返回首页
文学网 > 短文 > 教学教案 > 正文

三角形面积的教学设计

2026/01/16教学教案

文学网整理的三角形面积的教学设计(精选6篇),供大家参考,希望能给您提供帮助。

三角形面积的教学设计 篇1

教学内容:

人教版义务教育课程标准实验教科书五年级上册第84—86页。

教材分析:

三角形面积的计算方法是小学阶段学习几何知识的重要内容,也是学生今后学习的重要基础、《数学课程标准》中明确指出:利用方格纸或割补等方法,探索并掌握三角形,平行四边形和梯形的面积公式、学生在学习三角形面积的计算方法之前,已经亲身经历了平行四边形面积计算公式的推导过程,当学生面临三角形面积计算公式的推导过程时,可以借鉴前面"转化"的思想,且为今后逐渐形成较强的探索能力打下较为扎实的基础、

教学目标:

1、知识与技能:使学生在探索活动中深刻体验和感悟三角形面积计算公式的推导过程

2.过程与方法:使学生经历操作、观察、讨论、归纳等数学活动,进一步体会转化方法的价值,发展学生的空间观念和初步的推理能力。

3.情感、态度与价值观:让学生在探索活动中获得积极的情感体验,进一步培养学生学习数学的兴趣。

教学重点:探索并掌握三角形面积计算公式,能正确计算三角形的面积。

教学难点:

三角形面积公式的探索过程。

教具准备:

课件、平行四边形纸片、两个完全一样的三角形各三组、剪刀等。

学具准备:

每个小组至少准备完全一样的直角三角形、锐角三角形、钝角三角形各两个,一个平行四边形,剪刀。

教学过程

一、复习旧知,导入新课。

1、我们学过求哪些图形的面积,计算公式是什么?

2、我们学校内有一平行四边形的花坛,底是5米,高是3米,学校领导要把这个花坛平均分成两份,分别种上不同颜色的花,该怎样分?每一块的面积是多少?请同学设计一下。

3、同学们,学校要为学校开学典礼准备30条红领巾,大队辅导员想请大家帮忙,算一算,需要多少布料?你们愿意吗?该怎样来计算呢?

师:是的,要先计算一条红领巾的面积,那么红领巾是什么形状的?你会计算它的面积吗?今天我们就来学习计算三角形的面积。板书:三角形的面积。

二、动手操作,探求新知。

1、 猜一猜。找关系

师:1、同学们,长方形的面积跟它的什么有关系?平行四边形的面积跟它的什么有关系?

生:和它的底和高有关。

2、那么,猜一猜,三角形的面积可能跟它的什么有关系呢?(学生可能说边、底、高)那么怎样来验证我们的判断呢?

2、 想一想。找关系

师:想一想,我们在推导平行四边形的面积时,用的是什么方法?那么,可不可以也用转化法把三角形转化成我们会求面积的图形呢?

3、 拼一拼,摆一摆,比一比。找关系

师:请同学们拿出准备好的三角形,按照你的想法,和小组内同学一起拼一拼,摆一摆,折一折看可以把它转化成哪些我们会求面积的图形。

学生小组合作,拼摆图形。教师巡视,帮助学困生拼摆。

汇报。可能摆出正方形,长方形,平行四边形,

思考,这些图形有什么共同点?(都是平行四边形。)现在,你又有什么发现?

归纳:两个完全相同的三角形,可以拼出一个平行四边形。

师:那么,我们拼出的平行四边形、跟所用的三角形有没有关系呢?有什么关系呢?

引导学生答出,平行四边形的面积是三角形面积的2倍。板书:三角形的面积=平行四边形的面积÷2,那么,还有没有其它的关系呢?

4、 画一画,算一算。找关系,得结论。

师:请同学们画出平行四边形的一条高,你发现了什么?

生:平行四边形的高也是三角形的高,底也是三角形的底。

师:那么,我们刚刚得出的结论还可以怎样写?

三角形的面积=底×高÷2

用字母表示三角形的面积。

5、 应用公式,解决问题。

现在我们再来解决大队辅导员老师的`问题吧。学生可能会束手无措,面面相觑于是,教师趁机疑惑不解地问:你们怎么还不解决问题啊?让学生自己说出,需要红领巾的底和高。

教师出示完整题目:一条红领巾的底是100厘米,高是33厘米,做30条这样的红领巾需要多少布料?

学生独立计算,集体订正。

三、练习巩固。

1、 独立完成85页做一做。

2、 完成86页练习的1、题。

3、 完成86页练习的3题。

4、判断下列说法是否正确。

(1)三角形面积是平行四边形面积的一半。( )

(2)一个三角形面积为20平方米,与它等底等高平行四边形面积是40平方米。( )

(3)一个三角形的底和高是4厘米,它的面积就是16平方厘米。( )

(4)等底等高的两个三角形,面积一定相等。( )

(5)两个三角形一定可以拼成一个平行四边形。( )

5、求右图三角形面积的正确算式是( )

①3×2÷2 ②6×2÷2

③6×3÷2 ④6×4÷2

6、 学校准备在校门出口处两旁各建一块三角形交通警示标志牌,底是8分米,高是7分米,请帮忙计算需要多大面积的材料。(引导学生思考“两旁”的意思)。

四、拓展提高:

1、这节课,你有什么收获?还有那些不懂的地方?

2、如果只用一个三角形,你能通过剪,拼等方法推出三角形公式吗?

五、板书设计:

三角形的面积

三角形的面积=平行四边形的面积÷2

三角形的面积=底×高÷2

S=ah÷2

三角形面积的教学设计 篇2

教学目标:

1、在实际情境中,认识计算梯形面积的必要性。

2、在自主探索活动中,经历推导梯形面积公式的过程。

3、能运用梯形面积的计算公式,解决相应的实际问题。

教学重点:

理解并掌握梯形面积的计算公式。

教学难点:

理解梯形面积计算公式的推导过程。

教具准备:

各种梯形各两份,剪刀,课件。

教学过程:

一、揭示课题,明确主题

1、生活中我们能找到许多平面图形,这个教室里有吗?

2、请大家看看这组图片,看看你发现了谁?找到了就立刻喊出它名字!出现次数最多的是……?(梯形)板书

3、梯形,四年级的时候我们已经认识它了,谁来介绍一下它。

4、今天,我们来更深入地了解这位朋友,研究梯形的面积。(板书)

二、回忆旧知,建立联系

1、面积,我们现在已经会计算哪些图形的面积了?他们计算方法你们还记得吗?(课件)

2、回忆一下,平行四边形和三角形的面积计算方法我们是怎样推导出来的?还记得吗?

3、同学们,我们在研究它们面积的计算时候,都用到了一种非常重要的数学思想——转化。(板书)把要研究的图形转化成已经学过的图形来发现他们之间的联系,进而推导出面积计算的公式、这种思想,这节课我们也要用到。

三、转化梯形,推导公式

(一)应用的需要引出猜想

1、同学们喜欢什么体育运动?喜欢篮球吗?(课件出示篮球场地)你们知道这一处是什么区域吗?这是3秒钟限制区,是限制对方队员在这个区域内停留不能超过3秒钟。

2、但是梯形面积的计算方法我们还没有学过,你猜想梯形的面积可能与什么有关?你想怎样推导出梯形面积的计算方法呢?

3、同学们都很有想法,那到底是不是像同学们想的那样呢?让我们来动手验证一下。在动手操作之前,老师提出三点建议:

(1)想想能把梯形转化成学过的什么图形。

(2)根据转化图形与梯形的关系,推导出梯形面积计算的.方法。

(3)填写好汇报单,比一比,哪个小组的动作快。明白了吗?开始吧!

(二)小组活动十分钟

(三)汇报

1、刚刚同学们把梯形转化成了多种图形!现在让我们请这几个小组的同学说说他们的想法。大家注意听,你们的意见相同吗?你还有补充吗?汇报:平行四边形:两个怎样的梯形可以拼成一个平行四边形?还有的同学拼成的是长方形,让我们来看看他们是怎么拼的。正方形是特殊的长方形,那你们的推导的结果应当是一样的。是吗?

2、师:同学们,观察这些图形,无论长方形还是正方形,都是……。再看,(移动图形)你发现什么了?过渡:看来,只要是两个完全相同的梯形,就能拼成一个……、(板书)平行四边形的面积我们学过:……(板书)然后我们就可以根据两种图形间的联系来推导梯形的面积了。谁来帮老师梳理一下。平行四边形的底就是梯形的………,平形四边形的高就是……,所以梯形的面积……为什么除以2?

3、刚才展示的都是拼组的方法,还有些同学只用一个梯形就完成了任务,他们用了分割的方法。你们都看懂了吗?请这个小组的同学来简单说说你们是怎么推导的。你们小组的方法真独特!方法不同,那你们推导的结论呢?

4、总结:同学们真爱动脑筋,想出了这么多不同的方法。但这些方法都有共同点。谁来说说?

5、是不是这样啊?那大家就一起把我们用“转化”的方法推导出的梯形面积公式读一读吧!(课件)如果用字母表示你会吗?

6、在这个公式中,哪里应该引起我们注意呢?在计算的时候一定不要忘记。

四、加深理解,巩固新知。

1、 总结:好了,同学们,刚刚大家用学过的知识,通过拼合,分割,旋转,平移等方法,把梯形转化成了学过的图形,根据图形间的联系就推导出了梯形面积的计算方法。

2、这个方法你们记住了吗?那老师可要考考你了!(判断题)

3、通过刚刚的研究和辨析,相信大家对梯形面积的计算方法一定有了深刻的理解吧!这个三秒限制区到底多大呢?你会求吗?需要什么条件?(课件出示)动笔试试吧。

4、梯形面积的计算方法在生活中经常用到,你们想用新知识来解决一些生活中的问题吗?

5、梯形面积的计算方法在生活中还有更广泛的应用,小到…、大到…、都会用到它。

五、结语

转化在数学当中是一种非常重要而又常用的思想。在图形的学习中,同学们多次用到了转化的策略,(课件)其实在学习计算时我们也用到了。那我们转化的目就是化未知为已知。以后你再遇到一个未知的新问题,你会怎样想呢?是不是任何未知的问题都可以转化呢?这个问题留给同学们去思考。

三角形面积的教学设计 篇3

教学内容:第75页及练习十八1-4题

教学要求:

1、理解三角形面积公式的推导过程,并能正确地运用公式计算三角形的面积。

2、通过教学培养学生分析、推理能力和实际操作能力,发展学生的空间观念。

3、在指导操作过程中,引导学生运用转化的方法探索规律。

教学重点:三角形面积计算公式的推导。

教学难点:理解公式中除以2的道理。

教具:准备三种类型的三角形,每种2个完全一样,投影片若干。

学具:完全相同的两个直角三角形、两个锐角三角形、两个钝角三角形。

教学过程:

一、复习铺垫

1、提问:谁能说说长方形、平行四边形的面积计算公式是怎样的?

2、(幻灯出示)口答:计算图形面积

二、导入新课

幻灯出示一个三角形

提问:它是一个什么图形?

它的底和高分别是多少?

它的`面积怎样算呢?板书课题:三角形面积的计算。

三、讲授新课

(一)、用数方格的方法计算三角形的面积。

幻灯出示课本第75页上面的图,教师说明不够一格的都按半格算。让学生说出它们的底和高各是多少?面积是多少?

得出用数方格的方法计算三角形的面积不准确,又很麻烦。

质疑:怎样计算三角形的面积呢?

(二)、通过操作总结三角形的面积计算公式。

1、从直角三角形推导。

我们能不能把三角形转化成已经学过的图形,再进行计算面积呢?

(1)让学生动手拼,教师将学生拼出的图形一一展示出来。

(2)这些图形中哪些图形的面积你们会算?

(3)每个直角三角形的面积与拼成的长方形和平行四边形的面积有什么关系?

教师重述:每个直角三角形的面积是拼成的长方形或平行四边形面积的一半。

2、从锐角三角形推导。

(1)让学生试拼,可以相互讨论。

(2)教师指导,突出旋转和平移。

(3)每个锐角三角形的面积与拼成的平行四边形的面积有什么关系?

教师强调:每个锐角三角形的面积是拼成的平行四边形面积的一半。

3、从钝角三角形推导。

(1)学生操作。

(2)每个钝角三角形的面积与拼成的平行四边形的面积有什么关系?

4、归纳总结规律。

通过以上实验可以看出:两个完全一样的三角形,不论是直角三角形、锐角三角形、钝角三角形都可以拼成一个平行四边形。大家想想:

(1)这个平行四边形的底与三角形的底是什么关系?高又怎么样?

(2)这个平行四边形的面积和三角形的面积有什么关系?

得出:三角形的面积=底×高÷2

(3)如果用S表示三角形面积,用a和h分别表示三角形的底和高,那么三角形的面积计算公式用字母怎么表示呢?

板书:S=ah÷2

(三)、运用面积公式计算三角形的面积。

1、出示数方格求面积图:谁能用公式计算方格图上的三个三角形的面积?三个三角形的面积为什么都相等?

2、出示例题让学生试做。

说一说计算三角形面积为什么要除以2?

3、看书质疑。

4、做一做书本第77页

四、课堂小结

提问:1、这节课我们主要研究什么?

2、求三角形的面积有几种方法?哪一种求面积的方法更方便,更准确?

3、要求三角形面积必须知道什么?怎样求?

五、巩固练习

练习十八1、3(1)

六、课堂练习

三角形面积的教学设计 篇4

一、教学目标:

1、使学生在探索活动中深刻体验和感悟三角形面积计算公式的推导过程。

2、在动手操作的活动中,逐步培养学生归纳、推理和语言表达的能力。

3、激发学生学习数学的兴趣,学会学习数学的方法,并通过小组合作,培养学生的团队精神。

二、教材分析:

三角形面积的计算方法是小学阶段学习几何知识的重要内容,也是学生今后学习的重要基础。《数学课程标准》中明确指出:利用方格纸或割补等方法,探索并掌握三角形、平行四边形和梯形的面积公式。为落实这一目标,这部分教材均是以探索活动的形式出现的,学生在学习三角形面积的计算方法之前,已经亲身经历了平行四边形面积计算公式的推导过程,当学生亲身经历了三角形面积计算公式的推导过程时,不仅可以借鉴前面“转化”的思想,而且为今后逐渐形成较强的探索能力打下较为扎实的基础。

三、学校及学生状况分析:

我校地处海淀区的二里沟试验学区,学生接触的教材是全新的,学生所受到的教育的理念也是全新的,随着互联网技术的逐渐普及和学生学习方法的不断积累,学生学习的渠道也是多方位的,多数学生的思维是灵活的、敏捷的。但是,由于学生个体的差异,使得已有知识基础、探索新知的快慢程度等也会出现差异。

四、教学设计:

(一)由谈话导入新课。

1、我们已经学过长方形、正方形、平行四边形面积的计算公式。

还记得它们的面积公式吗?(一人回答)

还记得正方形面积公式是怎样推导出来的吗?平行四边形面积呢?

小结:看来,我们所学习过的面积公式,都是在已经学习过的旧知识的基础上,转化推导出来的。

2。 谁知道三角形面积的计算公式?

老师调查一下:

①知道三角形面积计算公式的举手。(可能多)

②不知道三角形面积计算公式的举手。(可能不多)

③不但知道公式,而且还知道怎样推导出来的举手。(可能不多)

今天这节课我们就来亲身体验一下三角形面积计算公式的推导过程

[板书课题:三角形面积]

(二)探究活动。

根据你们前面的学习经验,猜一猜应怎样去探究三角形的面积?[板书:转化]

下面我们将按小组来探究三角形面积的计算公式。

1、介绍学具袋中的学具。

2、出示探究目标和建议

小组合作探究活动,三角形面积的计算公式是怎样推导出来的?

建议:边动手、边想、边说。

(1) 你把三角形转化成了你以前学过的什么图形?

(2)原来的三角形和转化后的图形有什么关系?

(3) 三角形面积的计算公式是什么? 为什么?

3、同学们自选学具,想一想就可以开始了……

(教师参与学生的活动,一方面帮助学生解决学习上的困难,另一方面为汇报选取针对性较强的素材。)

了解一下学生们探究了几种方法(至少保证每人找到一种方法)后,叫停。(此时注意发现不同方法)

4、汇报:请××同学展示自己的探究成果,在他说的时候,同学们要注意听,以便予以补充。(交流过程注意引发学生间的争论)

① 直接用两个完全一样的三角形拼成平行四边形推导……

② 用一个三角形折成长方形推导……

③ 将一个三角形用割补法推导……

(若学生用任意三角形,注意指导沿“中位线”剪开)

……

5、师生共同小结:同学们分别总结出直角、锐角、钝角三角形面积的计算公式,于是[随即板书] 三角形的面积=底×高÷2 s=a×h÷2

6、请同学再用自己喜欢的其中一种方法说说为什么?(扩大战果)

总起来说,不管同学们用一个三角形,还是用两个三角形;也不管是用拼摆的方法,还是用割补的方法,都是在想方设法将新知识转化为旧知识。可见,你们学习的时候很注重学习方法,而且“转化”的这种数学思想正在你的头脑里逐渐形成。

(三)巩固练习(机动)

我们来试着运用这个公式:

1 基本题 先问:要想求三角形的面积必须知道什么条件?再出示数据,然后计算。

2 基本题

3 基本题

(由2、3题解决“等底等高三角形面积相等”)

4 提高题 有一直角等腰三角形,它的斜边是10厘米,你会求它的面积吗?

(四)总结

说说你这节课的感受?

(重点总结心得体会或经验教训。)

五、教学反思:

新课标不仅对学生的认知发展水平提出了要求,同时也对学生学习过程、方法、情感、态度、价值观方面的发展也提出了要求。新理念注重学生的学,强调学生学习的过程与方法,这是引导学生学会学习的关键。

如果我们将数学公式的教学仅仅看成是一般数学知识的传授,那么它就是一个僵死的教条,只有发现了数学的思想方法和精神实质,才能演绎出生动结论。

这节课,我将知识目标定位为:使学生在探索活动中深刻体验和感悟三角形面积计算公式的推导过程。能力目标定位为:在动手操作的活动中,逐步培养学生归纳、推理和语言表达的能力。情感和意志目标定位为:激发学生学习数学的'兴趣,学会学习数学的方法,并通过小组合作,培养学生的团队精神。

整节课是围绕着“通过学生发现三角形与已知图形的联系,自主探究三角形面积计算公式的推导过程,激发学生学习数学的兴趣,不断体验和感悟学习数学的方法,使学生学会学习”这个教学重点展开。并注意从每一个细微之处着手关心和爱护每一个孩子,比如揭示课题后,我便对学生进行调查:哪些同学知道三角形面积的计算公式;哪些同学不知道三角形面积的计算公式;再有就是有哪些同学不但知道三角形面积的计算公式,而且还知道公式是怎样推导出来的,目的是为了了解学生的知识基础,从而帮助他更好地完成学习的过程。他如果是第一种回答,我会表扬他,不但能在学校学到知识,而且还能通过上网、读书等渠道学到知识;他如果是第二种回答,我会告诉他,没关系,这是新知识,只要努力就能学会;他如果是第三种回答,我会鼓励他继续向更高的目标努力,总之,让不同的孩子尽自己的所能学不同的数学。

这节课学生在三角形面积计算公式的探究活动中是自主的、是开放的,让学生体验了“再创造”,本节课的最后一道练习题也是开放的,他让学生体验着数学的无穷魅力。

六、案例点评

本节课是在学生已掌握了长方形、正方形、平行四边形、三角形的面积计算的基础上进行教学的。教学这部分内容对于培养学生识别图形,解决日常生活中的简单实际问题,发展学生空间观念和初步的逻辑思维能力都有重要意义,也是进一步学习几何知识的基础。

教师设计让学生自主动手操作,目的是以“动”促“思”,让学生在动手过程中迸发出创造新思维的火花,同时调动学生多种感官参与学习生活动,激发学生的学习兴趣,适时进行小组合作,给学生提供了充分的自主学习的活动空间和广泛交流的机会,真正体现了学生的主体地位。

通过把学生的汇报和多媒体的演示相结合,进一步体验图形转化的过程。练习设计做到有层次、有坡度,难易适当。即从基本题入手过度到综合题,引申到思考题。其目的是让学生所学的知识在基础中得到巩固,在综合中得到沟通,在思考题中得到升华。如最后一题的设计,它留给学生更多的思考空间,学生可以在更大的范围内思考,更大程度地发挥学生的主体地位,训练了学生的发散思维。

三角形面积的教学设计 篇5

教学内容:

苏教版九年义务教育六年制小学数学第八册P47—49三角形的面积,“练一练”及练习十第1—3题

教学目标:

1、 理解和掌握三角形的面积计算公式。

2、 通过操作、观察、比较,进一步发展空间观念,提高分析、综合、抽象、概括和运用转化的方法解决实际问题的能力。

教学重、难点:

理解和掌握怎样用两个完全一样的三角形转化成平行四边形,推导出三角形的面积计算公式。

教具学具准备:

1、 若干个完全一样的按比例放大的锐角三角形、直角三角形、钝角三角形。一套多媒体课件。

2、 每个学生准备一个长方形、两个平行四边形,一把剪刀。

教学过程:

一、导入课题:

1、师:同学们,今天我们要学习三角形的面积,板书:三角形的面积),看到课题,你想知道什么?

[可能出现:a、三角形面积计算公式是什么?b、三角形面积是怎样推导出来的?c、学三角形的面积有什么作用?]

2、解决方案:

师:要想知道三角形的面积怎样求,你想用什么方法来研究?你是怎么想到的?

(前面我们刚学过平行四边形面积的推导,是把平行四边形通过分割、平移、拼补转化成长方形研究的,所以我想到了转化的方法。板书:转化)

师:今天这节课让老师陪着大家运用转化的方法研究三角形的面积。

[评析:谈话式导入,学生看课题提出自己想知道的问题,参与了课堂学习目标的`制定。课堂导入找准教学起点,沟通了新旧知识的联系,让学生明白本课的学习也是运用转化的方法进行研究,激发了学生的学习兴趣,调动了学生的情感,为新知的学习打下了基础。]

二、新授

(一) 实验一:剪

1、师:下面让我们做几个实验,好不好?

(学生拿出准备好的一个长方形,两个平行四边形。平行四边形上画好底和高。)

2、(1)师:请大家拿出准备好的三个图形,平放在桌上,用剪刀沿虚线把它们剪开,剪开后一对一对的放在一起。(标上1、2、3号)

(2)反馈。师:你沿虚线把平行四边形剪开,得到了什么图形?(让学生把得到的两个三角形举给大家看。)师:其他的两个平行四边形剪开后能得到两个三角形吗?

(3)师:通过刚才的实验我们知道一个平行四边形可以分成两个三角形,这两个三角形大小、形状怎样?你怎么知道的?(学生演示重合的过程)

师:重合了,在数学上叫“完全一样”(板书:两个完全一样)

师:现在你能用“完全一样”说一说我们剪到的三角形吗?(学生说1号是两个完全一样的三角形,2号、3号是两个完全一样的三角形)

学生演示重合过程,课件演示剪、重合的过程。

师:谁能说一说根据刚才的实验,你想到了什么?

小结并出现字幕:一个平行四边形可以分成两个完全一样的三角形。

(4)师:这两个三角形与原来平行四边形面积相等,(课件演示两个完全一样的三角形拼成平行四边形的过程)其中一个三角形的面积和原来平行四边形的面积有什么关系?(课件闪动演示,学生回答,出现字幕:其中一个三角形的面积等于这个平行四边形面积的一半)

师:谁能完整地说一说,通过刚才的实验,你得出什么结论?看字幕说:一个平行四边形可以分成两个完全一样的三角形。其中一个三角形的面积等于这个平行四边形面积的一半。

说一说1号、2号、3号各是什么三角形?(板书:锐角三角形、直角三角形、钝角三角形)

三角形面积的教学设计 篇6

【教学内容】:

人教版五年级上册第六单元第91~92页内容

【教学目标】:

1、探索并掌握三角形的面积公式,能正确计算三角形的面积,并能应用公式解决简单的实际问题。

2、使学生经历操作、观察、讨论、归纳等数学活动,进一步体会转化方法的价值,发展学生的空间观念和初步的推理能力。

3、让学生在探索活动中获得积极的情感体验,进一步培养学生学习数学的兴趣。

【教学重点】:

探索并掌握三角形的面积公式,能正确计算三角形的面积。

【教学难点】:

理解三角形面积公式的推导过程。

【教学准备】:

每人各两个完全一样的三角形,直角三角形、锐角三角形、钝角三角形任选一种,多媒体课件。

【教学过程】:

一、汇报演示

师:同学们请看屏幕,这两块披萨老师要买一块当做明天的早餐,你建议我买哪一块呢?如果现在给你一组数据呢?

师:同学们请看屏幕,为了我们在操场玩耍更安全,为每个班级在操场上画分了一个区域,现在咱们班级啊,就剩下这两块选一个了,你打算帮班级选哪一块呢?

师:为什么买这一块呢?

师:哦,同学们通过微视频的学习,已经会计算三角形的面积了是吗?

师:谁能说说三角形面积怎么求:三角形面积=底×高÷2

师:为什么它的面积是底×高÷2呢?

生:到前面展示三角形拼平行四边形过程。

夯实对应关系:两个完全相同的三角形可以拼成一个()拼成的平行四边形的底等于()拼成的平行四边形的高()因为平行四边形的面积是()所以三角形的面积就是()。

师:总结三角形面积公式,用字母表示就是,计算三角形面的时候你知道需要注意什么?

师:刚刚我们一起推导了三角形面积的公式,它是通过转化成平行四边形后来求面积的,那你还记得我们当时学平行四边形的时候是怎样转化的吗?

师:看来这些知识之间是有联系的,并且我们可以通过已有知识的牵移,就可以解决新的问题。同学们那我们下节课要学习梯形的面积,你能想一想,它的面积可能怎样转化呢?下个微视频当中,我们一同去探究。先看我们的三角形吧。它的面积你学明白了吗?知道求的过程中需要注意什么吗?

师:一个小小的2会在三角形的世界里为我们带来许多神奇的变化,想见识一下吗?看你能战胜这个数字,还是被它打败了。

(一)判断题。

1、两个三角形的底都是20厘米,高都是10厘米,一定可以拼成平行四边形。

2、两个完全一样的直角三角形一定可以拼成正方形。

3、面积相等的两个三角形一定等底等高。

(二)选择题。

1、下面平行线间的3个三角形大小关系正确的是()

A、ABC面积大B、BCD面积大C、BCE面积大D、同样大

2、求右图中三角形面积正确列式为()

A、4.8×5÷2B、4×5÷2C、4×4.8

师:你是胜了,还是败了啊?败给了谁啊?哎,知己知彼百战百胜,咱明知和2打仗,怎么就败了呢?可惜啊!如果给你一个反败为胜的机会,你能把握好吗?那么好吧,机会要抓住啊,咱们的敌人还是谁啊?这次战场可别轻敌啊,再败下来,可没机会喽!

(三)解决问题

1、已知一个三角形的面积是500平方米,底是40米,求这个三角形的高。

一个三角形的底是3厘米,高是4厘米,面积是多少厘米?

另一个三角形的底是3厘米,高是4厘米,面积是多少厘米?

还有一个三角形,底是4厘米,高是3厘米,面积是多少厘米?

一个三角形,底是5厘米,高是2.4厘米,面积是多少厘米?

拓展延伸:

思考一:三角形和平行四边形面积相同,底也相同,它们的.高什么关系?

思考二:三角形和平行四边形面积相同,高也相同,它们的底什么关系?

思考提示:若头脑中不能建立起两个图形,我们可以利用假设方式求出它们各自的高和底再进行观察。可以假设一组数据,假设它们的面积都是20平方厘米,底都是4厘米,我们可以求出它们的高再进行观察。如果思考一你能解决,相信思考二你便能推导出这种关系,如果不能,还可以利用假设的方法,比一比,看谁最聪明。

如果你能弄清楚上面的思考题,看看自己能不能快速计算出下面几道题?

三角形和平行四边形面积相同,底相同,三角形的高是30厘米,平行四边的高是?

三角形和平行四边形面积相同,底相同,平行四边形的高是30厘米,三角形的高是?

三角形和平行四边形面积相同,高相同,三角形的底是20厘米,平行四边的底是?

三角形和平行四边形面积相同,高相同,平行四边形的底是20厘米,三角形的底是?