返回首页
文学网 > 短文 > 教学教案 > 正文

折扣教学设计

2026/01/11教学教案

文学网整理的折扣教学设计(精选6篇),供大家参考,希望能给您提供帮助。

折扣教学设计 篇1

教学内容:

苏教版义务教育教科书《数学》六年级上册99页例9、练一练,第100页练习十六第7-10题。 教学目标:

1.让学生理解商品打折出售的含义,学会列方程解答“已知一个数的百分之几是多少求这个数”的实际问题,理解不同形式的有关打折的简单问题之间的联系,会解答此类问题。

2.让学生在学习过程中进一步体会列方程解答实际问题的价值和意义,进一步培养模型思想,进一步体会数学与现实生活的联系,增强数学应用意识,提高分析问题、解决问题的水平。

教学重点:

理解折扣含义,学会列方程解答简单的百分数实际问题

教学难点

灵活运用数量关系解决关于折扣的'不同实际问题 教学准备 多媒体课件

教学过程

一、认识打折

谈话:最近我们学习了有关纳税、利息等问题,这些问题都是百分数在现实生活中的应用。这节课我们继续学习百分数在现实生活中的应用,就是关于商品打折问题。(板书课题)你们遇到过商品打折出售的问题吗?能把你所了解的有关知识介绍给大家吗?

问:打“八折”是什么意思?打“八三折”呢?

谈话:现在大家了解了打折的意义,下面我们就来研究有关打折的实际问题。

二、教学例题

1.审题 仔细审题。 下面我们就一起来看例4的场景图。

提问:你知道“所有图书一律打八折销售”是什么意思吗?

在学生回答的基础上指出:把商品减价出售,通常称做“打折”。打八折就是按原价的80%出售,打“八三折”就是按原价的83%出售。

2.探索解法。

提出例4中的问题:《趣味数学》原价多少元?

启发:图中的小朋友花几元买了一本《趣味数学》?这里的“12元”是《趣味数学》的现价,还是原价?在这道题中,一本书的现价与原价有是什么关系?

追问:“现价是原价的80%”这个条件中的80%是哪两个数量比较的结果?比较时要以哪个数量作单位1?这本书的原价知道吗?你打算怎样解答这个问题?

进一步启发:根据刚才的讨论,你能找出题中数量之间的相等关系吗?

提出要求:你会根据这个相等关系列出方程吗?

学生在小组里互相说一说,再在全班交流。教师根据学生的回答板书:

原价×80%=实际售价

根据学生的回答,板书。

解:设《趣味数学》的原价是ⅹ元。

ⅹ×80%=12

ⅹ=12÷0.8 ⅹ=15

答:《趣味数学》的原价是15元

3.引导检验,沟通联系。

启发:算出的结果是不是正确?你会不会对这个结果进行检验?

启发学生用不同的方法进行检验:可以求实际售价是原价的百分之几,看结果是不是80%;也可以用原价15元乘80%,看结果是不是12元。

4.指导完成“练一练”

问:《成语故事》的现价与原价有什么关系,知道了现价怎样求原价?

五、巩固练习

1.做练习十六第8题。

学生解答后追问:根据原价和相应的折扣求实际售价时,可以怎样想?

2.做练习十六第9题。

当原价未知时,应该怎样解答?为什么?

3.做练习十六第10题。

为什么用除法计算,计算结果为什么是九折?

六、全课小结

提问:回忆一下,打折是什么意思?一件商品的现价、原价与折扣之间有什么关系?

提出要求:课后抽时间到附近的商场或超市去看一看,收集有关商品打折的信息,并提出一些问题进行解答。

板书:

商品打折问题 原价×80%=实际售价

解:设《趣味数学》的原价是ⅹ元。

ⅹ×80%=12

ⅹ=12÷0.8

ⅹ=15

答:《趣味数学》的原价是15元。

检验:12÷15=0.8=80% 15×80%=12(元) 反思:

折扣教学设计 篇2

教学内容:

苏教版义务教育课程标准实验教科书第9—10页练习三的第5—9题。

教材学情分析:

前一节课学习的内容是“已知一个数的百分之几是多少,求这个数”的简单实际问题,学生已经基本掌握了这类问题的思考方法和解决问题的步骤,本节课是上一节基础上的安排练习课,旨在让学生熟悉解决“已知一个数的百分之几是多少,求这个数”实际问题的方法和步骤,形成相应的技能。

练习三第5题是一组相互关联的实际问题,两小题的条件类似,但问题不同,思考方法也不同;第6题也是一组对比题。通过练习重点帮助学生沟通“求一个数的百分之几是多少”和“已知一个数的百分之几是多少,求这个数”这两类实际问题思考方法的联系,促进学生在整体上把握有关百分数的实际问题的`思考方法;第7—9题与例题相比稍有变化,需要学生更加灵活地选择和组合信息,并正确分析数量关系。

教学目标:

⑴使学生联系百分数的意义进一步认识“折扣”的含义,了解打折在日常生活中的应用,并联系对“求一个数的百分之几是多少”的已有认识,熟悉列方程或列算式解答“已知一个数的百分之几是多少,求这个数”的题型,能应用这些知识解决一些简单的实际问题,体会以及折扣和分数、百分数的关系,加深对百分数表示的数量关系的理解。

⑵使学生在探索解决问题方法的过程中,进一步培养独立思考、主动与他人合作交流、自觉检验等习惯,体验成功的乐趣,增强学好数学的信心。

⑶继续体会数学知识服务于生活的价值,感受学习数学的价值,激发学习数学的兴趣。

教学重点难点:掌握“已知一个数的百分之几是多少,求这个数”的基本思路和方法。

教学流程:

一、回顾知识,揭示课题。

⑴回顾关于“打折”的知识。

说说“七折”的知识。重点抓住“七折”的含义展开,如重点句子现价是原价的70%,数量关系式是原价70%=现价等;体会表示“七折”的各种方式,有“七折”、70%、7/10和0。7四种。

⑵揭示课题。

揭示课题——“折扣问题练习课”。

二、集中练习,内化知识。

⑴完成练习三第5题。

独立完成,反馈算式或方程;比较两小题的相同点和不同点,相同点是条件都有原价和折扣,不同点是要解决的问题不同,第一问求的是现在的价钱,第二问是比原价便宜多少元。

⑵完成练习三第6题。

独立完成,反馈算式或方程;沟通两小题之间的联系,它们的相同点是“一律九折”,第一题已知原价求现价,第二题是已知现价求原价,刚好相反。

⑶完成练习三第7—9题。

独立在课堂作业本上完成。第7题抓住每张反馈,现价54元是2张足球票的价钱,和前面不同的是要注意2张票,先或者后要算出每张票的价钱;第8题从“贵宾卡”的不同之处切入,体会贵宾卡的九五折是在八折优惠的基础上再打的折。

三、阅读课本,拓展学生的视野。

⑴阅读“你知道吗”。

学生阅读“你知道吗”,准备交流。

⑵交流“你知道吗”。

成数的产生,产生于农业;成数的表示方法,如有三成、3/10、30%和0。3四种;成数的意义,表示十分之几;成数应用的拓展,工业生产,形容旅游事业、交通事故等。

折扣教学设计 篇3

教学目标:

1、知识目标:理解打折的含义,进一步解决求一个数的百分之几的问题的解法。使学生进一步理解生活中打折等常见的优惠措施,并能根据实际情况选择最佳的方案与策略。

2、能力目标:通过小组合作和研究性学习,培养学生收集、分析和处理信息的能力及运用所学知识解决实际问题的能力。

3、情感目标:感受数学的魅力,能够用数学的眼光来看待周围的事物。

教学重点:

理解打折的含义,能够解决求一个数的百分之几的问题。

教学过程:

一、激趣导入:

猜礼品的价格。师出示一包铅笔、一本笔记、一套尺子、一只杯子。

“看过’幸运52’吗?今天我们学习他们来猜猜这几样东西的价钱,允许猜3次,谁猜中了就奖给谁!”为了公平起见,我将价格写在纸上,免得大家怀疑我。

铅笔约2元,笔记本3元,尺子二元,杯子5元

(学生猜价时板书:折扣)

二、新授

(一)课前老师让大家收集了有关折扣的信息,哪位同学愿意来介绍一下。

(二)下面请同学们以小组为单位交流一下所收集的信息,看看你能从这些信息中获得怎样的知识?

(板书:现价是原价的百分之几)

(三)练习:课件1

七折表示( )

六五折表示( )

八折表示 ( )

九五折表示( )

(四)应用

例4:课件2

(1)张老师准备买一条裤子,原价180元,现在商店打八五折出售,买这条裤子需要多少钱?

(2)杨老师买了一双阿迪达斯的旅游鞋,原价460价,打八折,比原价便宜了多少元? (3)课前发送的笔记本,原价2元,实际花了1。5元,这个笔记本打了几折呢?

(五)小结

看来通过这几道题同学们理解了折扣的'含义,还有什么问题吗?

下面请看大屏幕:课件3

有两家店卖“米奇书包”,却打着不同的招牌:A店八折,B店九折。如果是你,会上哪家店买?为什么?

学生1:我会上A店买,因为A店便宜。师引导,从哪方面考虑?(板书:折扣)学生2:我会上B店买,因为一分钱一分货,可能B店的质量会比较好。(从质量考虑)学生3:我要先看看他们的原价是怎样的,再去看打折。

小结:我们看到了各种各样的优惠的广告后,还要从这么多因素去考虑

2、出示两家店该商品的原价A:95元;B:80元,怎么选择?

再次选择,怎么选?

师:那你受到了什么启发吗?

师:也就是说我们买东西时不能只看折扣,因为价格不单单受到折扣的影响,还受到原价/质量等众多因素的影响。

(课件4)

师:但是面对折扣,老师也曾遇到过一个问题,大家能帮助我解答一下吗?有一次我买衣服,门口写着全场五折起,我一看挺便宜呀,就想买一件,我看中了一件标价200元的上衣,一问却要160元,这也不是五折呀,这是怎么回事呢?

师:看来我们不但要准确理解折扣,还要学好语文,不要被商家所骗。

师:折扣是一种促销的方式,那么除了折扣还有哪些促销的方式呢?

(课件5)

东方商厦现在就正搞促销,满300元送180,时代购物打六五折,现在有一件标价300元的衣服,如果你是顾客,你会从哪个商场买呢?

师:首先哪位同学能说一说,买300送180,是什么意思?实际上是打几折?

师:看来在购物时,不但要看折扣,还要看自己的实际需要,客观的选择最佳策略。那么通过本节课,你有什么收获吗?

生1:我们做事之前要善于动脑,运用我们所学的数学知识,选择最佳的方案和策略。

生2:对于生活中的打折问题要仔细分析,不要被商家的一些表面行为所蒙骗。

生3:打折虽然给我们带来一些优惠,但仍要具体问题具体分析,有些急需品不必为了一些优惠等到打折后再去购买。

生4:有些不法商贩用打折做幌子,暗中早已提高了原价,打折后的价格其实比原价还要高,所以我们在购物时要货比三家,认真思考。

那么结合你的收获,课下请同学们完成这道实践作业:

(课件6)

有一款海尔空调,进价是4000元,现标价为5000元,你是这家店的老板,会设计怎样一条打折广告,来促销这款空调?

看看哪位同学的设计最合理,最能吸引顾客,

折扣教学设计 篇4

教学内容:

教学目标:

1、使学生在理解“折扣”含义的基础上,明白有关折扣的应用题的数量关系与“求一个数的百分之几是多少”的应用题的数量关系相同,能正确列式计算。

2、能从生活中获取信息,解决实际问题,增强应用数学的意识。

教学重点:理解“折扣”的含义,懂得求折扣应用题的数量关系与“求一个数的几分之几或百分之几是多少”是相同的。

教学难点:独立分析,找准分析方法。

教学过程:

一、导入

师:每当过年过节或者换季、店庆的时候,商店都会搞些促销活动。现在请你汇报一下你在商店调查的情况。

二、新课

1、教学折扣的含义,会把折扣数改写成百分数。

(1)揭示课题。

师:刚才大家调查到的.打折是商家常用的手段,是一个商业用语。那么,你调查的打折是什么意思?比如说打“七折”,你怎么理解?

学生回答。

师:你们举的例子都很好,老师也收集到商场打七折的部分商品信息。出示:

大衣,原价:1000元,现价:700元

围巾,原价:100元,现价:70元

铅笔盒,原价:10元,现价:?元

橡皮,原价:1元,现价:?元

师:动脑筋想一想,如果原价是10元的铅笔盒打七折,现价是多少?如果原价是1元的橡皮打七折,现价是多少?

学生回答。

师:仔细观察,商品打七折时,现价与原价有一个什么样的关系?可以同桌相互讨论下。

(2)找规律。

学生汇报讨论结果。

现价是原价的70%。

师:70%你是怎么得来的?(700÷1000=70%,70÷100=70%……)

(3)归纳概括。

师:谁能说说打七折是什么意思?打八折是什么意思?打九折呢?打八五折呢?

师:概括地讲,打折是什么意思?分母是10的分数,该怎样表示?

小结:商店有时降价出售商品,叫做打折扣销售,通称“打折”。几折就表示十分之几,也就是百分之几十。

(4)练习。

①四折是十分之( ),改写成百分数是( );八二折改写成百分数是( )。

②商品打八折出售,就是按原价的( )%出售,也就是降价( )%;打七五折出售,就是按原价的( )%出售,也就是降价( )%。

③某种商品实际售价是原价的95%,也就是打( )折出售;某种商品降价30%出售,也就是打( )折出售。

2、运用“折扣”的含义解决实际问题。

师:我们弄清楚了折扣的含义,下面一起去买买东西吧。

(1)出示例4的第(1)题:爸爸给小雨买了一辆自行车,原价180元,现在商店打八五折出售。买这辆车用了多少钱?

提问:①打八五折怎么理解?

②是以哪个量为单位“ 1” ?

③可以改写成一道怎样的应用题?

④怎样列式计算?

板书: (元) 问:为什么这样列式,你是怎样想的?

(2)提问:便宜了多少钱?

板书: (元) 问:怎样想的?

问:还可以怎样计算?

板书: (元) 问:怎样想的?

(3)出示:爸爸买了一个mp3,商店给打了九折优惠,只花了180元,这个mp3原价多少钱?

提问:①打九折怎么理解?

②是以哪个量为单位“ 1” ?

③怎样列式计算?

板书: 问:为什么这样列式,你是怎样想的?

三、巩固练习

1、独立完成p97/做一做,学生板演,集体订正。

2、p101/练习二十三的第2题。

3、甲、乙、丙三个鞋城搞促销活动,同一种商品在三个鞋城的原价相同,甲鞋城所有商品一律打八折,乙鞋城所有商品满100元返20元现金,丙鞋城所有商品降价25%出售。如果买一双原价180元的旅游鞋,哪个鞋城最便宜?哪个鞋城最贵?相差多少钱?

四、课堂小结

通过这节课的学习,同学们感受到了生活中有很多数学知识,我们要学会运用所学的知识去解决生活中的实际问题。

五、作业

p101/练习二十三的1、3题。

折扣教学设计 篇5

本节课是在了解“成数与折扣”的基础上进一步认识在生活中的应用,大多数同学在日常生活中通过新闻媒体、交往、购物等多少都有所接触、了解。但学生的这种认识还只是凭借生活经验产生的感性认识。

教学内容:教科书第4页例1和第5页例2,完成第5页“做一做”中的题目及练习二的习题。

教学目的:使学生理解成数的意义,知道它在实际生产生活中的`简单应用,会进行一些简单计算。

教学过程

一、导入

教师;前面我们学习了百分数的一些应用,像计算发芽率,出勤率,成活率,还有计算储蓄的利息等。今天我们来学习“成数”,板书课题;成数

成数常常用来说明农业的收成,比如说今年的小麦比去上增产二成,苹果比去上减产一成,这“二成”和“一成”是用来说明收成情况的。

说明并板书;“一成”就是十分之一,改写成百分数就是10%;“二成”就是十分之二,改写成百分数就是20%。

小麦比去年增产二成,也就是小麦比去年增产十分之二,即百分之二十。下面让学生回答:

“苹果比去年减产一成,表示什么意思?”(表示苹果比去年减产十分之一,即百分之十。)

“油菜去年比前年增产三成,表示什么意思?”(表示油菜去年比前年增产十分之三,即百分之三十。)

二、新课

1.教学例1.

出示例1,让学生读题。提问:

“去年比前年多收了二成五,表示什么意思?”(多收了二成五,表示多收了25%。)

“怎样计算?根据什么?”学生口述。

教师板书算式:41.6十41.6×25%或者41.6×(1十25%)

2.教学例2.

教师:你们在商店有没有看到过某某商品打几折出售?比如“运动服打八折出售”,这是什么意思呢?就是按原价的80%出售。提问:

“衬衫打六折出售是什么意思?”(衬衫按原价的60%出售。)?“书包打七五折出售是什么意思?”(书包按原价的75%出售。)

出示例2,让学生读题,然后每个学生自己列式计算。

让学生说算式并说明根据。

教师板书算式:430—430×90%或者430×(1—90%)

三、课堂练习

1.做第5页“做一做”中的题目。

先让学生自己做,做完后让学生说一说:

“是怎样做的?根据是什么?”“还有别的做法吗?”

教师:根据题意可以看出,一个水壶的85%是25.5元,所以这道题可以用方程

解,也可以直接用除法做。

用方程解,设:这个水壶的原价是2元。

85%×x=25.5

x=30

直接用除法做,25.5÷85%=30(元)。

2.做练习二的第1、2、5题。

指定学生每人口答一小题,其它学生核对。

3.做练习二的第4题。

让学生独立做,做完后一起订正。订正时可以提问:“减产三成是什么意思?”

“去年收的萝卜是前年的百分之几?”(1—30%=70%。)

“怎样列式解答?”学生口述。

教师板书算式:15×(1—30%)或者15—15×30%。

4.做完上面的练习题学有余力的学生,可以做练习二的第7题。

让学生独立做,订正时可以让学生说一说是怎样想的。

教师:因为张大伯的120千克青菜是分两部分卖出的,其中是按每千克2.40元卖出的,剩下的是打八折卖出的。所以可以先求120千克的卖了多少钱,再求剩下的卖了多少钱,最后再把两次卖的钱加起来,就是这些青菜一共卖了多少钱。

算式是:2.40×120×十2.40×120×(1一)×80%

四、作业

练习二的第3题和第6X题。

折扣教学设计 篇6

【设计理念】

"打折"这个概念,在我们日常的社会生活和生产实践中,经常要用到。"打折"应用于很多商品经济领域。可以说,学生对这个概念并不陌生,大多数同学在日常生活中通过新闻媒体,购物等多少有所接触与了解。但学生的这些认识还只是停留于感性认识,如打折,学生都知道是便宜了,比原价少了,但真正能够解释清楚的并不多,对折扣的知识并未真正理解。因此,本人在设计教案时,从学生熟悉的日常购物行为引入新课,通过实际的例子,在师生的互动与讨论中,帮助学生逐步修正对"折扣"的认识,从日常的感性认识上升为科学的理性认识。沟通折扣与百分数知识之间的联系,进一步完善百分数的知识体系。

数学最终是要为生活服务的,回归生活的数学才是有用的数学。本课内容和日常生活密切联系,学了就可以学以致用,可以让学生真正体会到数学的价值。

【教学目标】

(一)知识与技能

1,使学生联系百分数的意义认识"折扣"的含义,体会以及折扣和分数,百分数的关系,加深对百分数的数量关系的理解。

2,了解"打折"在日常生活中的应用,学会联系"求一个数的百分之几是多少"的知识,学会列方程解答"已知一个数的百分之几是多少,求这个数"的题型,能应用这些知识解决一些简单的生活实际问题。

(二)过程与方法

培养学生根据实际情况选择最佳方案与策略的能力,提高运用所学知识解决实际问题的能力。

(三)情感态度与价值观

1,鼓励学生大胆尝试,从中获得成功的体验,激发学生学习数学的热情。

2,进一步让学生感受数学和人们生活的密切关系,体会到数学的价值。

【教学重点】

在理解"折扣"意义的基础上,懂得求折扣应用题的数量关系与"求一个数的几分之几是多少"的应用题数量关系是相同的,并能正确计算。

【教学难点】

能应用"折扣"这个知识解决生活中的相关问题,培养学生与日常生活的密切联系,体会到数学的应用价值。

【教学准备】

教师搜集有关数据,并制作课件。

【教学过程】

一,谈话激趣,引入新知

1,同学们,你们在购物时,享受过优惠吗你知道商家为了招揽顾客,经常采用哪些促销手段(降价,打折,买几送几,送货上门等)

2,有些同学提到了"打折"这个词,你们都见到过哪些商品打折,打的是几折

3,今天,我们就来学习一下与我们生活紧密相关的数学问题——打折。

(板书课题:折扣)

【设计意图:购物学生都经历过,从学生感兴趣的事情入手,用拉家常式的谈话方式展开全课的教学,在平淡之中见真实。】

二,尝试交流,探索新知

1,认识"打折"。

(1)让学生交流,关于折扣已经知道些什么

(2)概括:"打折"的含义,商店有时降价出售商品,叫做打折扣销售,通称"打折"。

(3)看到"打折"这个词,你想到了什么(价钱便宜了)

2,教学例4。

(1)课件出示小雨和他爸爸逛商场的情境。让学生观察画面,从中得到什么数学信息

定价在广告横幅上:店庆五周年,电器九折,其他商品八五折。

(2)让学生说一说:九折是什么意思八五折表示什么意思

归纳:几折表示十分或百分之几十。板书:九折=90%八五折=85%

【设计意图:利用学生在日常生活中触手可及的商场购物这一事例,创造教学氛围,让学生体会到数学知识来源于生活。】

(3)练习:说一说下面的折扣表示原价的百分之几(同学互说后,教师小结)

八折二折九五折六八折半折七二折

(学生同桌互相说,一个说一个听,相互检查)

【设计意图:学生理解了折扣的含义后,立马做个小练习进行巩固,为后面的例题和练习打下一个坚实的基础。】

(4)课件展示小雨买自行车的过程,学生说一说数学信息,出示例4第1题。

a,学生思考回答:①打八五折是什么意思②单位"1"是什么

b,解决以上两个问题后让学生独立练习,指名两人板演。

c,学生汇报,教师板书:180×85%=180×0。85=153(元)

答:买这辆自行车用了153元。

d,现价,原价,折数之间有什么关系

学生总结:现价=原价×折数

(5)课件展示爸爸买随身听的过程,学生说一说数学信息。

让学生独立解答,个别汇报时请学生说说自己的解题思路。

学生独立试算――汇报――说解题思路

第一种算法:160—160×90%=160—144=16(元)

解题思路:原价160元,减去现价,就是比原价便宜多少钱。

第二种算法:160×(1—90%)=160×0。1=16(元)

解题思路:原价160元,乘现价比原价便宜了(1—90%)。

答:比原价便宜了16元。

(6)小结:解答这类应用题时,关键是理解打折的含义,把折数化成百分数,再按解百分数应用题方法解答。

【设计意图:教师将学生熟悉的生活情景引入课堂作为教学切入点,引导学生进行知识迁移,学生便能迅速地进入最佳的学习状态,掌握学习的主动权,身临其境地去观察,去分析,去思考,并在理解折扣的意义上生发不同的解题方法,进行方法的.优化。】

三,应用拓展,深化认识

谈话:"折扣"这一现象在我们的生活中太普遍了,因此应用好这一知识就能帮我们很好地解决生活中的一些实际问题。

1,第97页"做一做。

算出下面各物品打折店出售的价钱(单位:元)

篮球80:00书包:105。00课外书:35。00

(六五折)(七折)(八八折)

学生算完书上的问题后,老师补充一个问题:每种物品分别比原来便宜了多少元学生独立完成,之后指名回答。

2,第101页第1题:说一说,从图上获得哪些数学信息

(1)打完折后,每种面包多少元

(2)晚8:00以后,玲玲拿3元钱去买面包,她可以怎样买(让学生多考虑买面包的多种方案)

3,某商场店庆搞促销,一种dvd机原价600元,现价只虽420元,打了几折出售

【设计意图:利用这道题让学生联系"求一个数的百分之几是多少"的知识,学会列方程解答"已知一个数的百分之几是多少,求这个数"的题型】

4,第101页第2题:小明用优惠卡买玩具,可以打八折,节约了9。6元,问:这个玩具多少元

(1)帮助学生理解题意。

(2)学生尝试解决。可以直接列式,也可以列方程解决。

(鼓励学生多开动脑筋,用多种方法解决问题)

5,永正书店和东莞书城销售中小学数学工具书。情境图:永正书店门口写着8折出售;东莞书城门口写着9折出售。

(1)如果是你,会上哪家店买为什么

(2)出示原价:永正书店30元,东莞书城25元。

现在你会怎么选择你想到些什么

【设计意图:设计这道题主要是培养学生做事要考虑周全的良好习惯】

四,拓展提高,解决实际问题。(时间不够,可以留到课后分小组完成)

下学期,我们准备集体一同购买《帮你学数学练习册》和《帮你学语文练习册》,老师去了几家书店,请同学们,以组为单位,制定购买方案,并说出理由。具体情况如下:

我班共37人,两本练习册,原价都是6。5元

书店名称优惠措施

新华书店:降价15%

永正书店:打八八折

东莞书城:买十送一

(教师要深入各个小组中,参与学生方案的制定,但教师不是决策者,决策权在学生手中。)

【设计意图:练习设计围绕本节课的教学目标,具有层次性。同时,开放性练习的设计——采用小组合作,让学生设计购票方案,使学生进一步感受到生活中处处有数学,运用数学知识还能省钱,合理安排日常生活开支,培养了学生自觉应用数学的意识。】

五,课堂总结。

同学们,通过这节课的学习,你有什么感想你们今天的表现都很出色。其实生活中还有许多问题需要我们用数学知识去发现,去思考,去探索,希望大家能做个有心人!

六,板书设计:

折扣(打折)

几折表示十分几或百分之几十。九折=90%八五折=85%

例4,(1)180×85%=180×0。85=153(元)答:买这辆自行车用了153元。

现价=原价×折数

(2)第一种算法:160—160×90%=160—144=16(元)

第二种算法:160×(1—90%)=160×0。1=16(元)

答:比原价便宜了16元。

教学设计自我评析:

新课程标准指出:"数学源于生活,寓于生活,用于生活。教师应重视从学生的生活经验和以有的知识中学习数学和理解数学。"本节课是从学生熟悉的生活情境中,选择教学材料,把新知识,旧知识与日常生活紧密联系在一起,让学生在以有的知识和生活经验的基础上去感受数学,学习数学,应用数学。在教学过程中,为学生提供了自主活动的空间,让每个学生尽可能积极主动地参与,尽可能地满足了学生求知的需要,参与的需要,成功的需要,交流的需要。