返回首页
文学网 > 短文 > 教学教案 > 正文

六年级数学下册教案

2025/12/22教学教案

文学网整理的六年级数学下册教案(精选6篇),供大家参考,希望能给您提供帮助。

六年级数学下册教案 篇1

教学目标:

1.整理有关代数的初步知识,使学生形成知识网络,并能解决有关的实际问题,使认知水平有所提高。

2.通过对知识的梳理,培养学生整理、概括知识的能力。

3.通过情境的创设,使学生自主的对所学的知识进行整理,进行一定的学习方法的渗透。

4.在整理知识、解决问题的实践活动中,初步意识到整理知识的重要性,并逐渐养成边学习边整理知识的习惯。

教学重点:

梳理知识,形成网络。

教学难点:

综合运用知识解决实际问题。

教学过程:

一、借助一个有趣的知识导入对代数知识的整理。

(1)师:在某地,蟋蟀叫的次数除以7再加上3就等于当地的气温。

(2)提问:①你能用一个算式表示出它们的关系吗?

②这涉及到了我们学过的哪些知识?

(3)出示课题。

二、小组合作,自主梳理有关代数的知识。

1.回忆知识点:提问:自己看书,看代数的初步知识,可以分为几部分?

2.全班交流:教师课件演示。(用字母表示数、简易方程、运算定律、比和比例、方程的解、解方程、数量关系、计算公式、列方程解应用题、求积公式)

3.整理知识点:

提出要求:以小组为单位对这些知识进行整理,看哪个小组整理得简洁、清晰、与众不同。

4.学生汇报整理的情况:

数量关系

用字母表示数 运算定律

计算公式 (或使用树状结构的方式等)

方程

简易方程 方程的解

解方程

5.组织评价:提问:①你更喜欢哪种方式?

②他们都是根据什么进行整理的?

6.师:这节课我们重点复习用字母表示数和简易方程。

三、在实践活动中巩固提高

1.出示:用含有字母的式子表示下面的数量关系。

(1)学校去年种桔树a棵,今年比去年的2倍多6棵。今年种( )棵。

(2)商店原有洗衣机 a台,现在又运进30台,现在共有洗衣机( )台。

(3)甲乙两人共同制造一批零件。甲制造a个,乙每小时制造b个,工作了4.5小时,两人就完成了任务。这批零件共( )个。

(4)李红a天看了60页书,照这样计算,看完这本书需要b天,这本书共( )页。

想一想,书写含有字母的式子要注意什么?

2.复习简易方程,小组同学互相说说:方程、方程的解和解方程这三个概念有什么不同?

3.判断下面各式是不是方程

(1)X-42=783 (2)4X﹤9 (3)5X-2X=150

(4)2X-16

监控:

(1)(2)、(4)为什么不是方程?

(2)动手解(1)、(3)两个方程

(3)解方程时要注意点什么呢?

4.解决实际问题

(1)出示一个梯形,看图填表。

梯形数量12345

梯形周长58111417

①再多一些梯形,周长可以用什么表示?

②用字母表示梯形的数量和周长之间的关系?

③周长是299个,这个图形是由多少个梯形组成的?

(2)课件演示:由重庆到淄博,乘火车要花400元,用餐2天;到了淄博后,住5天,用餐5 天。

①用含有字母的式子表示淄博一行的人武部开支。(每天用餐a元,住宿b元)。

整理后:800+9a+5b

②你觉得每天用餐、住宿开支多少元合适?请你设计一下?

③评价设计方案。

六年级数学下册教案 篇2

教学目的:

1、让学生学会运用转化的策略,用简便的方法解决有关分数的实际问题。

2、让学生在学习过程中加深对转化策略的认识,增强策略意识,培养的灵活性。

教学重点:

掌握用转化的策略解决分数问题的方法,增强策略意识。

教学难点:

根据具体问题,确定转化后要实现的目标和转化的具体方法。

教学过程:

一、看谁的联想最多?

出示:男生人数是女生的2/3 看到含有分率的句子,你能想到些什么?

学生可能说:

(1)把女生人数看作“1” ——找单位“1”

(2)男生人数有这样的2份,女生人数有这样的3份。

(3)一共有这样的5份

(4)女生比男生多1份 ——份数

(5)男生人数占全班人数的2/5,女生人数占全班人数的3/5

(6)女生是男生的3/2 ——分数

小结:看到含有分率的信息,我们可以找单位“1”的量,也可从分数、份数等方面来考虑。

二、新授

1、完整例题2:在这个信息前加上条件“六3班一共有50人”和问题“六3班女生有多少人?”

2、说明:这是一道分数问题,解决分数问题的常规思路是怎样的?请你用常规思路来解决这个问题。

3、学生独立完成,教师巡视指导。

4、指名交流解题思路。

5、提问:除了常规思路,这题还可以怎样解决?你是怎样想的?

6、学生独立完成,小组交流。指名交流。

学生可能想到:

(一)将关键句转化成份数来理解“女生有3份,男生有2份,一共是5份”

50÷(3+2)=10(人) 10×3=30(人)

(二)将关键句转化成分数来理解“女生占全班人数的3/5”

50×3/5=30(人)

7、结合学生回答追问:为什么要将关键句转化成“一共有5份”、“女生是总人数的3、5”?而不转化成别的?体会不管转化成份数理解还是分数来理解,都要转化成和已知条件有关的信息。

8、小结:我们原来解题时,是把女生人数看做单位“1”,所以只能用方程(或除法)解答。今天我们学习了转化策略,就可以把单位“1”转化成题目中的已知量,这样就变成了一道求一个数的几分之几是多少的应用题,可以用乘法计算。(美术组人数是已知的,要求的是女生人数,找到女生人数和总人数之间的关系,就可以直接用乘法计算了)

三、巩固练习

1、练一练:学校美术组有35人,是合唱组人数的 5/8 。学校合唱组有多少人?

(1)你打算怎样转化?(合唱组的人数是美术组的几分之几?可以怎样列式解答?)

(2)反思:为什么把美术组人数是合唱组的 5/8转化为合唱组的人数是美术组的8/5。

(3)小结:在解决有关分数的实际问题时,只要把题目中的问题转化成已知条件的几分之几,就可以直接用乘法计算,使解题的方法变得简单。

板书:问题转化成已知条件的几分之几。

2、练习十四5:

(1)看图填空。

绿彩带

红彩带

绿彩带比红彩带短 2/7 ,红彩带比绿彩带长 ()/() 。

(2)一杯果汁,已经喝了 2/5 ,

喝掉的是剩下的 ()/() ,剩下的是喝掉的 ()/() 。

3、练习十四6

(1)白兔和黑兔共有40只,黑兔的只数是白兔的 3/5 。黑兔有多少只?

黑兔只数占白兔、黑兔总只数的 ()/() 。

(2) 小明看一本故事书,已经看了全书的 3/7 ,还有48页没有看。 小明已经看了多少页?

已经看的页数是没有看的页数的 ()/() 。

4、只列式,不计算。(说说你是怎样转化的)

(1)修一条长30千米的路,已经修的占剩下的 2/3 ,已经修了多少千米?

(2)山羊有120只,比绵羊少 1/6 ,绵羊有多少只?

(3)甲数是乙数的2/3,乙数是丙数的3/4,甲、乙、丙三数的和是180,甲、乙、丙三个数各是多少?

5、有3堆围棋子,每堆60枚。第一堆的黑子和第二堆的白子同样多,第三堆有 1/3是白子。这三堆棋子一共有白子多少枚?

6、思考题:

有两枝蜡烛。当第一枝燃去4/5 ,第二枝燃去 2/3 时,他们剩下的部分一样长。这两枝蜡烛原来的长度比是( ):( )。

全课小结:今天这节课,我们学习了什么知识?你有哪些收获?

板书设计:

用转化思路解答分数除法应用题

繁 简

用方程解答: 用乘法解答:

解:设女生有x人。

x+2/3 x=35

5/3x=35 35×3/5=21(人)

x=21

答:女生有21人

六年级数学下册教案 篇3

教学内容

(1)负数的初步认识

(2)(教材第3页例2)。

教学目标

通过呈现存折上的明确数据,让学生体会负数在生活中的广泛应用,进一步体会负数的含义。

重点难点

体会引入负数的必要性,初步理解负数的含义。

情景导入

教师:上一节课我们已经一起学习了气温的表示,谁能说一说温度都是怎样读写的组织学生讨论回忆上一课内容。

师:很好,大家都很棒。今天我们继续学习负数知识。引出课题并板书:负数的初步认识(2)

新课讲授

1。教学例2。

(1)教师出示存折明细示意图。(教材第3页的主题图)教师:同学们能说说“支出(—)或(+)”这一栏的数各表示什么意义吗组织学生分组讨论、交流,然后指名汇报。

(2)引导学生归纳总结:像20xx,500这样的数表示的是存入的钱数;而前面有“—”号的数,像—500,—132这样的数表示的是支出的钱数。

(3)教师:上述数据中500和—500意义相同吗(500和—500意义相反,一个是存入,一个是支出)。你能用刚才的方法快速而又准确地表示出向东走100m和向西走200m、前进20步和后退25步吗说说你是怎么表示的师把学生的表示结果一一板书在黑板上。

2。归纳正数和负数。

(1)你能把黑板上板书的这些数进行分类吗小组讨论交流。

(2)教师展示分类的结果,适时讲解。像+8,+4,+20xx,+500,+100,+20这样的数,我们把它们叫做正数,前面的+号也可以省略不写。像—8,—4,—500,—20这样的数,我

们把它叫做负数。

(3)那么0应该归为哪一类呢组织学生讨论,相互发表意见。师设难:“我认为0应该归为正数一类。”

归纳:0既不是正数也不是负数,它是正数和负数的分界点。

(4)你在什么地方见过负数教师鼓励学生注意联系实际举出更多的例子。

课堂作业

完成教材第4页的“做一做”第2题。组织学生动手填一填,在小组中交流检查。答案:

4 +41 51负数有:—7?

3正数有:+

课堂小结

通过这节课的学习,你有什么收获

课后作业

完成练习册中本课时的练习。

第2课时负数的初步认识

(2)正数:+8负数:—8

+4 —4 +20xx —20xx +500 —500 +100 —100 +20 —20

0既不是正数也不是负数。

第3课时在数轴上表示正数、0和负数

教学内容

借助数轴理解正数和负数的意义(教材第5页例3)。

教学目标

1。借助数轴初步理解正数、0、负数。

2。初步体会数轴上数的顺序,完成对数的结构的初步构建以及正数与负数的比较。

重点难点

认识数轴、0。

情景导入

教师用CAI课件演示教材第5页的主题图。

教师:如何在一条直线上表示出他们运动后的情况呢

新课讲授教学例3。

(1)教师:怎样用数来表示这些学生和大树的相对位置关系呢组织学生在小组中议一议,然后汇报。

(2)教师结合学生的汇报,用课件出示数轴,在相应点的下方标出对应的数。

(3)让学生说出直线上其他几个点代表的数,让学生对数轴上的点表示的正负数形成相对完整的认识。

(4)教师总结:我们可以在直线上表示出正数、0、负数,像这样的直线我们叫做数轴。

(5)引导学生观察数轴:

①从0起往右依次是从0起往左依次是你发现什么规律

②在数轴上分别找到

和对应的点。如果从起点分别到和处,应如何运动

师及时小结,数轴除了可以表示整数,还可以表示小数、分数。每个数都能在数轴上找到它们相对应的点。

课堂作业

1。完成教材第5页的“做一做”。学生独立练习,指名汇报。

2。完成教材第6页练习一的第4题。第4题组织学生独立完成,并在小组中相互交流、检查。教师用课件出示答案、订正。

答案:

1。略

2。第4题:点A表示的数是—7;点B表示的数是—4;点C表示的数是—1;点D表示的数是3;点E表示的数是6。

课堂小结

通过这节课的学习,你有什么收获

课后作业

完成练习册中本课时的练习。

第3课时在数轴上表示正数、0和负数

上面这样的直线叫做数轴。

六年级数学下册教案 篇4

【教材分析】

正比例是刻画某一现实背景中两种相关联的量的变化规律的数学模型,从常量到变量,是学生认识过程的一次重大飞跃。通过学习,学生可以进一步加深对过去学过的数量关系的理解,初步学会从变量的角度来认识两种量之间的关系,感受函数的思想方法。同时这部分知识在日常生活和生产中有着广泛的应用,学号这一内容,既可以锻炼学生用数学的眼光观察现实生活的意识,通过解决问题的能力,又可以为进一步学习函数知识奠定扎实的基础。

【学情分析】

学生已经认识了比、比例的意义,掌握了一些常见的数量关系。虽然学生在过去学习用字母表示数和运算律的过程中,对变量的思想有一些感知,但真正用函数的观念探索两种相关联的量的变化规律是从本课开始的。在学习过程中,使学生结合生活实例通过观察、操作、讨论等学习方式初步理解正比例的意义。

【设计理念】

数学学习应从学生的认知发展水平和已有的知识经验出发,让学生亲身经历、体验、探索。”在认真分析教材,深入了解学生的实际认知水平的基础上,本节课的设计,我注意了以下几个方面:

1.从学生已有的知识经验出发,将数学学习与生活实际相联系。

2.让学生经历发现和提出问题、分析和解决问题的过程,自主探索、合作交流。

3.注重积累数学学习经验,渗透数学思想方法。

4.注重学生过程的评价,让学生在评价中不断认识、调整自我,建立自信心。

【教学目标】

1.使学生结合具体实例认识正比例的量,初步理解正比例的意义,能正确判断两种相关联的量是不是成正比例。

2.使学生在认识正比例的量的过程中,初步体会变量的特点,感受用数学模型表示特定数量关系及其变化规律的过程和方法,获得从生活现象中抽象出数学知识和规律的意识,发展数学思维能力。

3.使学生在参与数学活动的过程中,进一步体会数学与日常生活的密切联系,获得一些学习成功的体验,激发对数学学习的兴趣。

【教学重点】

理解正比例的意义。

【教学难点】

掌握成正比例的量的变化规律及其特征,学会根据正比例的意义判断两种相关联的量是不是成正比例。

【教学准备】

教学课件。

【教学过程】

一、激趣设疑,铺垫衔接。

1.谈话:看到“正比例的意义”这个课题,你有什么疑问?

2.结合现实情境回忆常见的数量关系。

【设计说明:数学课堂教学应激发学生兴趣,调动学生积极性,引发学生思考。正比例的意义建立在对常见的数量关系间变化规律探索的基础之上,适当的回顾既有利于激活学生已有的知识经验,又为探究新知做好准备,有效沟通新旧知识间的内在联系。

二、合作探究,发现规律。

1.教学例1

出示例1的表格,让学生说一说表中列出的是哪两种量。并联系这辆汽车的行驶过程,体会表中行驶时间和路程之间有什么关系。

谈话:请同学们仔细观察和比较表中数据,说一说这两种量分别是怎样变化的。

组织反馈,并通过交流,使学生认识到这里的路程和时间是两种相关联的量,汽车的行驶时间变化,路程也随着变化。

谈话:请大家进一步观察表中数据,这辆汽车行驶的时间喝路程的变化是否有一定的规律?

预设:

(1)一种量扩大到到原来的几倍,另一种量也随着扩大到原来的几倍;一种量缩小到到原来的几分之几,另一种量也随着缩小到原来的几分之几。

(2)路程除以对应时间的商都是一样的,也就是相对应的路程和时间的比值都是80。

根据学生的交流的实际情况,如果学生不能主动发现规律的,及时引导学生写出机组相对应的路程和时间的比,并求出比值。

提问:这个比值表示什么?你能用一个式子来表示上面几个量之间的关系吗?

根据学生的回答,板书:

提问:括号里的“一定”表示什么意思?你能结合这个式子说一说上面的例子中汽车行驶路程和时间的变化规律吗?

小结:路程和时间是两种相关联的量,时间变化,路程也随着变化。当路程和对应时间的比的比值总是一定(也就是速度一定)时,我们就说行驶的路程和时间成正比例关系,行驶的路程和时间是成正比例的量。

请学生完整地说一说表中的路程和时间成什么关系。

【设计说明:正比例的意义比较抽象,建立正比例的概念,首先要对变量有比较充分的感知。为此,在呈现表格后,先引导学生联系汽车行驶的过程体会到汽车行驶的时间和路程是在不断变化的,再通过观察和比较进一步体会到时间和路程是两种相关联的量,时间变化,路程也随着变化。这既有利于学生联系已有的生活经验感知变量的特点,又渗透了变量和自变量的含义,有利于学生初步体会变量之间的关系。在此基础上,引导学生观察表格,讨论时间和路程的变化规律,并对学生中可能出现的情况作充分预设,既为学生自主发现规律提供了足够的空间,凸显了学生的主体地位,又突出了本课的教学重点,使每一个学生都能在观察、比较、分析、归纳等具体活动中经历学习过程,获得对正比例意义的充分感知。在揭示文字表达式后,让学生交流这里的“一定”表示什么意思,并结合文字表达式说一说两种量的变化规律,促使学生对已经积累的感性认识进行抽象和概括,为进一步揭示正比例的意义做好准备。】

2.教学“试一试”。

让学生自主读题,根据表中已经给出的数据把表格填写完整。

谈话:请同学们仔细观察表格,先想一想购买铅笔的数量和总价是怎样变化的,再写出几组对应的总价和数量的比,并比较比值的大小,看这两种量是按什么样的规律变化的。

提问:这里总价好数量的比值表示什么?你能用式子表示它们之间的关系吗?

根据学生的回答,板书:

让学生结合上面的关系式,判断铅笔的总价和数量是否成正比例,并说明理由。

【设计说明让学生继续结合具体的实例进一步感知成正比例的量的.特点,积累对成正比例的量的感性经验,为理解正比例的意义提供更丰富的感性认识。】

3.抽象概括

请大家回顾一下,例1和“试一试”中分别是什么样的两种量?成正比例的两种量有什么共同特点?

启发:如果用字母x和y分别表示两种相关联的量,用k表示它们的比值,正比例关系可以用什么样的式子来表示?

根据学生的回答,板书:,并揭示课题。

请大家想一想,生活中还有哪些成正比例的量?

【设计说明:引导学生回顾例1和“试一试”的学习过程,说一说成正比例的量有什么共同特点,并在充分交流的基础上,通过抽象和概括得到正比例关系的字母表达式,既可以促使学生主动把已经积累的的感性经验上升的理性认识,获得对正比例意义的准确把握,又有利于学生初步感悟数学抽象的过程和方法,体验符号化的思想,发展数学思考。】

三、分层练习,丰富体验

1.“练一练”第1题。

出示题目后让学生说一说表中列出了哪两种量,这两种量是怎样变化的。

讨论:这两种相关联的量是按什么规律变化的的呢?请大家先写几组相对应的的生产零件的数量和所用时间的比,并比较比值的大小,再想一想这个比值表示什么,可以用什么样的式子表示题中几种量之间的关系。

学生按要求活动,并组织反馈。

提问:张师傅生产零件的数量和时间成正比例吗?为什么?

2.“练一练”第2题。

出示题目后,请学生说一说表中列出的是哪两种量,它们是怎样变化的,在独立进行判断,并交流判断时的思考过程。

3.练习十第1题。

先请学生说一说是怎样发现订阅数量与总价的变化规律的,可以用什么样的式子表示它们的关系,为什么说订阅的总价和数量成正比例关系?

4.练习十第2题。

出示题目后,让学生按要求在方格纸上把正方形放大,并演示放大后的正方形,并说说是怎样画出放大后的正方形的,放大后的正方形的边长各是多少厘米。

出示题中的表格,让学生独立填表并比较填出的数据,说一说正方形的周长和边长是按什么规律变化的,它们是否成正比例;正方形的面积和边长是按什么规律变化的,它们是否成正比例。

结合学生的回答小结。

追问:判断两种相关联的量是否成正比例关系,关键看什么?

【设计说明:紧紧围绕本节课的重点和难点,有层次、有针对地设计练习,既有利于学生进一步加深对正比例意义的理解,掌握判断两种量是否成正比例关系的过程和方法,又有利于学生初步体会变量的特点,感悟函数的思想,发展用数学语言表达的能力。】

四、反思回顾,提升认识

谈话交流:这节课我们学习了什么?怎样判断两种相关联的量是不是成正比例关系?你还有哪些收获和体会?

【板书设计】

正比例的意义

两种相关联的量

六年级数学下册教案 篇5

课前准备

教师准备PPT课件

教学过程

⊙问题导入

师:同学们,上节课我们复习了平面图形的特征,到目前为止,我们学习了哪些平面图形?

预设

生1:我们学过三角形、长方形、正方形、平行四边形、梯形。

生2:我们还学过圆和圆环。

(学生边说教师边把相应的图形贴在黑板上)

师:什么是平面图形的周长和面积呢?我们今天就一起来复习关于平面图形的周长和面积的相关知识。(板书课题:平面图形的周长和面积)

⊙回顾与整理

1.周长和面积的意义。

师:什么是平面图形的周长?什么是平面图形的面积?

预设

生1:围成一个图形的所有边长的总和叫做这个图形的周长。

生2:物体的表面或封闭图形的大小叫做面积。

2.周长和面积的计算公式。

(1)我们学过哪些图形的周长和面积的计算公式?

长方形、正方形、平行四边形、三角形、梯形、圆的周长和面积的计算公式。

结合学生的回答,有序地画出相关的平面图形,为构建知识网络做准备。

(2)如何计算这些平面图形的周长和面积?各个面积公式之间有什么联系?

①长方形的周长=(长+宽)×2,用字母表示为C=2(a+b)。

②长方形的面积=长×宽,用字母表示为S=ab。

③正方形是特殊的长方形,正方形的周长=边长×4,用字母表示为C=4a;面积=边长×边长,用字母表示为S=a

六年级数学下册教案 篇6

新人教版六年级下册数学第二单元百分数(二)《折扣》教案设计

教学目标:

1.让学生感受数学与生活的联系。

2、学会合理、灵活地选择方法,锻炼运用数学知识解决实际问题的能力。

3.明确折扣的含义,能熟练地把折扣写成分数、百分数。正确解答有关折扣的实际问题。

教学重点:

会解答有关折扣的实际问题。

教学难点:

合理、灵活地选择方法,解答有关折扣的实际问题。

教学准备:课件、计算器

一、导入新课:

圣诞节期间各商家搞了哪些促销活动?谁来说说他们是怎样进行促销?(学生汇报调查情况。)

二、在生活情境中,讲授新知:

1.教学折扣的含义,会把折扣改写成百分数。

刚才大家调查到的打折是商家常用的手段,是一个商业用语,那么你所调查到的打折是什么意思呢?比如说打“七折”,你怎么理解?

你们举的例子都很好,老师也搜集到某商场打七折的售价标签。(电脑显示)

①大衣,原价:1000元,现价:700元。

②围巾,原价:100元,现价:70元。

③铅笔盒,原价:10元,现价:?

④橡皮,原价:1元,现价:?

动脑筋想一想:如果原价是10元的铅笔盒,打七折,猜一猜现价会是多少?如果原价是1元的橡皮,打七折,现价又是多少?

仔细观察,商品在打七折时,原价与现价有一个什么样的关系?带着这样的问题,可以利用计算器,也可以借助课本,四人小组一起试着找到答案。

讨论,找规律:

A、学生动手操作、计算,并在计算或讨论中发现规律。

B、学生汇报寻找的方法:利用计算器,原价乘以70%恰好是标签的售价;或现价除以原价大约都是70%;或查书,等等。

归纳,得定义:

A、通过小组讨论,谁能说说打七折是什么意思?打八折是什么意思?打八五折呢?

B、概括地讲,打折是什么意思?如果用分母是十的分数,该怎样表示?( “几折”是就是十分之几,也就是百分之几十)

练习:

①四折是十分之( ),改写成百分数是( )。

②六折是十分之( ),改写成百分数是( )。

③七五折是十分之( ),改写成百分数是( )。

④九二折是十分之( ),改写成百分数是( )。

2.运用折扣含义解决实际问题。

例1:爸爸给小雨买了一辆自行车,原价180元,现在商店打八五折出售。买这辆车用了多少钱?

(1)指导学生分析题意:打八五折怎么理解?是以谁为单位“1”?

(2)学生试做,讲评。

3、巩固练习:

(1)爸爸买了一个随身听,原价160元,现在只花了九折的钱,比原价便宜了多少钱?

A、打九折怎么理解?是以谁为单位“1”?

B、学生试做,讲评。

(2)判断:

① 商品打折扣都是以原商品价格为单位“1”,即标准量。( )

② 一件上衣现在打八折出售,就是说比原价降低10%。( )

(3)完成课本中P8“做一做”练习题。