?

(3) 小组探究。

(4) 组间展示交流:

师:哪个小组上来展示一下你们的研究成果?(小组演示、说明。演示过程中提示:你们是沿哪一条线箭的?)

师:谁还有不同的剪法?

动画展示割补——转化的过程:

怎么就能计算出它的面积呢?为了研究这个问题,我们准备了一些学具,每个小组的组长先清点一下够不够。有三个平行四边形纸片、直尺(三角尺)、剪刀。

2、探究公式:

(1) 出示问题:

师:为了研究顺利进行,老师给大家几个提示,看看哪个小组能最快研究出结果(师读提示)。

友情提示:充分运用我们准备的学具,通过剪一剪、拼一拼、补一补的方法,试一试:

① 平行四边形可以转化成学过的哪种图形?

② 平行四边形的'底和高分别与转化后的图形有什么关系?

③ 怎样通过转化后的图形推导出平行四边形的面积计算方法呢?

(学生在独立思考的基础上进行合作探究)

(2) 现在利用我们的学具,小组合作,看看能不能想办法把平行四边形转化成我们学过的图形来计算面积?

(3) 小组探究。

(4) 组间展示交流:

师:哪个小组上来展示一下你们的研究成果?(小组演示、说明。演示过程中提示:你们是沿哪一条线箭的?)

师:谁还有不同的剪法?

动画展示割补——转化的过程:

(其中第三种方法学生一般想不到,教师可以展示提出,简单说明,以开阔学生的思路。)

(4)师生交流提炼,形成板书:

师生总结:不管利用哪种割补方法,我们都能把平行四边形转化为什么图形?(长方形),并且同学们都已经看出:这个长方形的长就等于平行四边形的底,长方形的宽就等于平行四边形的高。根据长方形面积的计算方法,我们就可以得出平行四边形面积的计算方法:

师:计算平行四边形面积,必须知道什么?(底和高,缺一不可。)

3、教学例1:

师:有了这个成果,我们会解决前面的问题了吗?

出示例1:下图平行四边形花坛的面积是多少?

学生回答,教师板书:S=ah=6×4=24(cm2)

3、巩固小结:

通过这节课的研究,我们发现平行四边形可以用割补的方法转化为长方形,并且我们通过长方形面积公式推导出了平行四边形面积公式:平行四边形的面积=底×高(S=ah)。大家都学会了吗?下面我们就来比一比,看谁学的最熟练。

三、分层训练,巩固内化

1、求下面的平行四边形的面积,只列式不计算:

(第三个图形计算中提问:用12×9.6行不行?强调底与高的对应)

2、慧眼识对错:

(1) 一个平行四边形的底是20厘米,高是1分米,它的面积是20平方厘米。( )

(2) 平行四边形的底越长,面积就越大。( )

(3) 下面平行四边形的面积是:8×5=40(平方厘米)( )

,人教新课标五上《平行四边形的面积》教案2

(4) 一个平行四边形的面积是36cm2,底是9cm,那么它的高是4cm。( )

3、老师最近买了一辆新车,想买一个停车位,选中了一个平行四边形的,如图:

师:我为了预算需要准备多少钱,需要先知道它的面积有多大,同学们能不能帮助老师解决这个问题?先说说你会怎样做?(先测量底和高,再利用公式计算)(提示:测量结果保留整数)

我把这个图形按比例缩小了,画在了我们面前的纸片上(出示纸片),你们亲自测量一下,帮我把面积算出来好吗?(底6cm,高3cm)

学生测量、计算、展示。

师:谢谢你们帮我算出了停车位的面积,只要把单位改成平方米,就是我的停车位的实际面积了。

4、为了方便行人,某小区需要在一片绿化带中修一条平行四边形小路,路宽1.5m,同学们为小区提供了如图所示三种方案,哪种方案破坏草坪最少?你想到了什么?

四、课堂小结:

师:这节课你有什么有收获?

师:今天,我们研究出了一种非常巧妙的求图形面积的方法:割补——转化法,就是把不规则的图形通过割补的方法转化为我们熟悉的规则图形来求面积,同学们都研究得非常认真,对这种方法运用的也很好,在以后的学习中我们会常用到这种方法,希望同学在以后的学习中也多动脑筋。

四边形教学设计 篇6

教学内容分析:

平行四边形面积计算的教学是新课程标准五年级上册第79-81页的教学内容,本教学内容是在学生掌握了这些图形的特征及长方形,正方形面积计算的基础上学习的,它和三角形,梯形面积计算联系比较紧密,也是为今后进一步步学习圆面积和立体图形表面积打下基础。

设计的理念:

学生在以前的学习中,已经知道了长方形面积公式,掌握了平行四边形的特征会做高,为了让学生更好的理解掌握平行四边形面积公式。因此在教学中让学生经历猜想操作验证推理的过程,并通过运用面积公式解决日常生活中的问题,使学生感到数学源于生活,寓于生活,用于生活的思想,感受到数学知识的应用价值。

教学目标:

1.使学生通过探索,理解和掌握平行四边形的面积计算公式,会计算平行四边形的面积。

2.通过操作,观察,比较活动,初等认识转化的方法,培养学生的观察,分析,概括,推导能力,发展学生的空间观念。

3.引导学生初步理解转化的思想方法,培养学生的思维能力和解决简单的实际问题的能力。

教学重点:

使学生通过探索,理解和掌握平行四边形的面积计算公式,会计算平行四边形的面积。

教学难点:

通过学生动手操作,用割补的方法把一个平行四边形转化为一个长方形,找出两个图形之间的联系,推导出平行四边形面积的计算公式。并能正确运用平行四边形的面积公式解决相应的实际问题。

教具,学具准备:多媒体,平行四边形硬纸片,一把剪刀。

教学过程:

一、创设情境、导入新课。

多媒体课件出示课文主题图,观察主题图,让学生找一找图中有哪些学过的图形,当学生找到图中学校门前的两个花坛时。

师:观察图中学校门口前的两个花坛,说一说这两个花坛都是什么形状的?怎样比较两个花坛的大小?你会计算它们的.面积吗?

生:会计算长方形面积,不会计算平行四边形的面积。

师:可是要比较两个花坛的大小我们必须要知道平行四边形的面积怎样计算呢?今天我们就来研究平行四边形面积的计算。(板书课题:平行四边形的面积)

[设计意图:是让学生在现有知识水平中无法比较两个花坛的大小,来激发学生积极探求知识的奥秘的欲望。]

二、探究平行四边形的面积。

1.用数方格的方法探索计算面积。

师:请同学们大胆猜想一下,你想用什么方法来求平行四边形的面积呢?

生1:我想把平行四边形拉成一个长方形。

生2:我想用数方格子的方法来计算。

……

师:(1)拉动平行四边形的边框,让学生观察得知;用拉的方法不能求出平行四边形的面积。

(2)我们再来验证一下你们刚才提出的数方格子的方法行不行,用多媒体出示教材第80页方格图。我们已经知道可以用数方格子的方法得到一个图形的面积,现在请同学们用这个方法算出这个平行四边形和长方形的面积。

说明要求:一个方格表示1平方厘米,不满一格的都按半格计算。现在同学们一齐来交流一下是是怎样数的,请把数出的结果填在表格中。

同桌合作完成:

4.汇报结果:用投影展示学生填写好的表格,观察表格的数据,你发现了什么?想到了什么?

平行四边形

面积

长方形

面积

通过学生讨论,可以得到平行四边形与长方形的底与长,高与宽及面积分别相等;这个平行四边形面积等于它的底乘高;这个长方形的面积等于它的长乘宽。

[设计意图:通过让学生数一数,议一议,先感受一下平行四边形与长方形的面积的联系。培养学生联想、猜测的能力,同时为下一步的探究提供思路。]

2.推导平行四边形面积计算公式。

(1)引导:我们用数方格的方法得到一平行四边形的面积,但是用数方格这个方法能任意数出一些平行四边形面积吗?为什么?哪些平行四边形的面积不能用这种方法呢?

生:不方便、比较麻烦,不是处处都适用,例如没方格图的平行四边形和生活中一些的平行四边形物体。

师:既然不方便,不能处处适用,我们能否不数方格从中探索出平行四边形面积的规律呢?

学生讨论,鼓励学生大胆发表意见。

(2)归纳学生意见,向学生提出:通过数方格我们已经发现这个平行四边形的面积等于底乘高,是不是所有的平行四边形都可以用这个方法计算呢?现在请大家验证一下。

(3)分组合作动手操作,探索图形的转化。

各小组用课前准备的平行四边形和剪刀进行剪和拼。思考一下;能否把平行四边形转化成自己会算面积的图形来计算它的面积。转化成一个什么图形呢?各小组组织学生动手实验、合作交流开展探究活动。各小组代表把拼剪的图形展示在黑板上,并说一说演示的过程和自己的一些想法。

生:我们就把平行四边形变成一个长方形,因为长方形的面积我们已经会计算了。

引导学生:用割补的方法沿着平行四边形任意一条高剪开,平移后都可以得到长方形。

用多媒体演示平移和拼的过程。剪——平移——拼。

[设计意图:通过小组合作,共同完成操作。使每个学生能从感性上认识利用割补把平行四边形通过剪—平移—拼成一个长方形的演示全过程。]

(4)小组讨论,合作交流,探索平行四边形的面积计算公式。

我们已经把一个平行四边形变成了一个长方形,请同学们观察拼出的长方形和原来的平行四边形,你发现了什么?

小组讨论后,根据学生回答情况出示讨论题目给学生。

拼出的长方形和原来的平行四边形相比,面积变了没有?

拼出的长方形的长和宽与原来的平行四边形的底和高有什么关系?

能否根据长方形面积计算公式推导出平行四边形的面积计算公式吗?

[设计意图:创设探究的空间和时间,采用自主探索,合作交流等学习中,让学生了解平行四边形的面积与长方形的面积之间的关系,掌握了平行四边形面积的计算方法。]

(5)小组交流汇报,归纳叙述出自己的推导过程。

我们把一个平行四边形转化成为一个长方形,它的面积与原来的平行四边形面积相等。这个长方形的长与平行四边形的底相等,这个长方形的宽与平行四边形的高相等。那么平行四边形的面积等于什么?

因为:长方形的面积=长×宽,

所以:平行四边形的面积=底×高

如果用S表示平行四边形的面积,用a表示平行四边形形的底,用h表示平行四边形的高,同学们能否尝试用字母表示平行四边形面积计算公式。S=ah

学生思考:要求平行四边形的面积必须要知道什么条件呢?(平行四边形的底和高)

3、平行四边形面积计算公式的应用。

既然我们已经推导出平行四边形面积计算公式,那么我们现在可以运用公式解决一些实际的问题。

(1)、现在课本主题图中学校门口两块花坛的大小这个问题现在可以解决吗?怎样解答呢?

生:先量出平行四边形的底和高再按平行四边形面积计算公式来计算,并说说计算过程,再比较大小。

(2)运用平行四边形面积计算公式让学生自学例1。

师:例1是给出我们什么数学信息呢?我们根据什么公式来列式计算,学生试做、并说说解题方法和板书结果。

学生板书例1的结果;s=ah=6×4=24(平方米)

[设计意图:在解决问题过程中能让学生进一步理解和掌握平行四边形面积的计算方法。还能让学生感受到学习数学的价值。]

三、巩固拓展。

1、给下面各题目填空。

(1)一个长方形的长是5厘米,高是3厘米,这个长方形的面积是()平方厘米。

(2)一个平行四边形的底是8米,高是5米,这个平行四边形的面积是()平方米。

(3)一个平行四边形的高是6分米,底是9分米,这个平行四边形的面积是()平方分米。

[设计意图:通过反复计算平行四边形的面积,加深学生对面积公式的理解和更熟练地运用平行四边形的面积计算公式解决实际问题。]

2、你能想办法求出下面两个平行四边形的面积吗?

3、同学们自己画一个平行四边形,并标出平行四边形的底和高的数量,同桌交换来求这个平行四边形的面积。

[设计意图:这两题练习设计可让学生想办法找出平行四边形的底和高才能求出面积,这样设计进一步加强了学生作平行四边形的高的方法,同时培养了学生动手操作和应用公式的实践能力。]

四、课堂总结

通过本节课的学习你有什么收获?你知道平行四边形面积公式是怎样推导的吗?要求平行四边形的面积就必须知道什么条件呢?你会运用平行四边形的面积计算公式来解答一些实际问题。

请你们找出生活中用到的平行四边形,并计算出它的面积,在下节课上进行交流好吗?

板书设计:

长方形的面积=长×宽

平行四边形的面积=底×高

用字母表示是:S=a×h=a·h=ah

四边形教学设计 篇7

教学内容:

教材79页、81页练习十七第1题。

教学目标:

1、直观感知四边形,能区分和辨认四边形,进一步认识长方形和正方形,掌握长方形和正方形的特点。

2、通过找一找、涂一涂、说一说、分一分、围一围等多种活动,培养学生的观察比较和抽象概括的能力。

3、通过情境图和生活中的事物进入课堂,感受生活中的四边形无处不在,进一步激发学生的学习兴趣。

4、培养学生积极参与数学学习活动的态度,以及与他人合作的良好习惯。

教学重难点:

1、找出四边形的特点。

2、根据四边形的特点对四边形进行分类。

教具、学具准备:

钉子板、学生准备直尺、纸、剪刀、细铁丝、小棒。

教学设计:

一、探究新知,感知四边形

1、圈一圈。

学习例一主题图,请看课本79页,“仔细观察,把你认为是四边形的图形圈出来。”

要求:先学生独立完成。

2、探究四边形的特点

让学生以小组为单位进行讨论

找小组代表说一说自己认为的四边形的特点,老师根据学生的回答把不同的想法写出来。

再汇报总结出:四边形都有四条直的边,有四个角

3、举例。

师:同学们真棒!在生活中我们见过四边形,我们又知道了四边形的特点,那你能说一说身边哪些物体的表面是四边形的。

指名回答,学生回答时一定要强调用词物体的表面。让学生充分发表意见。

二、实践操作

1、画一画。

(1)探索长方形的特点。

先自己画出一个四边形。、

师:谁画的`四边形的四个角是直角?

学生展示自己的作品。

找几个长方形的图,让学生探讨长方形的特点?

学生汇报:长方形对边相等,四个角都是直角。

(2)探索正方形的特点。

师:找一个是正方形的图形,让学生观察、探讨:正方形有什么特点?

学生总结:正方形的四条边相等,四个角都是直角。

(3)比较长方形和正方形的特点。

长方形和正方形有什么相同的地方?有哪些不同?

让学生总结出:长方形和正方形都有四个直角;长方形对边相等,正方形的四条边相等。

3、拼一拼。

同桌合作,用三角板拼四边形。

三、课堂小结

1、通过今天的学习,你学会了哪些知识?(学生汇报)

四边形教学设计 篇8

教学目标:

1.直观感知四边形,能区分和辨认四边形。进一步认识长方形和正方形,知道它们的角都是直角。

2.通过围一围、找一找、涂一涂、剪一剪等活动,培养学生的观察比较和概括抽象的能力。

3.通过情境图和生活中的事物进入课堂,感受生活中的四边形无处不在,进一步激发学生的学习兴趣。

教具、学具准备:纸(包括不规则形状)、剪刀、三角板、直尺、钉板。

教学过程:

一、感知四边形

1.围四边形。

师:(出示课题:四边形)你想像中的四边形应该是什么样的?

指名回答,让学生充分发表意见。

师:根据你的想像,动手来把四边形做出来好吗?

让学生在钉子板上围出自己想像的四边形,教师巡视并适当参与学生活动。

2.讨论四边形特征。

反馈。让学生展示介绍自己围出的`四边形。

(如果学生围出的以正方形和长方形为主,教师应及时点拨引导,适当补充一些梯形和平行四边形以及不规则四边形。)

师:看着这么多的四边形,你能说一说,到底什么样的图形是四边形?

结合图形得出:有四条直直的边,有四个角的图形就是四边形。

二、寻找四边形

1.在主题图中找。

师:(出示主题图)在校园里,你发现了四边形的踪迹吗?你能找到多少个?

2.在众多图形中找。

师:(出示例1图),图中有很多图形混杂在四边形中间,请你把四边形都涂上相同的颜色。

3.举例。

师:说一说,在哪儿还看到过四边形?

三、动手实践

1.剪四边形。

师:动手剪一剪,要求每个同学剪出两个以上不同的四边形。

学生独立动手(教师巡视并参与)。

反馈,有选择地让学生上台展示(各种类型),教师适当加以评论。

2.分类。

师:4人一组,将你们桌上的四边形分分类。(请其中一个组上台将台上的四边形分类。)

教师巡视,并听取学生的想法。

反馈,要求学生说一说分类的依据和理由?

四、延伸拓展

1.师:用钉子板围一个四个角都是直角的四边形。

我们以前学的长方形和正方形是比较特殊的四边形,特殊在哪儿呢?小组里说一说。

提示:用三角板和直尺比一比它们的角,量一量它们的边,你发现了什么?

小组汇报,得出结论:长方形和正方形的角都是直角。长方形的对边相等,正方形四条边都相等。

2.师:围出或画(剪)一个对边相等,但却不是长方形的四边形。

3.师:把一个四边形,剪去一个角后,它会变成什么形状?请你动手试一试。