返回首页
文学网 > 短文 > 教学教案 > 正文

高一数学教案

2025/12/09教学教案

文学网整理的高一数学教案(精选6篇),供大家参考,希望能给您提供帮助。

高一数学教案 篇1

教学目标

1.了解函数的单调性和奇偶性的概念,掌握有关证明和判断的基本方法.

(1)了解并区分增函数,减函数,单调性,单调区间,奇函数,偶函数等概念.

(2)能从数和形两个角度认识单调性和奇偶性.

(3)能借助图象判断一些函数的单调性,能利用定义证明某些函数的单调性;能用定义判断某些函数的奇偶性,并能利用奇偶性简化一些函数图象的绘制过程.

2.通过函数单调性的证明,提高学生在代数方面的推理论证能力;通过函数奇偶性概念的形成过程,培养学生的观察,归纳,抽象的能力,同时渗透数形结合,从特殊到一般的数学思想.

3.通过对函数单调性和奇偶性的理论研究,增学生对数学美的体验,培养乐于求索的精神,形成科学,严谨的研究态度.

教学建议

一、知识结构

(1)函数单调性的概念。包括增函数、减函数的定义,单调区间的概念函数的单调性的判定方法,函数单调性与函数图像的关系.

(2)函数奇偶性的概念。包括奇函数、偶函数的定义,函数奇偶性的判定方法,奇函数、偶函数的图像.

二、重点难点分析

(1)本节教学的重点是函数的单调性,奇偶性概念的形成与认识.教学的难点是领悟函数单调性, 奇偶性的本质,掌握单调性的证明.

(2)函数的单调性这一性质学生在初中所学函数中曾经了解过,但只是从图象上直观观察图象的上升与下降,而现在要求把它上升到理论的高度,用准确的数学语言去刻画它.这种由形到数的翻译,从直观到抽象的转变对高一的学生来说是比较困难的,因此要在概念的形成上重点下功夫.单调性的证明是学生在函数内容中首次接触到的代数论证内容,学生在代数论证推理方面的能力是比较弱的,许多学生甚至还搞不清什么是代数证明,也没有意识到它的重要性,所以单调性的证明自然就是教学中的难点.

三、教法建议

(1)函数单调性概念引入时,可以先从学生熟悉的一次函数,,二次函数.反比例函数图象出发,回忆图象的增减性,从这点感性认识出发,通过问题逐步向抽象的定义靠拢.如可以设计这样的问题:图象怎么就升上去了?可以从点的坐标的角度,也可以从自变量与函数值的关系的角度来解释,引导学生发现自变量与函数值的的变化规律,再把这种规律用数学语言表示出来.在这个过程中对一些关键的词语(某个区间,任意,都有)的理解与必要性的认识就可以融入其中,将概念的形成与认识结合起来.

(2)函数单调性证明的步骤是严格规定的,要让学生按照步骤去做,就必须让他们明确每一步的必要性,每一步的目的,特别是在第三步变形时,让学生明确变换的目标,到什么程度就可以断号,在例题的选择上应有不同的变换目标为选题的标准,以便帮助学生总结规律.

函数的奇偶性概念引入时,可设计一个课件,以的图象为例,让自变量互为相反数,观察对应的函数值的变化规律,先从具体数值开始,逐渐让在数轴上动起来,观察任意性,再让学生把看到的用数学表达式写出来.经历了这样的过程,再得到等式时,就比较容易体会它代表的是无数多个等式,是个恒等式.关于定义域关于原点对称的问题,也可借助课件将函数图象进行多次改动,帮助学生发现定义域的对称性,同时还可以借助图象说明定义域关于原点对称只是函数具备奇偶性的必要条件而不是充分条件.

高一数学教案 篇2

高一数学教案合集15篇

在教学工作者开展教学活动前,通常需要准备好一份教案,借助教案可以让教学工作更科学化。教案要怎么写呢?下面是小编收集整理的高一数学教案,仅供参考,欢迎大家阅读。

高一数学教案 篇3

1、知识与技能

(1)掌握任意角的正弦、余弦、正切的定义(包括这三种三角函数的定义域和函数值在各象限的符号);

(2)理解任意角的三角函数不同的定义方法;

(3)了解如何利用与单位圆有关的有向线段,将任意角α的正弦、余弦、正切函数值分别用正弦线、余弦线、正切线表示出来;

(4)掌握并能初步运用公式一;

(5)树立映射观点,正确理解三角函数是以实数为自变量的函数.

2、过程与方法

初中学过:锐角三角函数就是以锐角为自变量,以比值为函数值的函数.引导学生把这个定义推广到任意角,通过单位圆和角的终边,探讨任意角的三角函数值的求法,最终得到任意角三角函数的定义.根据角终边所在位置不同,分别探讨各三角函数的定义域以及这三种函数的值在各象限的符号.最后主要是借助有向线段进一步认识三角函数.讲解例题,总结方法,巩固练习.

3、情态与价值

任意角的三角函数可以有不同的定义方法,而且各种定义都有自己的特点.过去习惯于用角的终边上点的坐标的“比值”来定义,这种定义方法能够表现出从锐角三角函数到任意角的三角函数的推广,有利于引导学生从自己已有认知基础出发学习三角函数,但它对准确把握三角函数的本质有一定的不利影响,“从角的集合到比值的集合”的对应关系与学生熟悉的一般函数概念中的“数集到数集”的对应关系有冲突,而且“比值”需要通过运算才能得到,这与函数值是一个确定的实数也有不同,这些都会影响学生对三角函数概念的理解.

本节利用单位圆上点的坐标定义任意角的正弦函数、余弦函数.这个定义清楚地表明了正弦、余弦函数中从自变量到函数值之间的对应关系,也表明了这两个函数之间的关系.

教学重难点

重点:任意角的正弦、余弦、正切的定义(包括这三种三角函数的定义域和函数值在各象限的符号);终边相同的角的同一三角函数值相等(公式一).

难点:任意角的正弦、余弦、正切的定义(包括这三种三角函数的定义域和函数值在各象限的符号);三角函数线的正确理解.

高一数学教案 篇4

教学目标

1.理解等比数列的概念,掌握等比数列的通项公式,并能运用公式解决简单的问题.

(1)正确理解等比数列的定义,了解公比的概念,明确一个数列是等比数列的限定条件,能根据定义判断一个数列是等比数列,了解等比中项的概念;

(2)正确认识使用等比数列的表示法,能灵活运用通项公式求等比数列的首项、公比、项数及指定的项;

(3)通过通项公式认识等比数列的性质,能解决某些实际问题.

2.通过对等比数列的研究,逐步培养学生观察、类比、归纳、猜想等思维品质.

3.通过对等比数列概念的归纳,进一步培养学生严密的思维习惯,以及实事求是的科学态度.

教学建议

教材分析

(1)知识结构

等比数列是另一个简单常见的数列,研究内容可与等差数列类比,首先归纳出等比数列的定义,导出通项公式,进而研究图像,又给出等比中项的概念,最后是通项公式的应用.

(2)重点、难点分析

教学重点是等比数列的定义和对通项公式的认识与应用,教学难点在于等比数列通项公式的推导和运用.

①与等差数列一样,等比数列也是特殊的数列,二者有许多相同的性质,但也有明显的区别,可根据定义与通项公式得出等比数列的特性,这些是教学的重点.

②虽然在等差数列的学习中曾接触过不完全归纳法,但对学生来说仍然不熟悉;在推导过程中,需要学生有一定的观察分析猜想能力;第一项是否成立又须补充说明,所以通项公式的推导是难点.

③对等差数列、等比数列的综合研究离不开通项公式,因而通项公式的灵活运用既是重点又是难点.

教学建议

(1)建议本节课分两课时,一节课为等比数列的概念,一节课为等比数列通项公式的应用.

(2)等比数列概念的引入,可给出几个具体的例子,由学生概括这些数列的相同特征,从而得到等比数列的定义.也可将几个等差数列和几个等比数列混在一起给出,由学生将这些数列进行分类,有一种是按等差、等比来分的,由此对比地概括等比数列的定义.

(3)根据定义让学生分析等比数列的公比不为0,以及每一项均不为0的特性,加深对概念的理解.

(4)对比等差数列的表示法,由学生归纳等比数列的各种表示法. 启发学生用函数观点认识通项公式,由通项公式的结构特征画数列的图象.

(5)由于有了等差数列的研究经验,等比数列的研究完全可以放手让学生自己解决,教师只需把握课堂的节奏,作为一节课的组织者出现.

(6)可让学生相互出题,解题,讲题,充分发挥学生的主体作用.

教学设计示例

课题:等比数列的概念

教学目标

1.通过教学使学生理解等比数列的概念,推导并掌握通项公式.

2.使学生进一步体会类比、归纳的思想,培养学生的观察、概括能力.

3.培养学生勤于思考,实事求是的精神,及严谨的科学态度.

教学重点,难点

重点、难点是等比数列的定义的归纳及通项公式的推导.

教学用具

投影仪,多媒体软件,电脑.

教学方法

讨论、谈话法.

教学过程

一、提出问题

给出以下几组数列,将它们分类,说出分类标准.(幻灯片)

①-2,1,4,7,10,13,16,19,…

②8,16,32,64,128,256,…

③1,1,1,1,1,1,1,…

④243,81,27,9,3,1, , ,…

⑤31,29,27,25,23,21,19,…

⑥1,-1,1,-1,1,-1,1,-1,…

⑦1,-10,100,-1000,10000,-100000,…

⑧0,0,0,0,0,0,0,…

由学生发表意见(可能按项与项之间的关系分为递增数列、递减数列、常数数列、摆动数列,也可能分为等差、等比两类),统一一种分法,其中②③④⑥⑦为有共同性质的一类数列(学生看不出③的情况也无妨,得出定义后再考察③是否为等比数列).

二、讲解新课

请学生说出数列②③④⑥⑦的共同特性,教师指出实际生活中也有许多类似的例子,如变形虫分裂问题.假设每经过一个单位时间每个变形虫都分裂为两个变形虫,再假设开始有一个变形虫,经过一个单位时间它分裂为两个变形虫,经过两个单位时间就有了四个变形虫,…,一直进行下去,记录下每个单位时间的变形虫个数得到了一列数 这个数列也具有前面的几个数列的共同特性,这是我们将要研究的另一类数列——等比数列. (这里播放变形虫分裂的多媒体软件的第一步)

等比数列(板书)

1.等比数列的定义(板书)

根据等比数列与等差数列的名字的区别与联系,尝试给等比数列下定义.学生一般回答可能不够完美,多数情况下,有了等差数列的基础是可以由学生概括出来的.教师写出等比数列的定义,标注出重点词语.

请学生指出等比数列②③④⑥⑦各自的公比,并思考有无数列既是等差数列又是等比数列.学生通过观察可以发现③是这样的数列,教师再追问,还有没有其他的例子,让学生再举两例.而后请学生概括这类数列的一般形式,学生可能说形如 的数列都满足既是等差又是等比数列,让学生讨论后得出结论:当 时,数列 既是等差又是等比数列,当 时,它只是等差数列,而不是等比数列.教师追问理由,引出对等比数列的认识:

2.对定义的认识(板书)

(1)等比数列的首项不为0;

(2)等比数列的每一项都不为0,即 ;

问题:一个数列各项均不为0是这个数列为等比数列的什么条件?

(3)公比不为0.

用数学式子表示等比数列的定义.

是等比数列 ①.在这个式子的写法上可能会有一些争议,如写成 ,可让学生研究行不行,好不好;接下来再问,能否改写为 是等比数列 ?为什么不能?

式子 给出了数列第 项与第 项的数量关系,但能否确定一个等比数列?(不能)确定一个等比数列需要几个条件?当给定了首项及公比后,如何求任意一项的值?所以要研究通项公式.

3.等比数列的通项公式(板书)

问题:用 和 表示第 项 .

①不完全归纳法

②叠乘法

,… , ,这 个式子相乘得 ,所以 .

(板书)(1)等比数列的通项公式

得出通项公式后,让学生思考如何认识通项公式.

(板书)(2)对公式的认识

由学生来说,最后归结:

①函数观点;

②方程思想(因在等差数列中已有认识,此处再复习巩固而已).

这里强调方程思想解决问题.方程中有四个量,知三求一,这是公式最简单的应用,请学生举例(应能编出四类问题).解题格式是什么?(不仅要会解题,还要注意规范表述的训练)

如果增加一个条件,就多知道了一个量,这是公式的更高层次的应用,下节课再研究.同学可以试着编几道题.

三、小结

1.本节课研究了等比数列的概念,得到了通项公式;

2.注意在研究内容与方法上要与等差数列相类比;

3.用方程的思想认识通项公式,并加以应用.

高一数学教案 篇5

教学目标:

1、掌握对数的运算性质,并能理解推导这些法则的依据和过程;

2、能较熟练地运用法则解决问题;

教学重点:

对数的运算性质

教学过程:

一、问题情境:

1、指数幂的运算性质;

2、问题:对数运算也有相应的运算性质吗?

二、学生活动:

1、观察教材P59的表2—3—1,验证对数运算性质、

2、理解对数的运算性质、

3、证明对数性质、

三、建构数学:

1)引导学生验证对数的运算性质、

2)推导和证明对数运算性质、

3)运用对数运算性质解题、

探究:

①简易语言表达:“积的对数=对数的和”……

②有时逆向运用公式运算:如

③真数的取值范围必须是:不成立;不成立、

④注意:,

四、数学运用:

1、例题:

例1、(教材P60例4)求下列各式的值:

(1);(2)125;(3)(补充)lg、

例2、(教材P60例4)已知,,求下列各式的值(结果保留4位小数)

(1);(2)、

例3、用,,表示下列各式:

例4、计算:

(1);(2);(3)

2、练习:

P60(练习)1,2,4,5、

五、回顾小结:

本节课学习了以下内容:对数的运算法则,公式的逆向使用、

六、课外作业:

P63习题5

补充:

1、求下列各式的值:

(1)6—3;(2)lg5+lg2;(3)3+、

2、用lgx,lgy,lgz表示下列各式:

(1)lg(xyz);(2)lg;(3);(4)、

3、已知lg2=0、3010,lg3=0、4771,求下列各对数的值(精确到小数点后第四位)

(1)lg6;(2)lg;(3)lg;(4)lg32、

高一数学教案 篇6

1.1 集合含义及其表示

教学目标:理解集合的概念;掌握集合的三种表示方法,理解集合中元素的三性及元素与集合的关系;掌握有关符号及术语。

教学过程:

一、阅读下列语句:

1) 全体自然数0,1,2,3,4,5,

2) 代数式 .

3) 抛物线 上所有的点

4) 今年本校高一(1)(或(2))班的全体学生

5) 本校实验室的所有天平

6) 本班级全体高个子同学

7) 著名的科学家

上述每组语句所描述的对象是否是确定的?

二、1)集合:

2)集合的元素:

3)集合按元素的个数分,可分为1)__________2)_________

三、集合中元素的三个性质:

1)___________2)___________3)_____________

四、元素与集合的关系:1)____________2)____________

五、特殊数集专用记号:

1)非负整数集(或自然数集)______2)正整数集_____3)整数集_______

4)有理数集______5)实数集_____ 6)空集____

六、集合的表示方法:

1)

2)

3)

七、例题讲解:

例1、 中三个元素可构成某一个三角形的三边长,那么此三角形一定不是 ( )

A,直角三角形 B,锐角三角形 C,钝角三角形 D,等腰三角形

例2、用适当的方法表示下列集合,然后说出它们是有限集还是无限集?

1)地球上的四大洋构成的集合;

2)函数 的全体 值的集合;

3)函数 的全体自变量 的集合;

4)方程组 解的集合;

5)方程 解的集合;

6)不等式 的解的集合;

7)所有大于0且小于10的奇数组成的集合;

8)所有正偶数组成的集合;

例3、用符号 或 填空:

1) ______Q ,0_____N, _____Z,0_____

2) ______ , _____

3)3_____ ,

4)设 , , 则

例4、用列举法表示下列集合;

1.

2.

3.

4.

例5、用描述法表示下列集合

1.所有被3整除的数

2.图中阴影部分点(含边界)的坐标的集合

课堂练习:

例6、设含有三个实数的集合既可以表示为 ,也可以表示为 ,则 的值等于___________

例7、已知: ,若 中元素至多只有一个,求 的取值范围。

思考题:数集A满足:若 ,则 ,证明1):若2 ,则集合中还有另外两个元素;2)若 则集合A不可能是单元素集合。

小结:

作业 班级 姓名 学号

1. 下列集合中,表示同一个集合的是 ( )

A . M= ,N= B. M= ,N=

C. M= ,N= D. M= ,N=

2. M= ,X= ,Y= , , .则 ( )

A . B. C. D.

3. 方程组 的解集是____________________.

4. 在(1)难解的题目,(2)方程 在实数集内的解,(3)直角坐标平面内第四象限的一些点,(4)很多多项式。能够组成集合的序号是________________.

5. 设集合 A= , B= ,

C= , D= ,E= 。

其中有限集的个数是____________.

6. 设 ,则集合 中所有元素的和为

7. 设x,y,z都是非零实数,则用列举法将 所有可能的值组成的集合表示为

8. 已知f(x)=x2-ax+b,(a,b R),A= ,B= ,

若A= ,试用列举法表示集合B=

9. 把下列集合用另一种方法表示出来:

(1) (2)

(3) (4)

10. 设a,b为整数,把形如a+b 的一切数构成的集合记为M,设 ,试判断x+y,x-y,xy是否属于M,说明理由。

11. 已知集合A=

(1) 若A中只有一个元素,求a的值,并求出这个元素;

(2) 若A中至多只有一个元素,求a的取值集合。

12.若-3 ,求实数a的值。

【总结】20xx年已经到来,新的一年数学网会为您整理更多更好的文章,希望本文高一数学教案:集合含义及其表示能给您带来帮助!